文章信息
- 核转录因子Snail对肝内胆管癌细胞HCCC9810侵袭和迁移能力的影响
- Effect of Nuclear Franscription Factor Snail on Invasion and Migration of Intrahepatic Cholangiocarcinoma Cell Line HCCC9810
- 肿瘤防治研究, 2017, 44(5): 315-319
- Cancer Research on Prevention and Treatment, 2017, 44(5): 315-319
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2017.05.001
- 收稿日期: 2016-10-19
- 修回日期: 2016-12-28
肝内胆管癌作为高侵袭转移能力恶性肿瘤[1],约占原发性肝癌的10%[2],其发病率和死亡率在全球范围均呈现上升趋势,在非洲人群中病死率最低(0.07%),亚洲人群中最高(0.14%)[3]。Snail作为一细胞核转录因子[4],在调控细胞EMT中起着重要的促进作用[5],可与E-cadherin蛋白相互作用下调E-cadherin表达,促使细胞发生上皮间质转化(epithelial mesenchymal transition, EMT)改变,削弱细胞间的相互粘连,促进细胞运动,增强侵袭和转移能力[6-7]。本实验采用自身配对设计实验方案,以高侵袭转移能力肝内胆管癌细胞HCCC9810作为研究对象,采用RNA干扰技术沉默Snail后,观察HCCC9810细胞侵袭和迁移能力的改变情况以及潜在的机制。
1 材料与方法 1.1 细胞系采用人肝内胆管癌细胞株HCCC9810作为本实验研究对象,由上海市复旦大学附属中山医院肝癌研究所赠予,该细胞系经过检验和测试[8-9],作为一种高侵袭转移能力细胞,常常用于侵袭和迁移的研究。
1.2 细胞转染采用小干扰RNA(small interfere RNA, si-RNA)技术,构建2条si-RNA序列(上海市吉玛基因生物技术有限公司),序列设计见表 1。本实验分组设定如下:对照组(HCC9810-Mock)、实验组1(HCC9810-siRNA-1)和实验组2(HCC9810-siRNA-2),采用免疫印迹法对实验组1和实验组2进行si-RNA序列转染效率筛选,采用Lipofectamine2000转染试剂(Thermo Fisher Scientific,美国,货号:11668030)转染,其中对照组不添加干扰siRNA序列,其余实验操作步骤(转染方法、蛋白印迹、Transwell和细胞划痕实验)与实验组相同。
(1)转染前一天接种细胞到6孔板中,用无抗生素培养液进行培养,以次日达30%~50%细胞融合度为宜;(2)稀释Lipofectamine2000转染试剂,稀释液采用Opti-MEM I Reduced Serum Medium(Thermo Fisher Scientific,美国,货号:31985062),稀释比例为1:50,静置5 min后稀释si-RNA,同样采用Opti-MEM I Reduced Serum Medium进行稀释,比例为1:25,之后与Lipofectamine2000转染稀释液进行混合,形成siRNA转染试剂混合物,室温静置20 min;(3)加入到含1 600 μl无血清1640培养液的6孔板中进行培养,放入培养箱中培养4~6 h,随后细胞换液,转染24 h后在荧光显微镜下了解转染情况。
1.3 免疫印迹检测转染效率(1)取80 μl细胞裂解产物,加入20 μl的5×样本缓冲液沸水加热10 min;(2)电泳:配制12%的分离胶及5%的浓缩胶,蛋白上样量为30 μg,80V恒压进行蛋白电泳;(3)转膜:采用甲醇浸泡过的PVDF膜,在350 mA恒流条件下湿转法进行转膜,时间为90 min;(4)封闭:将PVDF膜置于5%脱脂牛奶中,置于摇床上,缓慢摇晃室温封闭2 h;(5)孵育一抗:山羊多克隆抗人Snail抗体(1:1 500,Abcam,英国,货号:ab53519);(6)孵育二抗:HRP标记驴抗山羊IgG二抗(上海翊圣生物科技有限公司,货号:34301ES60,1:10 000),室温孵育1 h;(7)显影:ECL发光液孵育2 min后,在成像仪中进行曝光显影。
1.4 Transwell侵袭和迁移实验(1)基质胶包被Transwell小室:稀释基质胶(BD biosciences,美国,货号:356234)进行稀释,以1个单位基质胶:8个单位1640培养液进行稀释,将稀释液加入在小室底部,放置培养箱中静置2 h,迁移实验无需包被小室;(2)消化计数细胞:0.9%氯化钠溶液冲洗细胞,0.25%胰酶消化细胞,用含10%胎牛血清1640培养中和胰酶,离心后用不含血清的1640培养液重悬细胞计数,在小室中加入10 000个细胞,在24孔板中加入500 μl含10%胎牛血清的1640培养液,将小室放在24孔板中;(3)培养和计数:培养48 h后,取出小室用棉签擦拭小室内部,结晶紫染色后在显微镜下采集图像,计数细胞,进行数据统计分析。
1.5 划痕实验(1)铺板:划痕实验前一天采用6孔板进行铺板,接种细胞数量以次日细胞融合度为90%左右;(2)划线:待细胞融合度达90%以上时,用100 μl黄色枪头比着直尺,垂直于培养板划十字叉;(3)冲洗:用0.9%氯化钠溶液冲洗细胞3次,动作轻柔,弃去0.9%氯化钠溶液,加入无血清1640培养液;(4)拍照:每孔以十字叉为标记进行图片采集,分别在0、24 h进行取样拍照,对比不同细胞的迁移面积,进行统计分析。
1.6 免疫印迹检测转染前后EMT相关蛋白(1)蛋白提取、电泳、转膜以及封闭方法同1.3中方法(1)~(4);(2)孵育一抗:Snail抗体同1.3中方法(5)、兔单克隆抗人Vimentin抗体(1:1 000,Cell Signaling Technology,美国,货号:5741)、小鼠单克隆抗人E-cadherin抗体(1:1 000,Abcam,英国,货号:14472)4℃孵育过夜;(3)孵育二抗:HRP标记驴抗山羊IgG二抗(同1.3中方法(6))、HRP标记驴抗兔IgG二抗(上海翊圣生物科技有限公司,货号:34201ES60,1:5 000)、HRP标记驴抗小鼠IgG二抗(上海翊圣生物科技有限公司,货号:34101ES60,1:10 000)室温孵育1 h;(4)显影:方法同1.3中方法(7)。
1.7 统计学方法数据分析采用SPSS21.0统计软件,计量资料采用(x± s)配对设计资料t检验,三组计数资料比较采用单因素方差分析,所有检验取两端,P < 0.05为差异有统计学意义。
2 结果 2.1 si-RNA转染效率对照组、实验1组和实验2组免疫印法迹量化结果分别为:(0.710±0.05)、(0.370±0.053)和(0.256±0.045)(F=66.137,P < 0.001),见图 1A~1B。转染后24 h荧光显微镜检测荧光强度结果,序列2转染细胞荧光强度和数量均显著高于序列1转染细胞,见图 1C。据此,细胞功能和后期实验采用序列2转染处理后的细胞。
2.2 沉默Snail后对HCCC9810细胞侵袭和迁移能力的影响沉默Snail后对照组和实验2组Transwell迁移实验结果:(209.66±22.54)个和(127.34±12.66)个(t=14.237, P=0.005);Transwell侵袭实验结果,(109.00±9.81)个和(56.67±9.50)个(t=12.077, P=0.007),见图 2A~2B。细胞划痕结果中,迁移面积改变情况为(13.52±1.05)%和(6.99±0.59)%(t=7.474, P=0.017),见图 2C~2D。
2.3 沉默Snail后HCCC9810细胞中Snail、E-cadherin和Vimentin的表达si-RNA处理前后的胆管癌细胞上皮间质转化相关蛋白E-cadherin和Vimentin表达情况,见图 3A。进行灰度分析量化后结果分别为:Snail处理前后(0.770±0.031),(0.247±0.042)(t=14.120, P=0.005);E-cadherin处理前后 (0.167±0.035),(0.979±0.051)(t=-16.342, P=0.004);Vimentin处理前后(0.606±0.026),(0.171 ±0.025)(t=26.572, P=0.001),见图 3B。
3 讨论近年来针对肝内胆管癌的诊断和治疗方法都在不断提高,尽管如此,但仍有多数患者失去了手术机会,5年总体生存率只有7%,中位生存时间也只有7.3月[10],积极探究恶性肿瘤侵袭和发生发展的分子机制,为靶向治疗提供有力的实验数据以及理论支持,延长患者术后生存时间,降低术后复发率,成为肝胆外科医师的热点研究课题之一。
恶性肿瘤细胞具有异于正常细胞的细胞生物学行为[11],其中高侵袭和迁移能力可加速肿瘤细胞远处转移的风险,而恶性肿瘤早期转移是导致患者极难治愈和死亡的重要原因[12-14]。Snail已在多种恶性肿瘤细胞中证实可改变细胞生物学行为,尤其是影响细胞的侵袭和迁移能力,如Cheng等[15]在肝细胞肝癌Huh-7的体外实验研究中,前列腺素受体2可通过EP2/Src/EGFR/Akt/mTOR信号通路最终上调Huh-7中的Snail水平,促进肿瘤细胞的侵袭和迁移;在Xia等[16]在肝细胞肝癌的研究中采用miR-153靶向沉默Snail表达后,肿瘤细胞的侵袭能力减弱;在卵巢癌中的研究中利用RNA干扰技术,沉默卵巢癌细胞A2780中Snail表达后,同样细胞的侵袭能力显著下降[17]。本实验结果显示:沉默HCCC9810细胞中Snial表达后,HCCC9810细胞的迁移和侵袭能力均下降,这与国内外研究学者对Snail的研究结果类似,沉默Snial可以削弱细胞的侵袭和迁移能力。
EMT作为肿瘤侵袭和迁移的重要机制之一[18-19],研究已证实,其可促进上皮细胞转化为间质细胞表型,细胞失去上皮细胞表型和极性,上皮细胞之间的粘连逐渐疏松,转化为具有高侵袭和运动能力间质表型的细胞[20]。在EMT发生过程中上皮标志物抑制而下调,如上皮钙黏蛋白(E-cadherin),间质标志物异常上调,如波形蛋白(Vimentin)[21]。当细胞发生EMT时,E-cadherin在细胞表面减少,而E-cadherin有助于促进细胞之间的连接,维持细胞的形态和极性[22]。E-cadherin的减少还被认为是EMT重要的特征之一,通过改变细胞之间的相互粘连以及调节不同的信号通路导致肿瘤细胞侵袭和迁移能力增加[22-23]。本实验结果表明,Snail能够诱导肝内胆管癌细胞EMT,这可解释当沉默Snail后细胞侵袭和迁移能力下降的原因。
Snail在EMT中的作用主要是抑制细胞E-cadherin表达,诱导细胞发生EMT[5]。Chen等[24]在肝细胞肝癌的研究中,沉默Snail可上调E-cadherin表达,抑制肝细胞肝癌的侵袭能力,Wang等[25]在前列腺癌细胞PC3研究,Snail可通过AKT/GSK-3β信号通路诱导肿瘤细胞发生EMT,随之伴随着Vimentin上调和E-cadherin下调;在胃癌的一项关于EMT的研究中,高尔基体蛋白130能够下调Snail表达,Vimentin和N-cadherin减低,E-cadherin表达增加[26]。从以上的研究结果中可以得到,Snail对于HCCC9810细胞侵袭和迁移的生物学行为中具有重要的作用,能通过诱导细胞EMT,加速细胞侵袭和迁移能力,以致肿瘤远处转移。
综上所述,Snail可加速肝内胆管癌细胞HCCC9810的EMT改变,从而促进肿瘤细胞的侵袭和迁移,本实验结果为临床分子靶向治疗肝内胆管癌提供基础实验数据,针对高侵袭转移特性,采用生物医学工程技术干预肝内胆管癌患者组织中Snail的表达,将有助于缓解肿瘤的远处转移,虽然目前临床生物治疗发展较为缓慢,且体外实验与临床应用有一定的差距,但是对于肝内胆管癌患者综合治疗的应用具有重要的指导意义。
[1] | Padia SA. Intrahepatic Cholangiocarcinoma[J]. Tech Vasc Interv Radiol, 2015, 18(4): 227–35. DOI:10.1053/j.tvir.2015.07.006 |
[2] | Zhang GW, Lin JH, Qian JP, et al. Identification of risk and prognostic factors for patients with clonorchiasis-associated intrahepatic cholangiocarcinoma[J]. Ann Surg Oncol, 2014, 21(11): 3628–37. DOI:10.1245/s10434-014-3710-x |
[3] | Weber SM, Ribero D, O'Reilly EM, et al. Intrahepatic cholangiocarcinoma: expert consensus statement[J]. HPB (Oxford), 2015, 17(8): 669–80. DOI:10.1111/hpb.12441 |
[4] | Lin Y, Dong C, Zhou BP. Epigenetic regulation of EMT: the Snail story[J]. Curr Pharm Des, 2014, 20(11): 1698–705. DOI:10.2174/13816128113199990512 |
[5] | Wang Y, Shi J, Chai K, et al. The Role of Snail in EMT and Tumorigenesis[J]. Curr Cancer Drug Targets, 2013, 13(9): 963–72. DOI:10.2174/15680096113136660102 |
[6] | Wu Y, Zhou BP. Snail: More than EMT[J]. Cell Adh Migr, 2010, 4(2): 199–203. DOI:10.4161/cam.4.2.10943 |
[7] | Pioli PD, Weis JH. Snail transcription factors in hematopoietic cell development: a model of functional redundancy[J]. Exp Hematol, 2014, 42(6): 425–30. DOI:10.1016/j.exphem.2014.03.002 |
[8] | Yang LX, Gao Q, Shi JY, et al. Mitogen-activated protein kinase kinase kinase 4 deficiency in intrahepatic cholangiocarcinoma leads to invasive growth and epithelial-mesenchymal transition[J]. Hepatology, 2015, 62(6): 1804–16. DOI:10.1002/hep.28149 |
[9] | Zhang C, Bai DS, Huang XY, et al. Prognostic significance of Capn4 overexpression in intrahepatic cholangiocarcinoma[J]. PLoS One, 2013, 8(1): e54619. DOI:10.1371/journal.pone.0054619 |
[10] | Zhu Z, Chen W, Yin X, et al. WAVE3 Induces EMT and Promotes Migration and Invasion in Intrahepatic Cholangiocarcinoma[J]. Dig Dis Sci, 2016, 61(7): 1950–60. DOI:10.1007/s10620-016-4102-9 |
[11] | No authors listed. Tackling the cancer epidemic[J]. Lancet Oncol, 2015, 16(4): 349. |
[12] | McDonald MW, McMullen KP. A new paradigm in treatment of brain metastases[J]. Curr Problems Cancer, 2015, 39(2): 70–88. DOI:10.1016/j.currproblcancer.2015.03.001 |
[13] | Lin J, Jandial R, Nesbit A, et al. Current and emerging treatments for brain metastases[J]. Oncology (Williston Park), 2015, 29(4): 250–7. |
[14] | Heestand GM, Murphy JD, Lowy AM. Approach to patients with pancreatic cancer without detectable metastases[J]. J Clin Oncol, 2015, 33(16): 1770–8. DOI:10.1200/JCO.2014.59.7930 |
[15] | Cheng SY, Zhang H, Zhang M, et al. Prostaglandin E (2) receptor EP2 mediates Snail expression in hepatocellular carcinoma cells[J]. Oncol Rep, 2014, 31(5): 2099–106. |
[16] | Xia W, Ma X, Li X, et al. miR-153 inhibits epithelial-to-mesenchymal transition in hepatocellular carcinoma by targeting Snail[J]. Oncol Rep, 2015, 34(2): 655–62. |
[17] | Wang YL, Zhao XM, Shuai ZF, et al. Snail promotes epithelial-mesenchymal transition and invasiveness in human ovarian cancer cells[J]. Int J Clin Exp Med, 2015, 8(5): 7388–93. |
[18] | Huang L, Wu RL, Xu AM. Epithelial-mesenchymal transition in gastric cancer[J]. Am J Transl Res, 2015, 7(11): 2141–58. |
[19] | Fan HC, Lin SZ, Harn HJ. Targeting epithelial-mesenchymal transition phenotype for gastro-intestinal cancer[J]. Curr Pharm Des, 2015, 21(21): 2942–55. DOI:10.2174/1381612821666150514103513 |
[20] | Zhou J, Wang J, Zhang N, et al. Identification of biomechanical force as a novel inducer of epithelial-mesenchymal transition features in mechanical stretched skin[J]. Am J Transl Res, 2015, 7(11): 2187–98. |
[21] | Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5): 871–90. DOI:10.1016/j.cell.2009.11.007 |
[22] | Qiao Y, Jiang X, Lee ST, et al. FOXQ1 regulates epithelial-mesenchymal transition in human cancers[J]. Cancer Res, 2011, 71(8): 3076–86. DOI:10.1158/0008-5472.CAN-10-2787 |
[23] | Schulte J, Weidig M, Balzer P, et al. Expression of the E-cadherin repressors Snail, Slug and Zeb1 in urothelial carcinoma of the urinary bladder: relation to stromal fibroblast activation and invasive behaviour of carcinoma cells[J]. Histochem Cell Biol, 2012, 138(6): 847–60. DOI:10.1007/s00418-012-0998-0 |
[24] | Chen D, Zheng X, Jiao X, et al. Transcriptional repressor snail and metastasis in hepatocellular carcinoma[J]. Hepatogastroenterology, 2012, 59(117): 1359–65. |
[25] | Wang H, Fang R, Wang XF, et al. Stabilization of Snail through AKT/GSK-3beta signaling pathway is required for TNF-alpha-induced epithelial-mesenchymal transition in prostate cancer PC3 cells[J]. Eur J Pharmacol, 2013, 714(1-3): 48–55. DOI:10.1016/j.ejphar.2013.05.046 |
[26] | Zhao J, Yang C, Guo S, et al. GM130 regulates epithelial-to-mesenchymal transition and invasion of gastric cancer cells via snail[J]. Int J Clin Exp Pathol, 2015, 8(9): 10784–91. |