文章信息
- 藻蓝蛋白抗肿瘤的应用现状
- Application Status of C-phycocyanin in Anti-tumor
- 肿瘤防治研究, 2018, 45(6): 420-424
- Cancer Research on Prevention and Treatment, 2018, 45(6): 420-424
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2018.17.1464
- 收稿日期: 2017-11-20
- 修回日期: 2017-12-25
近年来,海洋产品已被证实具有很好的抗癌活性,并且几乎无毒副作用[1]。藻蓝蛋白(C-phycocyanin, C-PC)是一种从螺旋藻[2]、鞘丝藻[3]、集胞藻[4]等藻类中提取的生物活性营养化合物[5-6],其营养丰富,可以补充人体蛋白质和维生素[7]。藻蓝蛋白属于藻胆蛋白(PBP)家族[8],主要由α亚基和β亚基组成[9]。
研究表明,藻蓝蛋白在抗肿瘤中发挥重要的作用[10-11],且具有广泛的医药价值[12]、抗肿瘤[13]、抗氧化功效[14],还具有抗炎活性[15],是潜在的天然抗炎剂[8, 16]。藻蓝蛋白也可以清除受损的神经细胞自由基,避免DNA氧化损伤[17],从而防止自由基引起的神经细胞凋亡[18-19]。藻蓝蛋白还可以抑制上皮-间质转化(EMT)[20]。此外,藻蓝蛋白还具有光诱导细胞毒性[21]和免疫刺激作用[22],促进动物血细胞的再生、提高淋巴细胞活性、提高机体的免疫功能[23-24],全面提高机体的抗病能力[25],具有药物开发潜力[26]。大量研究表明,藻蓝蛋白对多种肿瘤具有抑制作用,如乳腺癌[10]、肝癌[27]等。
1 藻蓝蛋白单独作用藻蓝蛋白是存在于藻类细胞中的光合辅助色素蛋白,并且具有显著的抗肿瘤活性。Ying等[28]将藻蓝蛋白作用于卵巢癌(SKOV-3)细胞,发现细胞阻滞于G2/M期,表明藻蓝蛋白能够抑制卵巢癌细胞的增殖。Liao等[29]将藻蓝蛋白作用于胰腺癌(PDA)细胞,发现随着藻蓝蛋白浓度的增加,细胞活性逐渐减弱,流式细胞仪检测发现藻蓝蛋白能够将细胞周期阻滞于G2/M期。藻蓝蛋白作用于胰腺癌小鼠模型,随藻蓝蛋白浓度的增加,小鼠瘤块组织逐渐减小。应俊等[30]将不同浓度的藻蓝蛋白处理喉癌HEP-2细胞。MTT结果显示藻蓝蛋白能够抑制喉癌HEP-2的细胞活力,且呈时间和剂量依赖性;流式细胞术实验证实藻蓝蛋白可显著诱导HEP-2细胞的凋亡;藻蓝蛋白处理后细胞内活性氧(ROS)含量增加,caspase-3、-8、-9被激活;实时定量PCR(RT-PCR)结果表明,藻蓝蛋白作用后促凋亡蛋白Bax、Fas、P53、caspase-3和caspase-9的表达显著上调,抗凋亡蛋白Bcl-2表达显著下调;从而使凋亡细胞的bcl-2/bax比率下降、诱导细胞的凋亡。李冰等[31-32]构建得到含有CD59基因的HeLa细胞,以不同剂量的藻蓝蛋白作用于体外培养的HeLa细胞,通过MTT法检测发现藻蓝蛋白能抑制HeLa细胞的增殖并存在浓度剂量效应;采用流式细胞仪检测藻蓝蛋白对HeLa细胞的细胞周期变化及细胞凋亡的影响,结果表明,经藻蓝蛋白处理后细胞抗凋亡蛋白Bcl-2下调,但是促凋亡蛋白Bax上调或没有任何变化,因此,Bcl-2/Bax的比率倾向于引起细胞凋亡。
上述文献对藻蓝蛋白的抗肿瘤作用和机制进行了研究,为下一步研究奠定了基础。
2 藻蓝蛋白联合光动力疗法Morcos等[33]发现激光诱导藻蓝蛋白能够对细胞产生毒性,当He-Ne激光联合应用于肿瘤细胞时,藻蓝蛋白可以作为光敏化剂在光动力治疗中发挥重要作用。Li等发现,藻蓝蛋白联合光动力疗法(PDT)能促进荷MCF-7瘤小鼠体内癌细胞凋亡,为肿瘤的治疗提供了新的方向[22]。藻蓝蛋白作为光敏剂,在625 nm激光照射下,藻蓝蛋白诱导活性氧(ROS)产生细胞毒性反应,诱导MDA-MB-231细胞凋亡[34]。
当藻蓝蛋白联合He-Ne激光对肝癌细胞HepG2进行治疗时,藻蓝蛋白可作为光敏剂诱导线粒体膜电位降低,增加活性氧(ROS)的含量,释放细胞色素C,促进Caspase-3蛋白的表达,引起细胞周期阻滞,激发HepG2细胞激活内源性途径启动细胞凋亡,而对健康者肝细胞系HL7702细胞没有任何毒副作用[21]。
李冰等[35]将HeLa细胞荷瘤小鼠局部皮下注射藻蓝蛋白液,经氦氖激光照射后,产生一种具有毒性作用的活性态氧离子,从而破坏肿瘤细胞。激光能够增强NK细胞的活性及T细胞的增殖活性,表明激光照射具有抗肿瘤及提高免疫细胞活性的作用。而C-PC和激光联合作用后,抗肿瘤免疫效应明显增强。激光照射肿瘤细胞区,可促进肿瘤死亡信号的传递,并提高荷瘤机体的抗肿瘤免疫力。
3 藻蓝蛋白联合全反式维甲酸全反式维甲酸(ATRA)对肿瘤细胞的生长有抑制作用[36]。然而由于高浓度ATRA的毒副作用较大,使得该药物的临床使用受到很大的限制[37]。目前,联合用药是临床上治疗肿瘤的重要策略之一,其治疗原则是减少耐药性的产生,减轻患者的不良反应,延长用药时间从而提高疗效。李冰[38]将C-PC和ATRA联合用药,探寻两种药物的最佳作用浓度。体内采用MTT检测两种药物单独及联合使用时HeLa和A549细胞的增殖情况。体外利用NU/NU裸鼠构建荷瘤小鼠模型,经C-PC和ATRA药物处理后,用MTT法检测T淋巴细胞和脾脏细胞的活性。结果表明,两种药物单独使用均具有肿瘤抑制效果,且抑制率随着药物浓度的升高而增加。C-PC能够增强机体免疫力,当C-PC和ATRA联合用药时,能够有效降低ATRA的毒副作用且抑瘤效果更加显著。
Yang等[39]发现全反式维甲酸和藻蓝蛋白对HeLa细胞联合治疗能显著降低全反式维甲酸的剂量和毒副作用。联合用药可显著下调抗凋亡蛋白Bcl-2的表达,上调促凋亡蛋白Caspase-3的表达,抑制细胞周期相关蛋白CDK-4和cyclin D1蛋白的表达,抑制补体调节蛋白CD59的表达和诱导细胞凋亡。
Li等[40]将A549细胞分为对照组、C-PC组、ATRA组、C-PC联合ATRA组,培养24 h后用MTT比色法检测A549细胞的生长情况。结果显示C-PC和ATRA都能抑制A549的生长,并与剂量呈正相关,两者联合时,抑制作用明显加强。
藻蓝蛋白联合全反式维甲酸抗肿瘤的效果明显增强,C-PC和ATRA两者都能抑制肿瘤细胞的生长,两者联合能降低ATRA的浓度,减少毒副作用,延长用药时间,增加了C-PC抗肿瘤的能力。
4 藻蓝蛋白联合其他药物Gantar[41]用10%常规剂量的拓扑替康和藻蓝蛋白联合作用治疗前列腺癌(LNCaP),结果表明,两者联合用药的效果远远高于两者单独作用。藻蓝蛋白和拓扑替康联合使用激活了Caspase-9和Caspase-3的表达活性,增加了氧自由基(ROS)的表达水平,诱导肿瘤细胞的凋亡,并且降低了拓扑替康单独使用时的副作用。
Saini等[42]用吡罗昔康(传统的非甾体类抗炎药)和藻蓝蛋白联合用药治疗DMH诱导的大鼠结肠癌,结果表明,联合用药使DNA片段化,环氧合酶-2(COX-2)及前列腺素E2(PGE2)的表达水平明显降低。此外,肿瘤细胞的数量和体积也明显减少。
Bingula等[43]对肺癌A549细胞联合甜菜碱和藻蓝蛋白用药时,A549细胞的活力下降了60%,远远高于甜菜碱或藻蓝蛋白单独使用时的细胞活力。甜菜碱和藻蓝蛋白的联合用药降低了NF-κB的表达,增加了促凋亡蛋白p38的表达,引起细胞G2/M细胞周期阻滞。
阿霉素联合藻蓝蛋白作用于成年大鼠,结果表明,阿霉素能显著降低活性氧(ROS)的形成并减少DNA的片段化,其细胞凋亡率明显降低。因此,藻蓝蛋白能降低阿霉素引起的氧化应激与心肌细胞凋亡[44]。
5 新型藻蓝蛋白/羧甲基壳聚糖-CD59配体肽纳米微球靶向作用Li等[45-46]发现藻蓝蛋白具有抗肿瘤和提高机体免疫力的功效,但其稳定性较差、在体内易降解,限制了它在生物医学领域的应用。吕丛仪[47]利用羧甲基壳聚糖(CMC)包埋水溶性藻蓝蛋白,通过CaCl2介导的离子交联法制备藻蓝蛋白/羧甲基壳聚糖纳米微球(C-PC/CMC-NPs)。利用流式细胞术检测加药前后HeLa细胞的凋亡状况,发现C-PC、CMC和C-PC/CMC-NPs均可以诱导细胞发生凋亡,其中C-PC/CMC-NPs的凋亡效果更为明显。进一步实验表明C-PC、CMC和C-PC/CMC-NPs均可以抑制抗凋亡蛋白Bcl-2的表达,促进促凋亡蛋白JNK和Caspase-3的表达,其中C-PC/CMC-NPs的作用效果最为明显。C-PC/CMC-NPs诱导HeLa细胞发生凋亡的分子机制可能是通过抑制Bcl-2蛋白的表达,促进JNK蛋白和Caspase-3蛋白的表达,从而实现凋亡信号在JNK信号转导通路中的传递,诱导肿瘤细胞发生凋亡。
殷启风等[48]以C-PC为抗肿瘤的模式药物,CMC为载体,CD59配体肽(CD59sp)为靶向分子,将C-PC包裹在CMC中,制备出C-PC/CMC-NPs,再将CD59sp连接到纳米微球上,合成靶向纳米药物C-PC/CMC-CD59sp-NPs,实现纳米微球的靶向输送,并对靶向纳米药物在肿瘤细胞的靶向性、安全性、抗肿瘤效果进行研究。将CD59sp连接到纳米微球上,制备出靶向纳米药物,旨在利用CD59配体肽和肿瘤细胞表面的CD59蛋白的特异性结合,在CD59sp的引导下实现药物的靶向停靠和摄入。在CD59sp的引导作用下,C-PC/CMC-CD59sp-NPs能靶向高效抵达HeLa细胞表面,并对HeLa细胞增殖有明显抑制作用。该微球可促进Caspase-3和PARP蛋白的表达,抑制Bcl-2蛋白的表达,促进凋亡信号在胞内的转导,同时发现该纳米微球能明显抑制细胞周期的进程,出现G1期阻滞现象。Wang等[49]发现新型C-PC/CMC-CD59sp纳米微球能促进肿瘤细胞的凋亡、抑制肿瘤细胞的增殖。
新型C-PC/CMC-CD59sp-NPs纳米微球以C-PC为抗肿瘤的模式药物,CMC为载体,CD59sp为靶向分子进行肿瘤靶向治疗。该纳米微球可以显著减少C-PC的降解,增加C-PC的稳定性,改变药物的溶出率,提高药物的利用率,能够长时间保持药物的有效浓度,从而提高药物的疗效、降低毒副作用。利用CD59sp特异性与CD59结合,既可作为靶向引导分子连接在纳米药物上,实现靶向给药,又可封闭CD59,促进MAC的形成,增强抗肿瘤效果。
6 结论藻蓝蛋白用途广泛,具有明显抑制肿瘤生长的作用,无毒、高效,但其含量较低、稳定性差,在体内易降解、利用率低,限制了其应用。以天然藻蓝蛋白为对象进行药物开发存在着许多问题,比如成本高、杂质多、周期长等。其联合其他药物的抗肿瘤效应有待于进一步开发,其中靶向抗肿瘤载体系统的构建为药物研发提供了新思路。
[1] | Jung IL. Soluble extract from Moringa oleifera leaves with a new anticancer activity[J]. PLoS One, 2014, 9(4): e95492. DOI:10.1371/journal.pone.0095492 |
[2] | Madamwar D, Patel DK, Desai SN, et al. Apoptotic potential of C-phycoerythrin from Phormidium sp. A27DM and Halomicronema sp. A32DM on human lung carcinoma cells[J]. EXCLI J, 2015, 14: 527–39. |
[3] | Rastogi RP, Sonani RR, Madamwar D. Effects of PAR and UV Radiation on the Structural and Functional Integrity of Phycocyanin, Phycoerythrin and Allophycocyanin Isolated from the Marine Cyanobacterium Lyngbya sp. A09DM[J]. Photochem Photobiol, 2015, 91(4): 837–44. DOI:10.1111/php.2015.91.issue-4 |
[4] | Chen Z, Zhan J, Chen Y, et al. Effects of Phosphorylation of beta Subunits of Phycocyanins on State Transition in the Model Cyanobacterium Synechocystis sp. PCC 6803[J]. Plant Cell Physiol, 2015, 56(10): 1997–2013. DOI:10.1093/pcp/pcv118 |
[5] | de Jesus Raposo MF, de Morais RM, de Morais AM. Health applications of bioactive compounds from marine microalgae[J]. Life Sci, 2013, 93(15): 479–86. DOI:10.1016/j.lfs.2013.08.002 |
[6] | Kissoudi M, Sarakatsianos I, Samanidou V. Isolation and purification of food-grade C-phycocyanin from Arthrospira platensis and its determination in confectionery by HPLC with Diode Array Detection[J]. J Sep Sci, 2017. [Epub ahead of print] |
[7] | 张军, 邹宁, 孙东红, 等. 螺旋藻抗肿瘤组分的研究进展[J]. 食品研究与开发, 2016, 37(14): 214–6. [ Zhang J, Zou N, Sun DH, et al. A Summary of the Document on Anticancer Activity of Spirulina Component[J]. Shi Pin Yan Jiu Yu Kai Fa, 2016, 37(14): 214–6. DOI:10.3969/j.issn.1005-6521.2016.14.052 ] |
[8] | Stadnichuk IN, Krasil'nikov PM, Zlenko DV. Cyanobacterial Phycobilisomes and Phycobiliproteins[J]. Mikrobiologiia, 2015, 84(2): 131–43. |
[9] | Adir N, Lerner N. The crystal structure of a novel unmethylated form of C-phycocyanin, a possible connector between cores and rods in pycobilisomes[J]. J Biol Chem, 2003, 278(28): 25926–32. DOI:10.1074/jbc.M302838200 |
[10] | Ravi M, Tentu S, Baskar G, et al. Molecular mechanism of anti-cancer activity of phycocyanin in triple-negative breast cancer cells[J]. BMC Cancer, 2015, 15: 768. DOI:10.1186/s12885-015-1784-x |
[11] | Bechelli J, Coppage M, Rosell K, et al. Cytotoxicity of algae extracts on normal and malignant cells[J]. Leuk Res Treatment, 2011, 2011: 373519. |
[12] | Pleonsil P, Soogarun S, Suwanwong Y. Anti-oxidant activity of holo- and apo-c-phycocyanin and their protective effects on human erythrocytes[J]. Int J Biol Macromol, 2013, 60: 393–8. DOI:10.1016/j.ijbiomac.2013.06.016 |
[13] | Thangam R, Suresh V, Asenath Princy W, et al. C-Phycocyanin from Oscillatoria tenuis exhibited an antioxidant and in vitro antiproliferative activity through induction of apoptosis and G0/G1 cell cycle arrest[J]. Food Chem, 2013, 140(1-2): 262–72. DOI:10.1016/j.foodchem.2013.02.060 |
[14] | 夏冬, 孙军燕, 刘娜娜, 等. 藻蓝蛋白抗氧化作用及其药理活性研究进展[J]. 海洋科学, 2015, 39(7): 130–5. [ Xia D, Sun JY, Liu NN, et al. Research progress of the antioxidant activity of Phycocyanin and its application[J]. Hai Yang Ke Xue, 2015, 39(7): 130–5. DOI:10.11759/hykx20140704001 ] |
[15] | Zhu C, Ling Q, Cai Z, et al. Selenium-Containing Phycocyanin from Se-Enriched Spirulina platensis Reduces Inflammation in Dextran Sulfate Sodium-Induced Colitis by Inhibiting NF-kappaB Activation[J]. J Agric Food Chem, 2016, 64(24): 5060–70. DOI:10.1021/acs.jafc.6b01308 |
[16] | Shen G, Schluchter WM, Bryant DA. Biogenesis of phycobiliproteins: Ⅰ. cpcS-Ⅰ and cpcU mutants of the cyanobacterium Synechococcus sp. PCC 7002 define a heterodimeric phyococyanobilin lyase specific for beta-phycocyanin and allophycocyanin subunits[J]. J Biol Chem, 2008, 283(12): 7503–12. DOI:10.1074/jbc.M708164200 |
[17] | Niu YJ, Zhou W, Guo J, et al. C-Phycocyanin protects against mitochondrial dysfunction and oxidative stress in parthenogenetic porcine embryos[J]. Sci Rep, 2017, 7(1): 16992. DOI:10.1038/s41598-017-17287-0 |
[18] | Rimbau V, Camins A, Romay C, et al. Protective effects of C-phycocyanin against kainic acid-induced neuronal damage in rat hippocampus[J]. Neurosci Lett, 1999, 276(2): 75–8. DOI:10.1016/S0304-3940(99)00792-2 |
[19] | Rimbau V, Camins A, Pubill D, et al. C-phycocyanin protects cerebellar granule cells from low potassium/serum deprivation-induced apoptosis[J]. Naunyn Schmiedeberg's Arch Pharmacol, 2001, 364(2): 96–104. DOI:10.1007/s002100100437 |
[20] | Pattarayan D, Rajarajan D, Ayyanar S, et al. C-phycocyanin suppresses transforming growth factor-beta1-induced epithelial mesenchymal transition in human epithelial cells[J]. Pharmacol Rep, 2017, 69(3): 426–31. DOI:10.1016/j.pharep.2016.12.013 |
[21] | Wang CY, Wang X, Wang Y, et al. Photosensitization of phycocyanin extracted from Microcystis in human hepatocellular carcinoma cells: implication of mitochondria-dependent apoptosis[J]. J Photochem Photobiol B, 2012, 117: 70–9. DOI:10.1016/j.jphotobiol.2012.09.001 |
[22] | Li B, Chu X, Gao M, et al. Apoptotic mechanism of MCF-7 breast cells in vivo and in vitro induced by photodynamic therapy with C-phycocyanin[J]. Acta Biochim Biophys Sin(Shanghai), 2010, 42(1): 80–9. |
[23] | Chang CJ, Yang YH, Liang YC, et al. A novel phycobiliprotein alleviates allergic airway inflammation by modulating immune responses[J]. Am J Respir Crit Care Med, 2011, 183(1): 15–25. DOI:10.1164/rccm.201001-0009OC |
[24] | Nemoto-Kawamura C, Hirahashi T, Nagai T, et al. Phycocyanin enhances secretary IgA antibody response and suppresses allergic IgE antibody response in mice immunized with antigen-entrapped biodegradable microparticles[J]. J Nutr Sci Vitaminol(Tokyo), 2004, 50(2): 129–36. DOI:10.3177/jnsv.50.129 |
[25] | Marín-Prida J, Pavón-Fuentes N, Llópiz-Arzuaga A, et al. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats[J]. Toxicol Appl Pharmacol, 2013, 272(1): 49–60. DOI:10.1016/j.taap.2013.05.021 |
[26] | Iijma T, Saitoh N, Nobutomo K, et al. A prospective cohort study of hepatitis B surface antigen carriers in a working population[J]. Gan, 1984, 75(7): 571–3. |
[27] | Kunte M, Desai K. The Inhibitory Effect of C-phycocyanin Containing Protein Extract (C-PC Extract) on Human Matrix Metalloproteinases (MMP-2 and MMP-9) in Hepatocellular Cancer Cell Line (HepG2)[J]. Protein J, 2017, 36(3): 186–95. DOI:10.1007/s10930-017-9707-0 |
[28] | Ying J, Wang J, Ji H, et al. Transcriptome analysis of phycocyanin inhibitory effects on SKOV-3 cell proliferation[J]. Gene, 2016, 585(1): 58–64. DOI:10.1016/j.gene.2016.03.023 |
[29] | Liao G, Gao B, Gao Y, et al. Phycocyanin Inhibits Tumorigenic Potential of Pancreatic Cancer Cells: Role of Apoptosis and Autophagy[J]. Sci Rep, 2016, 6: 34564. DOI:10.1038/srep34564 |
[30] | 应俊, 潘若望, 王茂峰, 等. 藻蓝蛋白诱导喉癌HEP-2细胞凋亡的实验研究[J]. 中国病理生理杂志, 2015, 31(7): 1189–96. [ Ying J, Pan RW, Wang MF, et al. Effects of phycocyanin on apoptosis of human laryngeal cancer HEP-2 cells[J]. Zhongguo Bing Li Sheng Li Za Zhi, 2015, 31(7): 1189–96. ] |
[31] | 李冰, 张学成, 高美华, 等. 藻蓝蛋白对HeLa细胞CD59基因表达调控作用的研究[J]. 高技术通讯, 2006, 16(2): 196–200. [ Li B, Zhang XC, Gao MH, et al. Study of regulatory effect of phycocyanin on CD59 gene expression of HeLa cells[J]. Gao Ji Shu Tong Xun, 2006, 16(2): 196–200. ] |
[32] | 李冰, 褚现明, 高美华, 等. 钝顶螺旋藻藻蓝蛋白诱导HeLa细胞凋亡的分子机制研究[J]. 中国药理学通报, 2009, 25(8): 1045–50. [ Li B, Chu XM, Gao MH, et al. Study on the molecular mechanism of C-phycocyanin from Spirulina platensis induced apoptosis in HeLa cells[J]. Zhongguo Yao Li Xue Tong Bao, 2009, 25(8): 1045–50. ] |
[33] | Morcos NC, Berns M, Henry WL. Phycocyanin: laser activation, cytotoxic effects, and uptake in human atherosclerotic plaque[J]. Lasers Surg Med, 1988, 8(1): 10–7. DOI:10.1002/(ISSN)1096-9101 |
[34] | Bharathiraja S, Seo H, Manivasagan P, et al. In Vitro Photodynamic Effect of Phycocyanin against Breast Cancer Cells[J]. Molecules, 2016, 21(11): pii: E1470. DOI:10.3390/molecules21111470 |
[35] | 李冰, 褚现明, 高美华. 藻蓝蛋白-光动力疗法治疗小鼠HeLa细胞瘤的免疫和凋亡机制研究[J]. 中国激光医学杂志, 2011, 20(1): 1–6. [ Li B, Chu XM, Gao MH. Treatment of HeLa Tumor in mice with C-phycocyanin Mediated Photodynamic Therapy and Its Immune Mechanism Underlying Apoptosis[J]. Zhongguo Ji Guang Yi Xue Za Zhi, 2011, 20(1): 1–6. ] |
[36] | Sun DF, Gao ZH, Liu HP, et al. Sphingosine 1-phosphate antagonizes the effect of all-trans retinoic acid (ATRA) in a human colon cancer cell line by modulation of RARbeta expression[J]. Cancer Lett, 2012, 319(2): 182–9. DOI:10.1016/j.canlet.2012.01.012 |
[37] | Siddikuzzaman, Grace VM. Inhibition of metastatic lung cancer in C57BL/6 mice by liposome encapsulated all trans retinoic acid (ATRA)[J]. Int Immunopharmacol, 2012, 14(4): 570–9. DOI:10.1016/j.intimp.2012.09.008 |
[38] | 李冰, 杨帆, 吕丛仪, 等. 藻蓝蛋白协同全反式维甲酸影响人宫颈癌HeLa细胞的增殖和凋亡[J]. 中国肿瘤生物治疗杂志, 2014, 21(5): 516–20. [ Li B, Yang F, Lyu CY, et al. Effects of C-phycocyanin combined with all-trans retinoic acid on cervical cancer cells proliferation and apoptosis[J]. Zhongguo Zhong Liu Sheng Wu Zhi Liao Za Zhi, 2014, 21(5): 516–20. DOI:10.3872/j.issn.1007-385X.2014.5.006 ] |
[39] | Yang F, Li B, Chu XM, et al. Molecular mechanism of inhibitory effects of C-phycocyanin combined with all-trans-retinoic acid on the growth of HeLa cells in vitro[J]. Tumour Biol, 2014, 35(6): 5619–28. DOI:10.1007/s13277-014-1744-0 |
[40] | Li B, Gao MH, Chu XM, et al. The synergistic antitumor effects of all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in vitro and in vivo[J]. Eur J Pharmacol, 2015, 749: 107–14. DOI:10.1016/j.ejphar.2015.01.009 |
[41] | Gantar M, Dhandayuthapani S, Rathinavelu A. Phycocyanin induces apoptosis and enhances the effect of topotecan on prostate cell line LNCaP[J]. J Med Food, 2012, 15(12): 1091–5. DOI:10.1089/jmf.2012.0123 |
[42] | Saini MK, Vaiphei K, Sanyal SN. Chemoprevention of DMH-induced rat colon carcinoma initiation by combination administration of piroxicam and C-phycocyanin[J]. Mol Cell Biochem, 2012, 361(1-2): 217–28. DOI:10.1007/s11010-011-1106-9 |
[43] | Bingula R, Dupuis C, Pichon C, et al. Study of the Effects of Betaine and/or C-Phycocyanin on the Growth of Lung Cancer A549 Cells In Vitro and In Vivo[J]. J Oncol, 2016, 2016: 8162952. |
[44] | Khan M, Varadharaj S, Shobha JC, et al. C-phycocyanin ameliorates doxorubicin-induced oxidative stress and apoptosis in adult rat cardiomyocytes[J]. J Cardiovasc Pharmacol, 2006, 47(1): 9–20. DOI:10.1097/01.fjc.0000191520.48404.27 |
[45] | Li B, Zhang X, Gao M, et al. Effects of CD59 on antitumoral activities of phycocyanin from Spirulina platensis[J]. Biomed Pharmacother, 2005, 59(10): 551–60. DOI:10.1016/j.biopha.2005.06.012 |
[46] | Li B, Gao MH, Zhang XC, et al. Molecular immune mechanism of C-phycocyanin from Spirulina platensis induces apoptosis in HeLa cells in vitro[J]. Biotechnol Appl Biochem, 2006, 43: Pt 3–64. |
[47] | 吕丛仪, 李冰, 杨鹏. 藻蓝蛋白/羧甲基壳聚糖纳米微球的制备及其对人宫颈癌HeLa细胞增殖的抑制[J]. 中国肿瘤生物治疗杂志, 2015, 22(1): 34–40. [ Lyu CY, Li B, Yang P. Optimized preparation of novel C-phycocyanin-carboxymethyl chitosan nanoparticles and its inhibitory effects on human cervical carcinoma HeLa cells proliferation[J]. Zhongguo Zhong Liu Sheng Wu Zhi Liao Za Zhi, 2015, 22(1): 34–40. DOI:10.3872/j.issn.1007-385X.2015.1.006 ] |
[48] | 殷启风, 杨鹏, 王玉娟, 等. 新型羧甲基壳聚糖包裹C-藻蓝蛋白负载CD59配体的靶向纳米微球的制备及其对HeLa细胞的杀伤作用[J]. 中国肿瘤生物治疗杂志, 2017, 24(2): 127–33. [ Yin QF, Yang P, Wang YJ, et al. Preparation of novel nanoparticles of carboxymethyl chitosan covered with C-phycocyanin carrying CD59sp and its killing effect on HeLa cells[J]. Zhongguo Zhong Liu Sheng Wu Zhi Liao Za Zhi, 2017, 24(2): 127–33. DOI:10.3872/j.issn.1007-385X.2017.02.005 ] |
[49] | Wang Y, Jiang L, Yin Q, et al. The Targeted Antitumor Effects of C- PC/CMC-CD59sp Nanoparticles on HeLa Cells in Vitro and in Vivo[J]. J Cancer, 2017, 8(15): 3001–13. DOI:10.7150/jca.21059 |