文章快速检索  
  高级检索

诱导多能干细胞治疗失神经性肌肉萎缩的研究进展
姚中凯, 杨晨松, 孙贵新     
上海同济大学附属东方医院创伤外科, 上海 200120
摘要: 诱导多能干细胞(iPSC)是一种类似于胚胎干细胞具有多向分化潜能的组织干细胞,又有胚胎干细胞不可比拟的优势。iPSC移植到受损区域后,经病损部位神经源信号的引导,可分泌修复损伤必需的营养因子,帮助无髓或新生轴突形成髓鞘,为轴突生长提供基质等物质,参与神经立体空间结构的重建,恢复神经系统功能,对周围神经的再生具有非常重要的意义。因此,应用iPSC治疗延缓失神经性肌肉萎缩成为一种可能。
关键词: 多潜能干细胞/免疫学     肌萎缩/药物疗法     周围神经/损伤     神经系统疾病/药物疗法     综述    
Research progress of induced pluripotent stem cells in treatment of muscle atrophy
YAO Zhongkai, YANG Chensong, SUN Guixin     
Department of Trauma Surgery, East Hospital Affiliated to Tongji University, Shanghai 200120, China
Abstract: Muscle atrophy caused by nerve injury is a common and difficult clinical problem. The development of stem cell researches has opened up a new way for the treatment of nerve injury-induced muscle atrophy. The induced pluripotent stem cells(iPSCs)can differentiate into various types of cells and have more advantages than embryonic stem cells (ESCs). After being transplanted into the damaged area, iPSCs are guided by neurogenic signals to the lesion sites, to repair the damaged nerve, promote generation of axon myelination, rebuild neural circuits and restore physiological function. Meanwhile, iPSCs can also differentiate into muscle cells and promote muscle tissue regeneration. Therefore, it would be possible to attenuate muscle atrophy caused by nerve injury with iPSCs treatment.
Key words: Pluripotent stem cells/immunology     Muscular atrophy/drug therapy     Peripheral nerves/ injuries     Nervous system diseases/drug therapy     Review    

直接或间接的外部暴力引起周围神经损伤,危害大,预后差,在临床上属于常见疾病[1]。神经组织损伤后,其修复再生非常缓慢,靶肌肉容易发生失用性不可逆的萎缩。对待神经损伤性疾病,目前采用的治疗方法主要是显微外科断端缝合术和物理疗法及神经营养因子局部药物、营养因子注射等方法,均不能完全解决失神经肌肉萎缩的问题[2]。随着神经干细胞技术的不断发展和完善,应用干细胞治疗为完全解决失神经肌肉萎缩问题提供了新方向。诱导多能干细胞(induced pluripotent stem cells,iPSC)有着其他干细胞不可比拟的优势:与胚胎干细胞相似,iPSC具有分化的潜能,同时两者在电生理生化特性、端粒酶活性及保持多能性分化方面有着近似特点,且没有胚胎干细胞的伦理问题[3];与移植肌肉细胞、间充质细胞相比,iPSC一定程度上解决了因为细胞含量低、缺乏特异性标记而难以分离、提纯及分化潜能低等问题;与异体细胞输注移植相比,iPSC有效避免了因异体细胞移植所导致的排斥反应等问题。iPSC能够在诱导因子的诱导下高效生成运动神经元、胶质细胞及成肌细胞,目前一些疾病模型[4]如肌萎缩侧索硬化症[5]、脊髓性肌萎缩[6]和假肥大型肌营养不良[7]等,应用iPSC治疗后,均取得良好效果,为临床治疗失神经肌肉萎缩提供了实验基础。本文通过介绍iPSC的细胞来源和制备,探讨其治疗失神经肌肉萎缩的机制及目前存在的问题,为临床治疗失神经肌肉萎缩提供新的治疗途径。

1 iPSC的来源和制备

iPSC由日本学者Takahashi和Yamanake[8]最早成功诱导,他们将正常的体细胞通过转录因子重新编码为类似胚胎干细胞的细胞群,使其具有潜在分化成其他细胞组织的能力。随后,针对iPSC的研究空前增长。体细胞通过以下途径可诱导生成iPSC:①体细胞核移植;②体细胞与其他多潜能细胞融合后重新编程;③将分化的体细胞在卵细胞或多潜能干细胞的抽提物中孵育以实现体细胞重编程;④通过逆转录病毒、慢病毒、腺病毒等将转录因子所对应的基因导入自身体细胞,诱导重编程为iPSC。由于技术受限、诱导效率和伦理等原因,自身体细胞体外经诱导因子生成iPSC途径逐渐成为制备iPSC的主要途径。体外诱导生成iPSC所使用的转录因子主要包括Oct4、Sox2、Klf4及c-Myc[9-10]。体细胞能够编码诱导成多能干细胞是转录因子与细胞微环境交互作用的结果[11]。iPSC与胚胎干细胞相似,具有多向分化的潜能,可分化为包括骨骼肌在内的三胚层细胞,这为治疗失神经性肌肉萎缩提供了可能[10]

诱导生成iPSC的体细胞来源广泛,理论上不同类型的体细胞均可诱导重新编码成iPSC。Kaji等[12]借助药物诱导系统研究体细胞重编程为iPSC,结果发现不同组织来源的体细胞均可被重编程,借助诱导因子均可将体细胞诱导为iPSC;转录因子基因活性的持续时间与重编程效率有直接相关性;不同体细胞诱导为iPSC所需转录因子及诱导水平是不同的。例如人体肌细胞在体外诱导生成iPSC需要Oct4、Sox2、Klf4及c-Myc四种诱导因子,而成熟B淋巴细胞诱导生成iPSC除了Oct4、Sox2、Klf4、c-Myc四种因子外还需要诱导因子C/EBP-α[13]。在人体内,由于人的血细胞、脂肪细胞及皮肤细胞来源广泛,取材方便,易于诱导,往往成为理想的供体细胞。iPSC最常用的体细胞为自体的成纤维细胞。学者Quattrocelli等[14]研究发现,肌来源的多能干细胞分化形成肌前体细胞的效率较高,为此提出“细胞内源性记忆机制”学说。选择合适的来源细胞,在避免激发排斥反应的基础上获得具有有效性和高效性的iPSC是选择iPSC治疗失神经肌肉萎缩的关键。

2 iPSC治疗失神经性肌肉萎缩的机制

凋亡信号通路是失神经性肌肉萎缩机制中重要的参与者之一,其中包括内源性凋亡信号通路、死亡因子受体介导的通路和内质网凋亡信号通路。首先,内源性凋亡信号通路主要与线粒体的调控有关[15],正常的线粒体膜上附着有许多促凋亡蛋白,当参与细胞凋亡时,线粒体上的线粒体膜渗透性转换孔打开,凋亡蛋白进入到细胞胞浆内,激活胱天蛋白酶(caspase)途径,从而使细胞凋亡。另外线粒体通过释放凋亡诱导因子如核酸内切酶G激活非caspase依赖途径,引发细胞的凋亡。Bcl-2和Bax是Bcl-2家族中功能相反的两类蛋白。前者促进细胞凋亡,后者通过影响线粒体膜渗透性转换孔的开放抑制细胞凋亡。在失神经肌肉中,Bcl-2和Bax含量均升高,但前者升高的幅度高于后者,这也充分说明失神经肌肉萎缩与内源性的细胞凋亡机制相关。其次,死亡因子受体介导的通路属于外源性凋亡通路,通过激活细胞上的死亡因子受体Fas和TNF受体来实现,并通过caspase级联放大反应和核酸内切酶的活化导致骨骼肌细胞凋亡。最后,内质网凋亡信号通路也是caspase依赖凋亡途径,属于完全独立的线粒体介导的凋亡通路,细胞色素c参与其中。

肌肉失神经损伤后,分化的卫星细胞相互融合形成肌管,并直接与受损的肌纤维融合,产生大量新的卫星细胞并再次恢复到静息状态。随后卫星细胞的数量会快速减少[16]。肌肉长期失神经导致肌卫星细胞数目减少和活性下降,同时肌肉再生微环境的恶化也损伤了失神经骨骼肌的再生能力。骨骼肌失神经支配后,肌卫星细胞的数量也发生明显的变化。Rodrigues等[17]的实验证实在失神经损伤早期,肌卫星细胞的数量明显增加,随后快速下降。

一方面,iPSC可以直接分化形成运动神经元[18-19]。已有实验证实,在实验环境下加入维甲酸和Sonic Hedgehog(SHH)[20-21]激活干细胞可获得运动神经元的特性。iPSC体外经诱导后分化为神经球,贴壁培养后,免疫组织化学检测结果证实存在细胞表达神经元标志物微管相关蛋白2(MAP-2)、星形胶质细胞标志物胶质纤维酸性蛋白(GFAP)和少突胶质细胞标志物髓鞘碱性蛋白(MBP)。同时Wernig等 [22]率先将小鼠iPSC在体外诱导分化成神经前体细胞,最后诱导成运动神经元和胶质细胞,并且具有良好的功能和活性。Dimos等 [19]从家族型肌萎缩性脊髓侧索硬化症患者身上提取皮肤细胞,采用诱导技术首次将患者体细胞重编程为“疾病特异的” iPSC,并用此类iPSC在体外成功诱导分化出运动神经元。由此可知,“患者特异性iPSC”或“疾病特异性iPSC”为治疗类似的失神经性肌肉萎缩提供可能,也为将来实现失神经性肌肉萎患者个体化治疗及疗效评估奠定基础。

另一方面,如何诱导 iPSC产生足够数量的成肌体细胞和肌前体细胞,也是iPSC治疗失神经性肌肉萎缩的关键问题。在体外培养过程中增加转录因子Pax3和Pax7,可以大大提高iPSC转录成肌干细胞的效率[23]。此外,成肌调节因子是在骨骼肌胚胎发育过程中发现的一种转录调节因子,由特定肌卫星细胞分泌,其主要作用是诱导肌干细胞分化为成肌细胞。失神经导致骨骼肌丧失正常的神经肌肉接头功能,成肌调节因子表达明显上调[24]。因此在适当的时间内注入由iPSC诱导生成的肌干细胞,可以大大提高成肌细胞的生成效率。已有研究证实,将iPSC经诱导生成的成肌干细胞注射到肌营养不良的mdx大鼠肌肉组织中,大鼠的肌肉组织体积明显增大,肌肉收缩功能也得到改善[25]。这也为iPSC有效治疗失神经引起的肌肉萎缩提供了直接的实验依据。

3 iPSC治疗失神经肌肉萎缩存在的问题

iPSC细胞不能高效率地分化为运动神经元和肌前体细胞,而且目前无统一的高效分化培养的方法。究其原因可能在于逆转录病毒的随机性和难控性[26]。Oct4的表达量也会影响前体细胞向iPSC转化[27],Oct4表达量上调促进iPSC的转化效率。体内环境中各种转录因子的表达量和表达时效等也会对iPSC的表达效率产生影响。不过已有研究报道,抑制剂PD0325901和CHIR99021通过分别抑制MAPK信号通路和GSK3信号通路,可提高前体细胞诱导生成iPSC的效率[28]。iPSC的致瘤性也是临床前需要解决的问题。iPSC致瘤的原因可能在于成熟体细胞向iPSC逆转录分化后,某段基因的突变及编码错误导致。另外,病毒载体中的原癌基因的插入表达或者诱发宿主细胞自身原癌基因的表达也是不可忽视的因素。诱导重编程是否有其他未知基因的参与或导入,是否会发生一些未知的遗传学或表观遗传学改变,目前尚不明确[29]。有研究报道,可通过减少诱导因子的数目来降低致瘤的风险。例如体细胞诱导成iPSC除了特定的诱导因子,还受多种小分子化合物的影响:如将小鼠成纤维细胞重编程为iPSC一般需要三种因子Oct4、Sox2、Klf4,当使用小分子BIX与Bay组合时,在缺乏Klf4因子的情况下也可高效率地将小鼠成纤维细胞诱导为iPSC。小分子化合物的使用可以减少诱导因子相关基因的转入,一定程度上降低致瘤风险[30]。也有学者提出使用非整合病毒载体、蛋白转导技术和多重瞬时转染技术来减少细胞致瘤的风险[31-32]

4 展 望

iPSC作为一种多分化潜能的干细胞应用于临床,既避免了胚胎干细胞带来的伦理问题,也为进一步治疗失神经肌肉萎缩提供了一种可能。尽管如此,仍存在一系列待解决的问题,例如由其带来的致瘤问题、输注途径最优化的问题及实际临床应用尚需进一步的试验验证。因此深入研究iPSC的诱导机制及致瘤机制,开发更加成熟的iPSC诱导技术等,将会给周围神经损伤后肌肉功能恢复的治疗开辟一个全新的领域。

参考文献
[1] 杨渐, 俞昌喜. 周围神经损伤的药物治疗进展[J]. 中国实用神经疾病杂志, 2010, 13 (11) : 91–93 . YANG Jian, YU Changxi. Drug-treatment for peripheral nerve injures[J]. Chinese Journal of Practical Nervous Diseases, 2010, 13 (11) :91–93 .
[2] 裴艳宏, 刘坤祥. 失神经骨骼肌萎缩机制及治疗的研究进展[J]. 中国医疗前沿, 2013, 8 (5) : 15–17 . PEI Yanhong, LIU Kunxiang. Research progress on mechanism and treatment of denervated skeletal muscle atrophy[J]. National Medical Frontiers of China, 2013, 8 (5) :15–17 .
[3] HALL V J, STOJKOVIC P, STOJKOVIC M. Using therapeutic cloning to fight human disease: a conundrum or reality?[J]. Stem Cells, 2006, 24 (7) :1628–1637 .
[4] RUSSO F B, CUGOLA F R, FERNANDES I R, et al. Induced pluripotent stem cells for modeling neurological disorders[J]. World J Transplant, 2015, 5 (4) :209–221 .
[5] WINNER B, MARCHETTO M C, WINKLER J, et al. Human-induced pluripotent stem cells pave the road for a better understanding of motor neuron disease[J]. Hum Mol Genet, 2014, 23 (R1) :R27–R34 .
[6] OHUCHI K, FUNATO M, KATO Z, et al. Established stem cell model of spinal muscular atrophy is applicable in the evaluation of the efficacy of thyrotropin-releasing hormone analog[J]. Stem Cells Transl Med, 2016, 5 (2) :152–163 .
[7] SHOJI E, SAKURAI H, NISHINO T, et al. Early pathogenesis of duchenne muscular dystrophy modelled in patient-derived human induced pluripotent stem cells[J]. Sci Rep, 2015, 5 :12831 .
[8] TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126 (4) :663–676 .
[9] JAENISCH R, YOUNG R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming[J]. Cell, 2008, 132 (4) :567–582 .
[10] NISHIKAWA S, GOLDSTEIN R A, NIERRAS C R. The promise of human induced pluripotent stem cells for research and therapy[J]. Nat Rev Mol Cell Biol, 2008, 9 (9) :725–729 .
[11] GRAF T, ENVER T. Forcing cells to change lineages[J]. Nature, 2009, 462 (7273) :587–594 .
[12] KAJI K, NORRBY K, PACA A, et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors[J]. Nature, 2009, 458 (7239) :771–775 .
[13] HANNA J, MARKOULAKI S, SCHORDERET P, et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency[J]. Cell, 2008, 133 (2) :250–264 .
[14] QUATTROCELLI M, PALAZZOLO G, FLORIS G, et al. Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs[J]. J Pathol, 2011, 223 (5) :593–603 .
[15] MARZETTI E, HUANG J C, LEES H A, et al. Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy[J]. Biochim Biophys Acta, 2010, 1800 (3) :235–244 .
[16] GROSS J G, MORGAN J E. Muscle precursor cells injected into irradiated mdx mouse muscle persist after serial injury[J]. Muscle Nerve, 1999, 22 (2) :174–185 .
[17] RODRIGUES ADE C, SCHMALBRUCH H. Satellite cells and myonuclei in long-term denervated rat muscles[J]. Anat Rec, 1995, 243 (4) :430–437 .
[18] 肖雅娟. iPSCs定向分化为运动神经元的电生理特性研究[D]. 中国科学院研究生院, 2011. XIAO Yajuan. Electrophysiological characteristics of iPSCs in the direction of differentiation into motor neurons[D]. Graduate University of Chinese Academy of Sciences, 2011. (in Chinese)
[19] DIMOS J T, RODOLFA K T, NIAKAN K K, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons[J]. Science, 2008, 321 (5893) :1218–1221 .
[20] LI L, BAROJA M L, MAJUMDAR A, et al. Human embryonic stem cells possess immune-privileged properties[J]. Stem Cells, 2004, 22 (4) :448–456 .
[21] LI X J, DU Z W, ZARNOWSKA E D, et al. Specification of motoneurons from human embryonic stem cells[J]. Nat Biotechnol, 2005, 23 (2) :215–221 .
[22] WERNIG M, ZHAO J P, PRUSZAK J, et al. Neurons derived from reprogrammed fibroblasts functionally tegrate into the fetal brain and improve symptoms of rats with Parkinson's disease[J]. Proc Natl Acad Sci U S A, 2008, 105 (15) :5856–5861 .
[23] NISHIYAMA T, TAKEDA S. Induced pluripotent stem (iPS) cell-based cell therapy for muscular dystrophy: current progress and future prospects[J]. Brain Nerve, 2012, 64 (1) :39–46 .
[24] ASAKURA A, SEALE P, GIRGIS-GABARDO A, et al. Myogenic specification of side population cells in skeletal muscle[J]. J Cell Biol, 2002, 159 (1) :123–134 .
[25] DARABI R, PAN W, BOSNAKOVSKI D, et al. Functional myogenic engraftment from mouse iPS cells[J]. Stem Cell Rev, 2011, 7 (4) :948–957 .
[26] PRICE F D, KURODA K, RUDNICKI M A. Stem cell based therapies to treat muscular dystrophy[J]. Biochim Biophys Acta, 2007, 772 (2) :272–283 .
[27] NIWA H, MIYAZAKI J, SMITH A G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells[J]. Nat Genet, 2000, 24 (4) :372–376 .
[28] SILVA J, BARRANDON O, NICHOLS J, et al. Promotion of reprogramming to ground state pluripotency by signal inhibition[J]. PLoS Biol, 2008, 6 (10) :e253 .
[29] TAKAHASHI K, TANABE K, OHNUKI M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131 (5) :861–872 .
[30] SHI Y, DESPONTS C, DO J T, et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds[J]. Cell Stem Cell, 2008, 3 (5) :568–574 .
[31] YU J, HU K, SMUGA-OTTO K, et al. Human induced pluripotent stem cells free of vector and transgene sequences[J]. Science, 2009, 324 (5928) :797–801 .
[32] 押村光雄, 香月康宏, 宇野愛海. ヒト人工染色体をもちいたデュシャンヌ型筋ジストロフィー 遺伝子治療への挑戦[J]. 臨床神経学, 2012, 52 (11) : 1139–1142 . OSHIMURA M, KAZUKI Y, UNO N. Challenge toward gene-therapy using iPS cells for Duchenne muscular dystrophy[J]. Rinsho Shinkeigaku, 2012, 52 (11) :1139–1142 .

文章信息

姚中凯, 杨晨松, 孙贵新
YAO Zhongkai, YANG Chensong, SUN Guixin
诱导多能干细胞治疗失神经性肌肉萎缩的研究进展
Research progress of induced pluripotent stem cells in treatment of muscle atrophy
浙江大学学报(医学版), 2016, 45(2): 147-151
Journal of Zhejiang University(Medical Sciences), 2016, 45(2): 147-151.
http://dx.doi.org/10.3785/j.issn.1008-9292.2016.03.07

文章历史

收稿日期: 2015-10-12
接受日期: 2016-01-24

工作空间