文章信息
- 缺氧相关的miRNA-210在肿瘤中的研究进展
- Research Advance of Hypoxia-regulated miR-210 in Cancer
- 肿瘤防治研究, 2018, 45(7): 500-504
- Cancer Research on Prevention and Treatment, 2018, 45(7): 500-504
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2018.17.1457
- 收稿日期: 2017-12-19
- 修回日期: 2018-03-29
2. 100021 北京,国家癌症中心/中国医学科学院北京协和医学院肿瘤医院分子肿瘤学国家重点实验室
2. State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
低氧是肿瘤细胞生长过程中最常见的现象,实体肿瘤细胞由于增殖过快而肿瘤组织内部血管形成相对不足,导致肿瘤细胞能量和氧气供应减少,低氧会诱导肿瘤细胞内低氧诱导因子1(hypoxia-inducible factor-1, HIF-1)的稳定表达[1],调节细胞代谢以适应低氧环境。HIF-1是一种蛋白二聚体,由HIF-1α和HIF-1β两个亚基组成。HIF-1α作为HIF-1的调节和活性亚基,低氧是诱导表达HIF-1α的惟一生理性因素,HIF-1β是HIF-1的结构亚基,在细胞内的表达相对稳定。HIF-1可诱导一系列miRNAs的水平发生变化,即所谓的缺氧相关miRNAs(hypoxia-regulated miRNAs, HRMs)[2]。miRNA可在转录后水平对靶基因进行调节,影响靶基因的表达情况。大量体内及体外试验表明miR-210是最主要的HRMs[3],可参与肿瘤细胞的多项生命活动进程。miR-210除在肿瘤组织中存在外,也可由肿瘤细胞产生并分泌入血,除此之外,miRNAs在石蜡标本中长期稳定存在,且可用于定量分析[4],因此miR-210检测的标本来源广泛,为后续的临床应用提供了便利。
1 miR-210的生物学结构及在细胞进程中的作用miRNA是一种由18~25个核苷酸组成的单链非编码RNA,它的序列高度保守,可在转录后水平调节基因的表达,通过和靶基因mRNA的3’端非编码区结合[5],根据结合区域的长短产生两种作用:降解或抑制mRNA的表达[6],是一种在转录后水平上沉默基因表达的手段。miR-210的茎环结构位于染色体11p 15.5上AK123483基因转录生成的内含子内,可参与肿瘤细胞增殖、凋亡、代谢、血管形成、侵袭和转移等一系列进程。
1.1 miR-210与HIF-1α之间的正反馈调节肿瘤组织生长迅速,细胞血液供应不足导致氧分压降低,细胞在低氧情况下可激活HIF-1α而诱导miR-210的异常表达,Chang等[7]将骨髓间充质干细胞(human mesenchymal stem cells,hMSC)在低氧环境培养,观察到HIF-1α含量明显上升并诱导miR-210的表达升高,将miR-210模拟剂转染入hMSCs中,在正常氧环境下培养时,miR-210模拟剂会诱导HIF-1α的表达;在低氧环境培养一段时间后脱离低氧环境,24 h后miR-210模拟剂仍会维持HIF-1α的表达水平,表明在miR-210与HIF-1α之间存在正反馈,低氧环境诱导二者表达增高,且miR-210可稳定HIF-1α的水平。
1.2 miR-210与线粒体功能代谢氧含量正常时,大多数细胞采用有氧呼吸的形式供能,而肿瘤细胞即使在氧含量充足时也抑制线粒体呼吸链,促进细胞糖酵解来供能[8]。Chen等[9]将多种肿瘤细胞在低氧环境中培养,观察到miR-210含量和活性氧(reactive oxygen species, ROS)的生成明显增加,线粒体呼吸作用下降,铁硫簇支架蛋白(iron-sulfur cluster scaffold homolog, ISCU)和细胞色素c氧化酶10(cytochromec oxidase assembly homolog 10, COX10)是线粒体呼吸电子传递链和三羧酸循环的关键分子,ISCU已被证明是miR-210的靶基因,miR-210通过抑制ISCU和COX10的表达来抑制线粒体的有氧呼吸,miR-210参与肿瘤细胞的线粒体功能代谢调节。
1.3 miR-210与血管形成肿瘤由于增长过快,需要更快的新生血管网形成来维持营养供给及代谢循环,同时肿瘤的侵袭、转移也涉及到血管形成。肿瘤组织中miR-210表达上调,可明显上调血管内皮细胞生长因子(vascular endothelial growth factor, VEGF)来促进血管形成;Huang等[10]发现miR-210可下调酪氨酸激酶受体配体Ephrin-A3(EFFNA3)的表达,进而促进人脐静脉血管内皮细胞(human umbilical vein endothelial cells, HUVEC)分化为毛细血管样结构,并促进HUVEC在VEGF介导下的迁移;在人白血病细胞系K562细胞中,细胞可分泌含高浓度miR-210的外泌体,外泌体中miR-210可促进血管内皮细胞小管形成,这种作用是通过抑制EFNA3来实现的[11];Yang等[12]在研究缺氧与肝细胞癌侵袭性的关系时发现,肝癌细胞中miR-210表达上调,且miR-210的含量与微血管密度呈正相关,miR-210调节下游靶基因成纤维细胞生长因子受体1(fibroblast growth factor receptor-like 1, FGFRL1)和成纤维细胞生长因子(fibroblast growth factor, FGF)的表达,促进微血管形成而增强肿瘤细胞的侵袭性;Cui等[13]发现在肺癌A549L细胞系中,组织金属蛋白酶抑制剂1(tissue inhibitor of metalloproteinase-1, TIMP-1)增高,通过CD63/PI3K/AKT/ HIF-1途径诱导HIF-1/miR-210表达,抑制miR-210的下游靶基因FGFRL1、E2F3、泡膜蛋白(vacuole membrane protein, VMP-1)、RAD52和琥珀酸脱氢酶复合亚单位D(succinate dehydrogenase subunit D, SDHD)的表达,进而促进小管形成,在肺癌A549L细胞系裸鼠移植瘤模型中也证实了这一现象。
1.4 miR-210与细胞周期阻滞增殖期细胞比例明显增高是肿瘤的一大特征,miR-210可通过调节细胞周期相关基因的表达而参与此过程。Tsuchiy等[14]发现miR-210在食管鳞状细胞癌尤其是低分化鳞状细胞癌中表达下降,将miR-210模拟剂转染入食管癌细胞系中观察到大量细胞阻滞于G0/G1、G1/G2期,细胞周期受阻进而增殖受到抑制,FGFRL1是miR-210作用于细胞周期的下游靶基因,FGFRL1在食管癌细胞中含量增高,从而促进肿瘤细胞的增生。Mei等[15]发现在鼻咽癌细胞系CNE-1中,miR-210表达增高,抑制cyclin D1 mRNA表达,使细胞周期阻滞于G1期,从而抑制肿瘤细胞增殖。在肝细胞癌中miR-210表达水平增高,并可沉默Yes1蛋白的表达,Yes1蛋白是Src蛋白络氨酸激酶家族中的一员,参与多条信号转导通路,包括细胞有丝分裂、细胞周期调控及凋亡等。正常细胞中Yes1蛋白可通过与β-catenin相互作用而使细胞通过G1期,肝癌细胞中Yes1蛋白含量降低,细胞阻滞于G1期而生长受抑。
1.5 miR-210与免疫抑制免疫逃逸在肿瘤的发生发展与转移方面有重要作用,肿瘤的低氧环境可介导肿瘤细胞的免疫逃逸,Noman等[16]发现在肺癌和黑色素瘤中,低氧激活HIF-1而上调miR-210的表达,PTPN1/HOXA1/ TP53I11是miR-210下游调节的信号通路,miR-210表达上调会沉默PTPN1/HOXA1/TP53I11的表达,导致肿瘤细胞对细胞毒性T淋巴细胞(cytotoic T lymphocyte, CTL)裂解作用的敏感度降低,这也解释了肿瘤组织的免疫抑制机制。
1.6 miR-210与铁代谢铁元素是维持有机体生命的基本元素,在肿瘤细胞中,异常的铁代谢会诱导ROS生成,导致肿瘤进展和转移,Yoshioka等[17]发现铁含量不足和低氧都会诱导miR-210表达,miR-210升高会抑制下游铁调节的两个必要分子转铁蛋白受体1(transferrin receptor 1, TfR1)和ISCU,ISCU表达下降又会上调TfR而维持肿瘤细胞内外的铁平衡,二者互相平衡以维持细胞生存和增殖,miR-210在维持肿瘤微环境中的铁平衡方面有重要作用。
1.7 miR-210与细胞分化恶性肿瘤细胞的特征之一是分化程度低,分化过程受阻,血液系统恶性肿瘤表现得尤为明显,在人白血病细胞系K562中,肿瘤细胞中磷酯酰肌醇特异性磷脂酶Cβ1(phospholipase C beta1, PLCβ1)表达增高,PLCβ1是细胞核肌醇磷脂信号传递中的重要分子,通过抑制miR-210的表达而降低γ蛋白的水平来抑制细胞向红系分化[18],Zhang等[19]在诱导人骨肉瘤细胞系MNNG/HOS去分化成为骨肉瘤干细胞(osteosarcoma stem cell, OSCs)中发现miR-210可促进转化生长因子(transforming growth factor β1, TGF-β1)的表达而促进细胞去分化。
1.8 miR-210与DNA修复病毒感染、紫外线辐射、电离辐射、化学物质等都会造成DNA损伤,DNA双链断裂(double strand breaks, DSBs)是最严重的一种,快速准确地修复DSB对维持基因组稳定起着至关重要的作用。Grosso等[20]用慢病毒转染技术将miR-210转染入NSCLC细胞系作为实验组,在接受放射治疗后,与对照组相比,实验组DSB消失得更快,凋亡数更少,有丝分裂明显增加,表明miR-210可提供更有效的DSB修复而维持肿瘤细胞基因的稳定。
1.9 miR-210与治疗敏感度肿瘤细胞对治疗的敏感度是影响预后的重要因素,同时肿瘤细胞的治疗抵抗也是后期治疗面临的重大挑战。由于肿瘤类型不同,miR-210的表达水平与治疗反应的关系也不同。Mei等[21]探究儿童急性淋巴细胞白血病中miR-210的表达水平及其在治疗反应中的作用,利用激动剂和(或)拮抗剂增加或降低白血病细胞系中的miR-210水平,并观察细胞对地塞米松、长春新碱、左旋门冬氨酸和柔红霉素的治疗效果,结果发现miR-210可增强儿童急性淋巴细胞白血病的药物敏感度;相反的是,Yang等[22]发现在肝细胞癌裸鼠移植模型中,miR-210抑制剂联合放疗与单纯放疗组相比,联合治疗组可明显抑制肿瘤细胞增殖,促进肿瘤细胞凋亡,即miR-210抑制剂可增加放疗敏感度;Grosso等[20]在肺腺癌A549细胞系中发现在低氧情况下高表达miR-210的肿瘤细胞与对照组相比,其放疗抵抗更明显,甚至在10 Gy的射线下细胞仍能生长,即miR-210的高表达与放疗抵抗有关,是治疗的不利因素,以上不同甚至相反的治疗反应说明miR-210表达水平可促进或减弱肿瘤治疗效果,其具体效果与组织特异性相关,需要进一步的探索。
1.10 miR-210促进肿瘤细胞增殖、抑制其凋亡miR-210在肾透明细胞癌患者的血清和癌组织中高表达,将miR-210模拟剂转染入RCC同源细胞系,检测到细胞生存和侵袭能力明显增强,而凋亡能力减弱[23];Wang等[24]发现在神经前体细胞(neural progenitor cells, NPCs)中低氧环境可诱导HIF-1α、miR-210和BCL2/腺病毒E1B-19kDa蛋白-互作蛋白3(Bcl-2 adenovirus E1B 19 kDa-interacting protein 3, BNIP3)的表达升高,而增高的miR-210又降低BNIP3蛋白含量,BNIP3可诱导细胞凋亡,miR-210和BNIP3蛋白的负反馈调节可维持细胞凋亡的平衡;Zhang等[25]发现miR-210在胶质细胞瘤患者的肿瘤组织和同源细胞系中高表达,将miR-210模拟剂和抑制剂转染入胶质瘤细胞系中,观察到miR-210可促维持细胞生存,抑制肿瘤细胞凋亡。分化调节因子(regulator of differentiation 1, ROD1)在此过程中是miR-210的靶基因,miR-210通过抑制ROD1的表达来促进细胞增殖,抑制细胞凋亡;Shang等[26]发现miR-210在胶质瘤细胞系U251中高表达,且表达水平和病理分级正相关,并证明了SIN3转录调控蛋白家族成员A(SIN3 transcription regulator family member A, SIN3)是miR-210的下游靶点,miR-210通过下调SIN3A促进基因转录来维持细胞生存、抑制凋亡。
1.11 miR-210与肿瘤抑制作用miR-210在多数肿瘤中起促进细胞增殖的作用,但在某些肿瘤如食管鳞状细胞癌、卵巢癌中可抑制肿瘤细胞增殖,上文提及miR-210在食管鳞状细胞癌细胞系KYSE-170中可使细胞周期阻滞,抑制肿瘤增殖;Chio等[27]对神经母细胞瘤细胞进行氧-糖剥夺处理,人工制造缺氧环境,观察到miR-210表达水平增高,Bcl-2 mRNA表达下降而促进细胞凋亡;He等[28]发现鼻咽癌细胞系在低氧环境下,高表达的miR-210可抑制一组有丝分裂相关基因(Plk1, Cdc25B, Cyclin F, Bub1B and Fam83D)的表达,破坏有丝分裂过程造成异常分裂导致肿瘤细胞死亡,且miR-210模拟剂可抑制大鼠转移瘤模型的肿瘤形成,说明miR-210有类似抑癌基因的作用。
miR-210既可促进肿瘤发生又可抑制肿瘤的生长,除了肿瘤类型不同及信号转导通路不同的原因外,miR-210的靶基因众多,功能各异,其对肿瘤细胞的作用可能是各靶基因综合作用的体现。miR-210在肿瘤形成及发展中的复杂作用可为肿瘤治疗提供新的思路。
1.12 miR-210与肿瘤的远处转移肿瘤的远处转移是预后不良的重要因素,发生远处转移患者多丧失手术机会,大量试验表明miR-210是一种重要的促肿瘤转移因子,Sauermann等[29]发现转移性肾细胞癌和转移性乳腺癌中,VMP1的含量降低,VMP1参与细胞间接触和细胞间紧密连接;在结直肠癌细胞系Caki-2中,miR-210可促进肿瘤细胞的迁移和侵袭,并介导缺氧相关的肿瘤转移,VMP1在此过程中是miR-210的下游靶基因,即miR-210通过下调VMP1来介导肿瘤的远处转移[30];Ren等[31]证明了miR-210的表达水平与前列腺癌的骨转移正相关,NF-κB信号通路的坏死因子α诱导蛋白3相互作用蛋白1(TNF-α induced protein 3 interacting protein 1, TNIP1)和细胞因子信号转导抑制蛋白1(suppressor of cytokine signaling, SOCS1)则是这一过程的重要因子,参与前列腺癌细胞的侵袭、迁移和骨转移;Kai等[32]观察到在肝细胞癌远处转移的病例中,HIF-1α/miR-210/HIF-3α高表达,并证实了组织金属蛋白酶抑制剂2(tissue inhibitor of metalloproteinase-2, TIMP-2)作为HIF-1α/miR-210/HIF-3α的下游靶基因,其表达受到抑制,TIMP-2是参与肝细胞癌远处转移的重要分子。
1.13 miR-210在临床中的应用miR-210的含量和变化与肿瘤相关,可反映肿瘤动力学的变化,在临床有巨大的应用前景。Tang等[33]发现miR-210在急性髓系白血病(AML)患者的血清和骨髓中均高表达,且miR-210与AML的FAB分期正相关,miR-210高表达患者的总体生存率(overall survival, OS)和无进展生存时间(progression-free survival, PFS)更短,当AML达到完全缓解时,miR-210的表达水平明显下降,多因素分析得到miR-210是独立的预后标志物,是预后的不利因素;Lai等[34]检测了胶质瘤患者和健康对照者的血浆miR-210含量,胶质瘤患者的miR-210水平是健康对照组的7倍,且生存分析显示miR-210高表达与肿瘤的分级和不良预后相关,miR-210可作为潜在的检测胶质瘤和预测预后的生物标志物;在Li等[35]关于miR-210预后意义的meta分析中,发现miR-210可预测多种肿瘤,尤其是乳腺癌的预后,miR-210的高水平与更短的总生存期、无转移生存期(metastasis free survival, MFS)或无远处复发生存(distant relapse-free survival, D-RFS)、疾病特异生存期(disease specific survival, DSS)相关;Ono等[36]发现转移性黑色素瘤患者的miR-210水平比原发黑色素瘤患者明显增高,血清miR-210的含量与不良预后相关,且在黑色素瘤复发前三个月就开始增高,因此检测循环miR-210表达水平可为黑色素瘤系统性复发提供早期诊断依据;Yang等[37]发现在膀胱癌中,癌组织及血清中miR-210表达水平增高,且与肿瘤级别和临床分期呈正相关,术后患者血清miR-210表达水平降低,而复发后miR-210表达水平上升,表明膀胱癌患者的循环miR-210水平可反映肿瘤动力学的变化。Lai等[38]发现miR-210在少突胶质细胞瘤的表达较星形细胞瘤的表达水平低,且miR-210的表达与星形细胞瘤的分级正相关,Ⅳ级表达水平最高,依次降低,Ⅱ级最低但仍高于正常脑组织,故miR-210的表达水平可作为恶性胶质瘤进展的生物标志物,也可作为胶质瘤起源的参考依据。miR-210在多种肿瘤中的异常表达及其与预后的关系表明血清miR-210可作为一个潜在的、用于筛查、预测分期及监测肿瘤变化的、非侵袭性的生物标志物;Yang等[39]在肝癌细胞系中沉默miR-210的表达,观察到肝细胞的生存能力下降,凋亡率增加,放疗敏感度增强,这将为miR-210抑制剂应用于高表达miR-210的恶性肿瘤的治疗提供一个新思路。
2 前景与展望低氧诱导的HIF-1上调和miR-210的异常表达是大多数肿瘤都具有的特征,且石蜡标本和血清都可用于miR-210的检测,大量试验结果表明miR-210在诊断、监测复发及预测预后方面有较高的灵敏度和特异性,即miR-210可作为潜在的非侵入性的肿瘤诊断标志物;miR-210可通过调节不同的下游靶基因参与不同的细胞活动进程,其复杂的细胞信号转导通路为肿瘤的靶向治疗及增加治疗敏感度提供了基础,后续研究还应继续寻找miR-210的下游靶基因,探讨其调节机制,规范miR-210的检测方法,界定用于诊断及判定预后的临界值,尝试miR-210模拟剂或抑制剂的制备。
综上所述,miR-210参与肿瘤发生发展过程的各个阶段,在肿瘤的筛查、诊断、预后预测及治疗方面都有相应的作用,随着未来研究的深入,miR-210下游mRNA及信号通路机制的探索将为肿瘤诊断治疗带来进步。
[1] | Bensaad K, Harris AL. Hypoxia and metabolism in cancer[J]. Adv Exp Med Biol, 2014, 772: 1–39. DOI:10.1007/978-1-4614-5915-6 |
[2] | Qin Q, Furong W, Baosheng L. Multiple functions of hypoxia-regulated miR-210 in cancer[J]. J Exp Clin Cancer Res, 2014, 33: 50. DOI:10.1186/1756-9966-33-50 |
[3] | Nijhuis A, Thompson H, Adam J, et al. Remodelling of microRNAs in colorectal cancer by hypoxia alters metabolism profiles and 5-fluorouracil resistance[J]. Hum Mol Genet, 2017, 26(8): 1552–64. DOI:10.1093/hmg/ddx059 |
[4] | Hall JS, Taylor J, Valentine HR, et al. Enhanced stability of microRNA expression facilitates classification of FFPE tumour samples exhibiting near total mRNA degradation[J]. Br J Cancer, 2012, 107(4): 684–94. DOI:10.1038/bjc.2012.294 |
[5] | Qu A, Du L, Yang Y, et al. Hypoxia-inducible MiR-210 is an independent prognostic factor and contributes to metastasis in colorectal cancer[J]. PLoS One, 2014, 9(3): e90952. DOI:10.1371/journal.pone.0090952 |
[6] | Rutnam ZJ, Wight TN, Yang BB. miRNAs regulate expression and function of extracellular matrix molecules[J]. Matrix Biol J Inter Society Matrix Biol, 2013, 32(2): 74–85. DOI:10.1016/j.matbio.2012.11.003 |
[7] | Chang W, Chang YL, Park JH, et al. Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR-210 and hypoxia-inducible factor 1[J]. J Vet Sci, 2013, 14(1): 69–76. DOI:10.4142/jvs.2013.14.1.69 |
[8] | Devlin C, Greco S, Martelli F, et al. miR-210: More than a Silent Player in Hypoxia[J]. IUBMB Life, 2011, 63(2): 94–100. |
[9] | Chen Z, Li Y, Zhang H, et al. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression[J]. Oncogene, 2010, 29(30): 4362–8. DOI:10.1038/onc.2010.193 |
[10] | HuangX, Le QT, Giaccia AJ. MiR-210 micromanager of the hypoxia pathway[J]. Trends Mol Med, 2010, 16(5): 230–7. DOI:10.1016/j.molmed.2010.03.004 |
[11] | Tadokoro H, Umezu T, Ohyashiki K, et al. Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells[J]. J Biol Chem, 2013, 288(48): 34343–51. DOI:10.1074/jbc.M113.480822 |
[12] | Yang Y, Zhang J, Xia T, et al. MicroRNA-210 promotes cancer angiogenesis by targeting fibroblast growth factor receptor-like 1 in hepatocellular carcinoma[J]. Oncol Rep, 2016, 36(5): 2553–62. DOI:10.3892/or.2016.5129 |
[13] | Cui H, Seubert B, Stahl E, et al. Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes[J]. Oncogene, 2015, 34(28): 3640–50. DOI:10.1038/onc.2014.300 |
[14] | Tsuchiya S, Fujiwara T, Sato F, et al. MicroRNA-210 regulates cancer cell proliferation through targeting fibroblast growth factor receptor-like 1 (FGFRL1)[J]. J Biol Chem, 2011, 286(1): 420–8. DOI:10.1074/jbc.M110.170852 |
[15] | Mei XS, Hu HY, Nie GH. MiR-210 regulates cell cycle in nasopharyngeal carcinoma cell line (CNE-1) under hypoxic condition by reducing the expression of cyclin D1[J]. Chinese-German J Clin Oncol, 2014, 13(7): 323–7. |
[16] | Noman MZ, Buart S, Romero P, et al. Hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells[J]. Cancer Res, 2012, 72(18): 4629–41. DOI:10.1158/0008-5472.CAN-12-1383 |
[17] | Yoshioka Y, Kosaka N, Ochiya T, et al. Micromanaging Iron Homeostasis[J]. J Biol Chem, 2012, 287(41): 34110–9. DOI:10.1074/jbc.M112.356717 |
[18] | Bavelloni A, Poli A, Fiume R, et al. PLC-beta 1 regulates the expression of miR-210 during mithramycin-mediated erythroid differentiation in K562 cells[J]. Oncotarget, 2014, 5(12): 4222–31. |
[19] | Zhang H, Mai Q, Chen J. MicroRNA-210 is increased and it is required for dedifferentiation of osteosarcoma cell line[J]. Cell Biol Inter, 2017, 41(3): 267–75. DOI:10.1002/cbin.v41.3 |
[20] | Grosso S, Doyen J, Parks SK, et al. MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines[J]. Cell Death Dis, 2013, 4: e544. DOI:10.1038/cddis.2013.71 |
[21] | Mei Y, Gao C, Wang K, et al. Effect of microRNA-210 on prognosis and response to chemotherapeutic drugs in pediatric acute lymphoblastic leukemia[J]. Cancer Sci, 2014, 105(4): 463–72. DOI:10.1111/cas.2014.105.issue-4 |
[22] | Yang W, Wei J, Sun T, et al. Effects of knockdown of miR-210 in combination with ionizing radiation on human hepatoma xenograft in nude mice[J]. Radiat Oncol, 2013, 8: 102. DOI:10.1186/1748-717X-8-102 |
[23] | Liu TY, Zhang H, Du SM, et al. Expression of microRNA-210 in tissue and serum of renal carcinoma patients and its effect on renal carcinoma cell proliferation, apoptosis, and invasion[J]. Genet Mol Res, 2016, 15(1): 15017746. |
[24] | Wang F, Xiong L, Huang X, et al. miR-210 suppresses BNIP3 to protect against the apoptosis of neural progenitor cells[J]. Stem Cell Res, 2013, 11(1): 657–67. DOI:10.1016/j.scr.2013.04.005 |
[25] | Zhang S, Lai N, Liao K, et al. MicroRNA-210 regulates cell proliferation and apoptosis by targeting regulator of differentiation 1 in glioblastoma cells[J]. Folia Neuropathol, 2015, 53(3): 236–44. |
[26] | Shang C, Hong Y, Guo Y, et al. MiR-210 Up-Regulation Inhibits Proliferation and Induces Apoptosis in Glioma Cells by Targeting SIN3A[J]. Med Sci Monit, 2014, 20: 2571–7. |
[27] | Chio CC, Lin JW, Cheng HA, et al. MicroRNA-210 targets antiapoptotic Bcl-2 expression and mediates hypoxia-induced apoptosis of neuroblastoma cells[J]. Arch Toxicol, 2013, 87(3): 459–68. DOI:10.1007/s00204-012-0965-5 |
[28] | He J, Wu J, Xu N, et al. MiR-210 disturbs mitotic progression through regulating a group of mitosis-related genes[J]. Nucleic Acids Res, 2013, 41(1): 498–508. DOI:10.1093/nar/gks995 |
[29] | Sauermann M, Sahin O, Sültmann H, et al. Reduced expression of vacuole membrane protein 1 affects the invasion capacity of tumor cells[J]. Oncogene, 2008, 27(9): 1320–6. DOI:10.1038/sj.onc.1210743 |
[30] | Qu A, Du L, Yang Y, et al. Hypoxia-Inducible MiR-210 Is an Independent Prognostic Factor and Contributes to Metastasis in Colorectal Cancer[J]. PLoS One, 2014, 9(3): e90952. DOI:10.1371/journal.pone.0090952 |
[31] | Ren D, Yang Q, Dai Y, et al. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-κB signaling pathway[J]. Mol Cancer, 2017, 16(1): 117. DOI:10.1186/s12943-017-0688-6 |
[32] | Kai AK, Chan LK, Lo RC, et al. Down-regulation of TIMP2 by HIF-1α/miR-210/HIF-3α regulatory feedback circuit enhances cancer metastasis in hepatocellular carcinoma[J]. Hepatology, 2016, 64(2): 473–87. DOI:10.1002/hep.28577 |
[33] | Tang X, Chen L, Yan X, et al. Overexpression of miR-210 is Associated with Poor Prognosis of Acute Myeloid Leukemia[J]. Med Sci Monitor Inter Med J Exp Clin Res, 2015, 21: 3427–33. DOI:10.12659/MSM.894812 |
[34] | Lai NS, Wu DG, Fang XG, et al. Serum microRNA-210 as a potential noninvasive biomarker for the diagnosis and prognosis of glioma[J]. Br J Cancer, 2015, 112(7): 1241–6. DOI:10.1038/bjc.2015.91 |
[35] | Li M, Ma X, Li M, et al. Prognostic role of microRNA-210 in various carcinomas: a systematic review and meta-analysis[J]. Dis Markers, 2014, 2014: 106197. |
[36] | Ono S, Oyama T, Lam S, et al. A direct plasma assay of circulating microRNA-210 of hypoxia can identify early systemic metastasis recurrence in melanoma patients[J]. Oncotarget, 2015, 6(9): 7053–64. |
[37] | Yang Y, Qu A, Liu J, et al. Serum miR-210 Contributes to Tumor Detection, Stage Prediction and Dynamic Surveillance in Patients with Bladder Cancer[J]. PLoS One, 2015, 10(8): e0135168. DOI:10.1371/journal.pone.0135168 |
[38] | Lai N, Zhu H, Chen Y, et al. Differential expression of microRNA-210 in gliomas of variable cell origin and correlation between increased expression levels and disease progression in astrocytic tumours[J]. Folia Neuropathologica, 2014, 52(1): 79–85. |
[39] | Yang W, Sun T, Cao J, et al. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro[J]. Exp Cell Res, 2012, 318(8): 944–54. DOI:10.1016/j.yexcr.2012.02.010 |