文章快速检索  
  高级检索

宁波市鄞州区大气可吸入颗粒物暴露与冠心病就诊人数的时间序列分析
叶臻华1,2, 郑培雯1,2, 沈鹏3, 张振宇1,2, 陆怀初3, 金明娟1,2, 林鸿波3, 王建炳1,2, 陈坤1,2     
1. 浙江大学公共卫生学院流行病与卫生统计学系, 浙江 杭州 310058;
2. 浙江大学空气污染与健康研究中心, 浙江 杭州 310058;
3. 宁波市鄞州区疾病预防控制中心, 浙江 宁波 315100
摘要目的 研究大气中可吸入颗粒物(PM)的浓度与冠心病门诊人数的关系。 方法 收集宁波市鄞州区卫生信息系统2014年1月至2015年6月冠心病患者的就诊信息,同期收集宁波市环境监测中心的大气PM浓度以及宁波市气象局的气象监测资料。采用时间序列的类泊松—广义相加模型,控制长期趋势、气象因素、星期几效应等因素的影响,分析在研究期间宁波市鄞州区PM浓度与冠心病就诊数之间的关系。 结果 大气PM2.5浓度每升高一个四分位数间距(IQR),冠心病门诊数增加1.98%(95%CI:-0.59%~4.63%)。在女性和年龄≥75岁老年人群中,PM2.5暴露与冠心病就诊人数具有统计学关联,ER值分别为2.70%(95%CI:0.01%~5.47%)和3.35%(95%CI:0.12%~6.69%)。在校正了PM2.5后,粗颗粒物(PM2.5~10)对冠心病就诊数的影响降低。 结论 宁波市鄞州区大气PM2.5与冠心病门诊数短期内存在一定关联,尤其在女性和老年人群中两者的关联更加明显。
关键词冠心病/病因     空气污染物/副作用     时间因素     序列分析     泊松分布     门诊病人/统计学和数值数据    
Time-series analysis of particulate matter and daily hospital visits for coronary heart disease in Yinzhou district, Ningbo area
YE Zhenhua1,2, ZHENG Peiwen1,2, SHEN Peng3, ZHANG Zhenyu1,2, LU Huaichu3, JIN Mingjuan1,2, LIN Hongbo3, WANG Jianbing1,2, CHEN Kun1,2     
1. Department of Epidemiology, School of Public Health, Zhejiang University, Hangzhou 310058, China;
2. Air Pollution and Health Research Center of Zhejiang University, Hangzhou 310058, China;
3. Center for Disease Control and Prevention of Yinzhou District, Ningbo 315100, China
Corresponding author: LIN Hongbo,E-mail:http://orcid.org/0000-0002-9039-1791">lin73160@163.com;http://orcid.org/0000-0002-9039-1791 CHEN Kun,E-mail:ck@zju.edu.cn,http://orcid.org/0000-0003-1162-6896
Abstract: Objective To explore the association between particulate matter (PM) and daily hospital visits of coronary heart diseases in Ningbo. Methods Daily data of hospital visits from January 2014 to June 2015 (516 days in total) were obtained from the Yinzhou Health Information System in Ningbo. Daily air pollution data for PM and meteorological data were collected from the database of Ningbo Environmental Monitoring Center and Ningbo Meteorological Bureau. Time-series analysis by quasi-Poisson generalized additive model was used to examine the association between air pollution and hospital visits for coronary heart diseases by adjustment of long-term trends, seasonal patterns and meteorological variables (temperature, humidity), and day of week. Results An increase of an IQR of PM2.5 accounted for 1.98% (95%CI:-0.59%-4.63%) increase of hospital visits for coronary heart diseases. The associations between PM2.5 and hospital visits for coronary heart diseases among female and the elderly (≥75 years) were stronger (ER=2.70%,95% CI:0.01%-5.47%; ER=3.35%, 95% CI: 0.12%-6.69%). The effects of PM2.5~10 attenuated after adjustment for PM2.5. Conclusion PM2.5 had short-term effects on daily hospital visits for coronary heart diseases in Ningbo, and such association was stronger among female and the elderly.
Key words: Coronary disease/etiology     Air pollutants/adverse effects     Time factors     Sequence analysis     Poisson distribution     Outpatients/statistics & numerical data    

冠心病,又称缺血性心脏病,是中老年常见的后天性心脏病。近40年来,冠心病的发病率在我国逐渐增高,目前居各类心脏病的首位[1]。冠心病的病因多样,涉及环境因素、生物因素和社会因素等。流行病学调查结果显示,大气污染物,特别是可吸入颗粒物(particulate matter,PM)对冠心病的发病和死亡具有一定的影响[2-4]。PM是指大气动力学当量直径小于或等于10 μm的颗粒物。由于其粒径小,易附着一些对人体健康有害的重金属和有毒物质,能被人体直接吸入呼吸道,进而导致病变。

近年来,冠心病与大气污染的相关性研究热度不断升高,但大部分研究集中在发达国家。来自美国癌症学会的一项资料表明,细颗粒物浓度每增加10 μg/m3,冠心病患者的病死率增加8%~18%[5];另一项在美国6个城市进行的随访研究发现,空气动力学直径小于等于2.5 μm的PM(PM2.5)浓度每升高10 μg/m3,心肺疾病患者的病死率上升18%[6]。而发展中国家的大气污染水平、冠心病的流行情况及其危险因素与发达国家相比可能存在较大差异,所以有必要在发展中国家进行相关研究以证实大气污染物的健康效应。中国作为发展中国家,是全球大气污染最严重的国家之一。迄今,国内关于大气污染与冠心病关系的研究仍十分缺乏。杨春雪等[7]在上海的研究中发现,PM10、PM2.5、PM2.5~10浓度每升高10 μg/m3,总病死率分别增加0.16%、0.36%和0.12%。本研究基于宁波市鄞州区卫生信息系统提供的完整的居民就诊信息,利用广义相加模型的时间序列分析,定量评价宁波市鄞州区大气中PM水平与冠心病就诊数之间的关系。

1 资料与方法 1.1 大气污染和气象数据来源

大气污染物数据来自宁波市鄞州区8个国控环境监测点公布的24 h污染物浓度。这8个监测点较为均匀地分布在鄞州区交通干道附近,涵盖了学校、景区、生活区等位置,且监测点附近的人口密度较高,能较为真实地反映宁波市鄞州区整体的大气污染状况。监测的污染物数据包括从2014年1月到2015年6月PM2.5、PM10等污染物24 h实时数据。PM2.5~10的浓度由PM10的浓度减去PM2.5的浓度得到。气象数据来源于宁波市鄞州区气象局同期公布的气温、相对湿度等气象指标的24 h实时数据。

1.2 冠心病患者就诊数据来源

冠心病就诊数据来自宁波市鄞州区疾病预防控制中心建立的区域卫生信息平台。该卫生信息平台将鄞州区常住人口的健康信息档案、慢性病登记系统、居民死亡登记系统以及医院门诊系统实现无缝链接,能实时提供全区两家综合型医院、3家专科医院、24家社区卫生服务中心、248家社区服务站患者的就诊信息。本研究从该卫生信息平台获取了全区2014年1月至2015年6月(共516 d)诊断为冠心病(ICD-10编码为I20-I25) 的患者共4.82万人次,其就诊信息包括就诊患者编码、姓名、性别、出生年月、婚姻状况、职业、ICD10编码和就诊时间等。由于低龄人群中的心脑血管疾病多为先天性疾病,与大气污染相关性不高,因此排除18岁以下就诊人群;由于就诊患者的人次数中可能存在重复就诊情况,根据一般门诊就诊经验,选取一周作为判别是否重复就诊的标准,最后研究共纳入冠心病就诊4.343万人次。

1.3 研究方法

相对于总人群而言,冠心病就诊在人群中属小概率事件,其分布近似于泊松分布(poisson distribution)。因此,本研究选择泊松回归的广义相加模型,应用平滑函数控制时间序列资料的长期趋势以及与时间长期变异有关的混杂因素(气温和湿度等)。根据广义交叉校验值(generalized cross-validation,GCV)来选择自由度[8]。采用哑变量的方法控制“星期几”效应和假期效应[9]。基本模型建立后,分别引入各大气污染物线性模型。具体模型如下:

Log[E(Yi)]=βXi+s(time,df)+s(气温,df)+s(湿度,df)+DOW+Holiday+α

式中:Yi为第i日冠心病就诊人数;E(Yi)为第i日冠心病就诊人数的期望值;β为回归系数;Xi为第i日污染物浓度;s为样条平滑函数;df为自由度;time为日历时间;DOW为星期几效应;Holiday为节假日效应;α为截距。

考虑到PM对健康的影响具有滞后效应,本研究分析滞后0~6 d大气污染的效应[10],并通过滞后效应模型选择最大效应值的滞后天数。此外,采用双污染物模型分析多污染物协同作用下PM的健康效应的变化,以验证各污染物的单独效应[3]。由于大气中PM水平与冠心病的急性发作具有明显的季节趋势[11-12],故本研究对季节进行分层,分为冷季(11月到4月)和暖季(5月到10月),分别探索不同季节污染物的健康效应。为了探索PM的易感人群,本研究按性别和年龄分层比较大气污染对不同性别和不同年龄的影响。

1.4 统计学方法

采用R3.2.2的mgcv软件。描述性分析指标包括均值、标准差、中位数、最大值、最小值、四分位数间距(inter-quartile range,IQR)等。IQR可用于描述偏态分布资料、两端无确切值或分布不明确资料的离散程度,IQR越大,表示数据变异程度越大。广义相加模型则利用样条函数、自然立方样条函数来控制每日心脑血管疾病就诊人次中的周期效应、长期趋势、季节趋势以及其他与时间变异相关因素的影响。

2 结果 2.1 一般资料数据

4.343万人次中,男性就诊人次数略高于女性,年龄在55~74岁的人次数占冠心病总就诊人次数的49.1%,老年人群(年龄≥75岁)占29.9%。同期宁波市鄞州区大气污染物平均浓度低于国家环境空气质量二级标准,但全年最高日均水平仍然很高。研究期间宁波市的平均气温为15.89 ℃,平均相对湿度为74.29%,见表 1

表 1 2014至2015年宁波市鄞州区冠心病就诊人次数、大气污染物浓度和气象数据 Table 1 Descriptive statistics of hospital admission of coronary heart disease,air pollutants concentration and meteorological variables during 2014 and 2015
项目均数±标准差最小值中位数最大值四分位数间距
冠心病就诊人次数
合计84±2368216528
男性44±130439218
女性40±112397713
18~<55岁18±6 017409
55~<75岁41±133418917
≥75岁25±8 1254711
大气污染物(μg/m3)
PM2.549±29286119733
PM2.5~1029±1717389320
NO242±17295211522
SO220±1 12277415
O364±31438224439
气象因素
气温(℃)16±8 8223114
湿度(%)74±1267849617
2.2 大气污染物滞后天数

冠心病就诊情况不仅受到当天污染物的影响,同时可能受前几天污染物的影响,结合冠心病的就诊周期,故分析滞后期为0~6 d及平均累计滞后0~6 d的滞后效应。通过滞后效应模型选择出现最大效应值的滞后天数,并结合广义交叉验证准则(GCV准则),综合考虑污染物的滞后效应。单污染物模型的最佳滞后期根据各污染物最大效应值(RR值)来确定。最终确定PM2.5、PM2.5~10和二氧化氮最佳滞后期为滞后第4天,二氧化硫为滞后第5天,臭氧则为污染物暴露当天,见图 1

图 1 不同污染物的滞后期对冠心病就诊人次数影响的分布图 Fig. 1 Lag effect of different pollutants on daily hospital visits of coronary heart disease
2.3 模型拟合结果

模型拟合结果见表 2。PM2.5和PM2.5~10浓度每升高一个IQR,冠心病每日就诊人数分别增加1.98%(95% CI:-0.59%~4.63%)和1.85%(95% CI:-0.79%~4.57%)。PM2.5和PM2.5~10对女性冠心病就诊的ER(超额危险度)值高于男性。PM2.5和PM2.5~10对老年人群(年龄≥75岁)冠心病就诊的影响大于其他年龄组,ER值分别为3.35%(95% CI: 0.12%~6.69%)和3.35%(95% CI:0.02%~6.79%),结果具有统计学意义。按季节分层分析发现,冷季时,PM2.5和PM2.5~10浓度每升高一个IQR,冠心病就诊数增加2.30% (95% CI:-0.86%~5.56%)和2.44% (95% CI:-0.96%~5.95%),而在暖季时这种效应不明显。在双污染模型中,校正了PM2.5~10影响后,PM2.5对冠心病影响的变化不大;而校正了PM2.5后,PM2.5~10对冠心病就诊的影响减少,说明相对于粗颗粒物而言,细颗粒物PM2.5暴露与冠心病每日就诊人数的关系更为密切。

表 2 可吸入颗粒物浓度每升高一个IQR冠心病就诊人数的ER值和95% CI的分层分析结果 Table 2 Hierarchical analysis of the correlation between particulate matter concentration and daily hospital visits of coronary heart disease
(%)
对象分层ER值(95% CI)
PM2.5PM2.5~10
性别男性1.06(-1.86~4.06)1.05(-1.93~4.14)
女性2.70(0.01~5.47)2.65(-0.12~5.50)
年龄18~<550.96(-2.57~4.61)0.43(-3.15~4.15)
55~<751.23(-1.81~4.38)1.25(-1.88~4.49)
≥753.35(0.12~6.69)3.35(0.02~6.79)
季节冷季2.30(-0.86~5.56)2.44(-0.96~5.95)
暖季-0.19(-5.37~5.26)-1.27(-5.80~3.48)
双污染物+PM2.50.84(-2.76~4.59)
模型+PM2.5~101.41(-2.11~5.06)
  “—”:无相关数据;IQR:四分位数间距;ER:超额危险度. PM2.5和PM2.5~10的滞后时间均为滞后第4天.
3 讨论

本研究采用生态学研究方法,利用广义相加模型,调整了时间趋势、季节趋势、气温、湿度和星期几效应等因素,评价大气PM与冠心病就诊人数的关系。结果表明,大气中PM浓度的升高与冠心病就诊人数的增加有关。研究还发现,在较正了PM2.5后,PM2.5~10对冠心病就诊数的影响减少,表明PM中与冠心病就诊数关系更密切的是PM2.5,与以往的研究结果基本一致[13-15]。美国的一项关于缺血性心脏病与大气污染短期暴露的研究发现,大气中PM每升高10 μg/m3,急性缺血性心脏病就诊率增加4.5%(95% CI: 1.1%~8.0%)[14]。Peng等[15]在一项1999至2005年的研究中发现,校正了PM2.5的影响后,PM与冠心病就诊数之间的相关性无统计学意义。但也有一些研究得出了不一致的结果。Powell等[16]发现PM2.5~10浓度与冠心病就诊数明显相关,且这种关联在校正PM2.5后依然存在。此外,PM2.5对冠心病就诊的影响在冷季较为明显。这种季节趋势与以往的研究类似[4, 9]。在冬春季节,气温的变化幅度较大,当气温骤降时,寒冷可直接引起冠状动脉痉挛,导致交感神经兴奋,使肾上腺素分泌增加,末梢血管收缩,外周阻力增加,导致左心室负荷加重从而引起各种心血管事件。

从性别和年龄分层来看,女性和老年人群(年龄≥75岁)对PM2.5最为敏感。关于性别差异,以往的研究结果一直存在着争议。三项相关的研究均发现PM2.5对女性心脑血管疾病的影响更大[17-19],可能是男、女生理学上的差异和PM2.5的暴露差异所致[20]。Kim和Hu[21]在控制呼吸条件的情况下,测试了PM在男性和女性呼吸系统的沉积情况,结果显示PM在女性呼吸系统中沉积得更多。然而,另一些研究得到相反的结果。Middleton等[22]发现,PM对男性心血管疾病就诊的影响大于女性。因此,有关PM2.5对心血管疾病影响的性别差异还有待进一步研究。关于年龄差异,可能的原因是老年人群随着年龄的增长,各种功能开始减退,机体免疫力下降,同时老年人可能存在某些心血管疾病,更易受到大气中PM的影响,导致冠心病的急性发作。这与以往的研究结果一致[23-26]

此外,还有文献报道日照、气压等气象因素对冠心病的发作有影响:魏秀兰等[27]研究指出,冠心病的发病人数与日照时数呈负相关,与气压呈正相关;叶殿秀等[28]的研究表明,从全年看,气压、风速、日照等气象因素对冠心病发病率存在影响,但各个季节气象因子对发病率的影响又各有侧重,如冬季气温骤降可导致冠心病高发,夏季在高温酷热条件下同样可造成发病率上升。本研究主要侧重于研究大气污染物对冠心病就诊的影响,气象因素为可能的影响因素,在广义相加模型中作为一个控制变量,故未分析日照、气压等因素与冠心病的发病的关系。

本研究的优势是利用宁波市鄞州区卫生信息平台,实时获取该地区冠心病就诊信息;利用Python 编写网络爬虫程序每小时抓取大气污染和气象学相关信息,数据准确可靠。但是,本研究为生态学研究,无法获得个体大气污染物暴露和冠心病就诊信息,也无法调整某些温度、日照等混杂因素,故研究结果只能为将来的进一步研究提供病因线索。课题组将在其他相关研究中进一步分析温度、相对湿度、日照、气压等气象因素与冠心病就诊的关系。

综上所述,PM的浓度升高与冠心病就诊数的增加有关,这种效应在滞后第4天最为明显,且在冷季比暖季明显。PM对冠心病就诊的影响在女性和75岁以上老年人群中较为明显,此结果可为卫生行政部门在制订冠心病防治措施方面和将来的前瞻性研究提供科学依据。

参考文献
[1] 张远征. 冠心病发病危险因素研究现状[J]. 第四军医大学学报, 2009, 30(23): 2888–2891. ZHANG Yuanzheng. Study on risk factors for coronary heart disease[J]. Journal of the Fourth Military Medical University, 2009, 30(23): 2888–2891. (in Chinese)
[2] XIANG H, MERTZ K J, ARENA V C, et al. Estimation of short-term effects of air pollution on stroke hospital admissions in Wuhan, China[J/OL]. PLoS One, 2013, 8(4):e61168.
[3] BREITNER S, LIU L, CYRYS J, et al. Sub-micrometer particulate air pollution and cardiovascular mortality in Beijing, China[J]. Sci Total Environ, 2011, 409(24): 5196–5204. doi:10.1016/j.scitotenv.2011.08.023
[4] ITO K, MATHES R, ROSS Z, et al. Fine particulate matter constituents associated with cardiovascular hospitalizations and mortality in New York city[J]. Environ Health Perspect, 2011, 119(4): 467–473.
[5] POPE C A, BURNETT R T, THURSTON G D, et al. Cardiovascular mortality and long-term exposure to particulate air pollution:epidemiological evidence of general pathophysiological pathways of disease[J]. Circulation, 2004, 109(1): 71–77.
[6] KREWSKI D, BURNETT R T, GOLDBERG M S, et al. Overview of the reanalysis of the Harvard six cities study and American Cancer Society study of particulate air pollution and mortality[J]. J Toxicol Environ Health A, 2003, 66(16-19): 1507–1551. doi:10.1080/15287390306424
[7] 杨春雪, 阚海东, 陈仁杰. 我国大气细颗粒物水平、成分、来源及污染特征[J]. 环境与健康杂志, 2011, 28(8): 735–738. YANG Chunxue, KAN Haidong, CHEN Renjie. Research on level, composition, source and pollution characteristics of ambient fine particles in China[J]. Journal of Environment and Health, 2011, 28(8): 735–738. (in Chinese)
[8] PENG R D, DOMINICI F, LOUIS T A. Model choice in time series studies of air pollution and mortality[J]. J R Statist Soc A, 2006, 169(2): 179–203. doi:10.1111/rssa.2006.169.issue-2
[9] YANG C, CHEN A, CHEN R, et al. Acute effect of ambient air pollution on heart failure in Guangzhou, China[J]. Int J Cardiol, 2014, 177(2): 436–441. doi:10.1016/j.ijcard.2014.09.003
[10] LIN H, TAO J, DU Y, et al. Particle size and chemical constituents of ambient particulate pollution associated with cardiovascular mortality in Guangzhou, China[J]. Environ Pollut, 2016, 208(Pt B): 758–766.
[11] RODOPOULOU S, SAMOLI E, CHALBOT M C, et al. Air pollution and cardiovascular and respiratory emergency visits in Central Arkansas:a time-series analysis[J]. Sci Total Environ, 2015, 536: 872–879. doi:10.1016/j.scitotenv.2015.06.056
[12] RODOPOULOU S, CHALBOT M C, SAMOLI E, et al. Air pollution and hospital emergency room and admissions for cardiovascular and respiratory diseases in Doña Ana County, New Mexico[J]. Environ Res, 2014, 129: 39–46. doi:10.1016/j.envres.2013.12.006
[13] DOMINICI F, PENG R D, BELL M L, et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases[J]. JAMA, 2006, 295(10): 1127–1134. doi:10.1001/jama.295.10.1127
[14] POPE C A, MUHLESTEIN J B, MAY H T, et al. Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution[J]. Circulation, 2006, 114(23): 2443–2448. doi:10.1161/CIRCULATIONAHA.106.636977
[15] PENG R D, CHANG H H, BELL M L, et al. Coarse particulate matter air pollution and hospital admissions for cardiovascular and respiratory diseases among medicare patients[J]. JAMA, 2008, 299(18): 2172–2179. doi:10.1001/jama.299.18.2172
[16] POWELL H, KRALL J R, WANG Y, et al. Ambient coarse particulate matter and hospital admissions in the medicare cohort air pollution study, 1999-2010[J]. Environ Health Perspect, 2015, 123(11): 1152–1158.
[17] LIN C M, KUO H W. Sex-age differences in association with particulate matter and emergency admissions for cardiovascular diseases:a hospital-based study in Taiwan[J]. Public Health, 2013, 127(9): 828–833. doi:10.1016/j.puhe.2013.04.010
[18] YORIFUJI T, SUZUKI E, KASHIMA S. Cardiovascular emergency hospital visits and hourly changes in air pollution[J]. Stroke, 2014, 45(5): 1264–1268. doi:10.1161/STROKEAHA.114.005227
[19] ZEKA A, ZANOBETTI A, SCHWARTZ J. Individual-level modifiers of the effects of particulate matter on daily mortality[J]. Am J Epidemiol, 2006, 163(9): 849–859. doi:10.1093/aje/kwj116
[20] SU C, BREITNER S, SCHNEIDER A, et al. Short-term effects of fine particulate air pollution on cardiovascular hospital emergency room visits:a time-series study in Beijing, China[J]. Int Arch Occup Environ Health, 2016, 89(4): 641–657. doi:10.1007/s00420-015-1102-6
[21] KIM C S, HU S C. Regional deposition of inhaled particles in human lungs:comparison between men and women[J]. J Appl Physiol (1985), 1998, 84(6): 1834–1844.
[22] MIDDLETON N, YIALLOUROS P, KLEANTHOUS S, et al. A 10-year time-series analysis of respiratory and cardiovascular morbidity in Nicosia, Cyprus:the effect of short-term changes in air pollution and dust storms[J]. Environ Health, 2008, 7: 39. doi:10.1186/1476-069X-7-39
[23] ZANOBETTI A, SCHWARTZ J. The effect of particulate air pollution on emergency admissions for myocardial infarction:a multicity case-crossover analysis[J]. Environ Health Perspect, 2005, 113(8): 978–982. doi:10.1289/ehp.7550
[24] LE TERTRE A, MEDINA S, SAMOLI E, et al. Short-term effects of particulate air pollution on cardiovascular diseases in eight European cities[J]. J Epidemiol Community Health, 2002, 56(10): 773–779. doi:10.1136/jech.56.10.773
[25] NUVOLONE D, BALZI D, CHINI M, et al. Short-term association between ambient air pollution and risk of hospitalization for acute myocardial infarction:results of the cardiovascular risk and air pollution in Tuscany (RISCAT) study[J]. Am J Epidemiol, 2011, 174(1): 63–71. doi:10.1093/aje/kwr046
[26] LINARES C, DÍAZ J. Short-term effect of concentrations of fine particulate matter on hospital admissions due to cardiovascular and respiratory causes among the over -75 age group in Madrid, Spain[J]. Public Health, 2010, 124(1): 28–36. doi:10.1016/j.puhe.2009.11.007
[27] 魏秀兰, 李锁玲, 赵孝怀, 等. 冠心病与气象因素的关系[J]. 菏泽医学专科学校学报, 2003, 15(1): 48–49. WEI Xiulan, LI Suoling, ZHAO Xiaohuai, et al. Relationship between coronary heart disease and the meteorological factors[J]. Journal of Heze Medical College, 2003, 15(1): 48–49. (in Chinese)
[28] 叶殿秀, 杨贤为, 吴桂贤. 北京地区冠心病发病率的气象评估模型[J]. 气象科技, 2005, 33(6): 565–569. YE Dianxiu, YANG Xianwei, WU Guixian. Meteorological evaluating models of coronary heart disease incidence in Beijing area[J]. Meteorological Science and Technology, 2005, 33(6): 565–569. (in Chinese)

文章信息

叶臻华, 郑培雯, 沈鹏, 张振宇, 陆怀初, 金明娟, 林鸿波, 王建炳, 陈坤
YE Zhenhua, ZHENG Peiwen, SHEN Peng, ZHANG Zhenyu, LU Huaichu, JIN Mingjuan, LIN Hongbo, WANG Jianbing, CHEN Kun
宁波市鄞州区大气可吸入颗粒物暴露与冠心病就诊人数的时间序列分析
Time-series analysis of particulate matter and daily hospital visits for coronary heart disease in Yinzhou district, Ningbo area
浙江大学学报(医学版), 2016, 45(6): 607-613
Journal of Zhejiang University(Medical Sciences), 2016, 45(6): 607-613.
http://dx.doi.org/10.3785/j.issn.1008-9292.2016.11.08

文章历史

收稿日期: 2016-09-22
接受日期: 2016-11-20
基金项目: 浙江大学空气污染与健康研究中心资助项目(H20151885)
第一作者: 叶臻华(1989-),男,硕士研究生,主要从事环境流行病学研究;E-mail:11218216@zju.edu.cn;http://orcid.org/0000-0001-5373-0750
通讯作者: 林鸿波(1976-),男,本科,主管技师,主要从事疾病预防和控制工作;E-mail:http://orcid.org/0000-0002-9039-1791">lin73160@163.com;http://orcid.org/0000-0002-9039-1791 陈坤(1960-),男,博士,教授,博士生导师,主要从事分子流行病学与环境流行病学研究;E-mail:http://orcid.org/0000-0003-1162-6896">ck@zju.edu.cn;http://orcid.org/0000-0003-1162-6896

工作空间