文章快速检索  
  高级检索

椎间盘纤维环组织工程研究进展
周平辉1, 过倩萍2, 凌峰1, 钱忠来1, 李斌1,2     
1. 苏州大学附属第一医院骨科, 江苏 苏州 215006 ;
2. 苏州大学骨科研究所, 江苏 苏州 215007
摘要: 椎间盘退行性疾病是引起下腰痛的主要病因,严重影响患者的生活质量。纤维环损伤能导致椎间盘严重退变。然而,由于纤维环组织本身在细胞、生物化学和生物力学方面的异质性,纤维环的修复和再生治疗仍面临挑战。近年来,随着组织工程学的发展,利用组织工程化的纤维环为治疗退变椎间盘提供了新的途径。本文从组织工程的主要要素,即细胞、支架、生长因子和力学刺激等方面简要介绍纤维环组织工程业已取得的成果和面临的挑战。进一步研究需结合多学科手段,选取高效的细胞来源、制备多重仿生的支架、利用合适的生长因子和力学刺激等,充分模拟实际纤维环组织及其微环境,从而有效地促进纤维环组织再生,最终实现纤维环组织工程应用于椎间盘退行性疾病的临床治疗。
关键词: 椎间盘移位/治疗     细胞移植     支架     腰椎/病理学     转化生长因子β1/代谢     椎间盘/病理学     纤维化     组织工程     综述    
Progress and challenges in tissue engineering of intervertebral disc annulus fibrosus
ZHOU Pinghui1, GUO Qianping2, LING Feng1, QIAN Zhonglai1, LI Bin1,2     
1. Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China ;
2. Orthopedic Institute, Soochow University, Suzhou 215007, China
Abstract: Degenerative disc disease (DDD) is a leading cause of low back pain, which severely affects the quality of life and incurs significant medical cost. Annulus fibrosus(AF) injuries can lead to substantial deterioration of intervertebral disc degeneration. However, the AF repair/regeneration remains a challenge due to the intrinsic cellular, biochemical and biomechanical heterogeneity of AF tissue. Tissue engineering would be a promising approach for AF regeneration. This article aims to provide a brief overview of the fundamental aspects of AF, the current achievements and future challenges of AF tissue engineering. A multidisciplinary approach is proposed for future studies to fully mimic the native AF tissue and its microenvironment, including choosing adequate cell source, preparing scaffolds with hierarchical microstructures, supplementing appropriate growth factors, and enforcing suitable mechanical stimulation. Hopefully, the engineered AF tissues would be effectively used to facilitate the treatment of DDD in the future.
Key words: Intervertebral disk displacement/therapy     Cell transplantation     Scaffolds     Lumbar vertebrae/pathology     Transforming growth factor beta1/metabolism     Intervertebral disk/pathology     Fibrosis     Tissue engineering     Review    

下腰痛是成人活动受限最常见的原因,严重影响患者的生活质量并花费昂贵的医疗费用。在美国,下腰痛导致500多万人终身残疾,每年耗费超过40亿美元[1]。椎间盘退行性疾病是引起下腰痛的主要病因,目前针对椎间盘退行性疾病的保守治疗只对处于早期阶段的疾病有效,不能逆转已退变的椎间盘组织及其生物学功能。常规的外科手术治疗包括椎间盘切除术、椎间融合术和椎间盘置换术等,属于有创操作,会加重损伤或者导致相邻节段椎体的退行性改变等并发症[2-4]。因此,对于椎间盘退行性疾病,迫切需要探索新的治疗方法。近年来,随着组织工程学的发展,组织工程椎间盘有望应用于病变椎间盘的替换治疗,以恢复脊柱生物学功能。

正常椎间盘由中间的凝胶状髓核、外周多层纤维软骨状的纤维环以及沿轴向上下包裹二者的软骨终板组成,承受脊柱载荷和运动时产生的多种应力,包括拉伸、压缩、扭转、剪切力等。纤维环的组成则较为复杂,沿径向由内至外可分为内、中、外三个区域。靠近髓核的内区由软骨样细胞、纤维软骨及其分泌的Ⅱ型胶原、软骨聚集蛋白聚糖等组成;外区主要由纤维样细胞及其分泌的Ⅰ型胶原、纤调蛋白和核心蛋白多糖等组成;中间区域的细胞和基质类型则是内外两区的综合。这些细胞类型及其基质分泌的区域递变也造成了纤维环力学特性的递变。由内至外,纤维环组织的弹性模量逐渐递增,这种径向模量梯度有利于纤维环内周向张应力的均匀分布,避免因局部负荷过大而破损[5-6]。纤维环在结构上的完整性对于限制髓核和维持椎间盘在负重时承受的生理压力非常关键,由于退变、外力等造成的纤维环组织损伤如放射性断裂、纤维层分离、胶原纤维断裂等是引起整个椎间盘组织的重塑和退变的重要原因[7-8]。尽管髓核组织工程已取得了一定的成就,却未能有效转化应用于临床,原因之一就是缺乏有效手段对损伤纤维环进行修复。因此,修复损伤的纤维环对于阻止椎间盘再突出和增强髓核修复必不可少,目前椎间盘组织工程的研究策略亦越来越集中于纤维环的再生或修复[9]

近年来,纤维环组织工程在细胞生物学、生物材料学和生物力学等多方面取得了一系列的成就。尽管如此,因为纤维环组织在细胞类型、基质组成、微观结构和生物力学水平上的复杂性,制备功能化的人工纤维环仍存在一定的挑战。我们将针对细胞来源、支架和生长刺激等要素简述纤维环组织工程研究领域的进展及面临的挑战。

1 种子细胞

种子细胞是组织工程研究中最基本的部分,决定了组织工程研究的质量。纤维环组织工程所需的种子细胞应具备下列属性:①易获取,创伤小;②保持原有表型;③免疫原性低等。目前,纤维环组织工程多采用纤维环细胞[10-12]、软骨细胞[13-14]和间充质干细胞[15-18]。然而对于最佳的细胞选择并没有形成统一意见,这仍然是限制纤维环再生和修复的主要因素之一。

1.1 纤维环细胞

纤维环细胞在纤维环组织工程研究中比较常见。在体外培养和体内种植过程中,纤维环细胞能够产生类似于天然纤维环组织中的细胞外基质。Mizuno等[12]在聚乙酸纤维支架内培养了羊的纤维环细胞并将其种植到无胸腺小鼠的皮下,发现这些细胞产生大量的羟脯氨酸和糖胺聚糖,12周后接近于天然纤维环组织的水平。另一项研究中,Bowles等[11]将羊纤维环细胞种植到胶原支架上后种植到无胸腺鼠尾部椎间盘6个月,产生新的细胞外基质,从而形成一个与天然椎间盘相似的运动节段。

然而,应用天然纤维环细胞来进行纤维环组织修复或再生受到极大限制。首先,纤维环并非均质组织,包含至少两类细胞,在细胞形态和胞外基质表达上差异明显[19]。其外层由纤维样细胞组成,主要合成Ⅰ型胶原和蛋白聚糖,内层包含主要分泌Ⅱ型胶原的软骨样细胞。简单地将内外区纤维环细胞混合,与天然组织的区域特性不相符,难以在特定区域提供相匹配的细胞。其次,纤维环细胞在体外扩增过程中会丢失原有表型,并迅速分化。Chou等[20-21]发现原代细胞传代到第二代时内外区纤维环细胞没有明显的区别,在藻酸盐培养2周后开始表现为基本相似的细胞表型。此外,纤维环组织中细胞密度极低(以人纤维环组织为例,为5×106~9×106细胞/cm3,约占组织质量的1%)[22],难以获取足够数量的细胞用于细胞治疗或组织工程构建[23]。同时,穿刺正常的纤维环组织会损伤其结构和功能,而退变组织中的细胞老化严重。因此,应用自体纤维环细胞作为纤维环组织工程的细胞来源的可行性较差[24],寻找一种能维持细胞表型并增加纤维环细胞数量的方法对于纤维环再生显得尤为重要。

1.2 软骨细胞

一般认为,纤维环细胞是软骨样细胞,并表达与软骨细胞相似特性的基质蛋白。Poiraudeau等[25]将包括纤维环细胞在内的椎间盘细胞的代谢活动和表型与同一动物的关节和骺板软骨细胞作比较,两者形态及软骨性质样基质蛋白表达难以区分。因此,在一些研究中软骨细胞被用作纤维环组织工程的种子细胞。同时,软骨细胞的若干特征蛋白如Ⅱ型胶原、羟脯氨酸、糖胺聚糖等亦普遍应用于纤维环细胞表型的表征[26-27]

然而,软骨细胞在发挥种子细胞作用的同时,也存在一些不利因素。首先,随着细胞逐渐失去再生潜能,分化的软骨细胞可能失去使整个纤维环组织再生的能力。其次,软骨细胞取自正常的自体软骨或者通过穿刺或外科手术取自异体软骨,这不可避免地会损伤软骨组织并导致关节退变或关节炎的发生[28-29]。另外,软骨细胞与纤维环细胞的基质分泌特性亦不十分匹配。如Li等[30]取新西兰白兔软骨组织细胞,希望作为种子细胞用于纤维环组织工程,但接种于聚合物支架后发现,支架中主要产生Ⅱ型胶原,而Ⅰ型胶原分布很少。究其原因,是由于软骨细胞主要分泌Ⅱ型胶原,而纤维环内区基质中主要分布的是Ⅱ型胶原和蛋白聚糖,故软骨细胞仅适合于构建纤维环内区的组织。然而,完整的纤维环是由多层纤维环绕而成,内区与外区的细胞类型、生化组成和力学特性均不一致。因此,软骨细胞作为纤维环组织工程的种子细胞存在较大缺陷。

1.3 间充质干细胞

干细胞,尤其是成体干细胞,由于具备自我更新的能力和多向分化潜能,已经应用于椎间盘组织工程并取得较好的效果。纤维环细胞起源于间充质干细胞,多数纤维环再生的研究都采用了间充质干细胞[31]。Nerurkar等[16]将骨髓间充质干细胞种植于非均质的纳米纤维层状结构,他们发现培养10周后这种支架能诱导富含胶原的细胞外基质的沉积。脂肪来源干细胞是另一大类型的间充质干细胞,因为数量丰富且容易获取,被认为可替代骨髓间充质干细胞[32-33]。事实上,成体间充质干细胞有组织特异性,这意味着起源于某个组织的间充质干细胞会优先分化为存在于这个组织内的细胞类型[34]。虽然间充质干细胞在组织工程的研究中取得了一定进展,但是存在诱导分化效率低且受细胞供体年龄限制等不足,需要进一步研究。

许多证据表明,在正常及轻度退变椎间盘的纤维环中都存在具有多向分化特性的细胞,提示纤维环组织内可能存在干/祖细胞。这些干/祖细胞对于特定组织维持正常的体内平衡和自我更新至关重要,其数量减少或功能改变都会导致所在组织乃至器官的功能紊乱。例如,椎间盘退变期间纤维环内形成软骨、骨和神经组织,可能正是纤维环内祖细胞分化的结果[35]。这些干/祖细胞通常出现在纤维环的边缘或已迁移进入该组织。近年来,我们成功分离并鉴定人、兔的纤维环祖细胞或纤维环源干细胞[18]。这类细胞表达的表面抗体与间充质干细胞一致,并能被诱导分化为脂肪细胞、成骨细胞、软骨细胞、神经元细胞或内皮细胞[18]。由于其来源于纤维环组织,纤维环源干细胞在一定的条件下将更容易向纤维环各区域的细胞类型分化,因而有望成为纤维环组织工程的新型细胞来源。

2 支 架

支架在纤维环组织工程中扮演着重要作用,可以提供足够的空间及力学和生化性能,帮助细胞生长、分化,产生细胞外基质而达到组织再生[36]。选择合适的组织工程支架首要原则是无免疫原性、生物相溶性和生物降解性。同时,作为纤维环支架必须考虑一些特殊要求,包括具备各向异性的特质,以便维持或修复作为脊柱功能活动一部分的纤维环的力学特性;允许种子细胞生存,并分化为与自然组织相应的细胞类型,如内区和外区纤维环细胞,并进一步合成和分泌实际组织区域内的基质;能与周围组织如髓核和终板兼容或能与髓核和终板支架组合装配等。目前可用于纤维环组织工程支架的材料种类繁多[13-15, 37-49],根据来源可分为三类:一是天然材料,如胶原、糖胺聚糖、透明质酸、藻酸盐、壳聚糖、硫酸软骨素、丝素蛋白等;二是合成材料,如聚己内酯、聚乳酸、聚乙醇酸、聚乳酸聚乙醇酸共聚物、聚氨酯等;三是生物组织材料,如来源于骨、纤维环或椎间盘组织的脱细胞基质、骨基质明胶、从牛血浆中分离出的纤维蛋白原等。天然材料和生物组织材料的相容性较好,但力学性能较低,而合成材料则可有效提高组织的力学特性。因此天然和合成材料结合使用是未来研究的一个方向。

除众所周知的化学特性以外,支架材料的微观结构和力学特性也对种子细胞的生长和分化具有重要作用。

2.1 支架微观结构

支架的微观结构影响支架中细胞的形态和功能。多孔性是常常考虑的重要因素。均匀分布的互联多孔结构有利于细胞的渗透移动、营养的运输和新陈代谢的完成。而纤维环组织的结构更为复杂,包括15~25 层纤维中的胶原纳米纤维平行排列,与椎间盘轴状面成28°~44°交角,且相邻层的纤维方向彼此斜行交错。纤维环这种叠层交叉取向结构的特点对组织的构建具有重要的影响[16, 50]。Park等[51]比较了猪的纤维环细胞在层状和多孔丝素蛋白支架中的细胞状态,发现与生长在多孔支架上的细胞相比,生长在层状支架上的细胞表达更多的纤维环组织特征标志物如胶原和聚集蛋白聚糖等。

除层状结构外,纤维的定向结构亦能影响基质产物和组织工程化纤维环结构的力学特性。Nerurkar等[52]仿制了定向纳米纤维支架,模拟天然纤维环,他们发现纤维环细胞沿着支架生长并形成大量定向的细胞外基质。我们最近也发现,与无规则生长的细胞比较,在定向生长的纤维环源干细胞中,Ⅰ型胶原和聚集蛋白聚糖的基质表达均较多,而Ⅱ型胶原表达无明显差异[53]。另有研究使用类似纤维环组织定向特征的蚕丝支架,能诱导人软骨细胞定向排列并影响细胞外基质的沉积,甚至能诱导干细胞向特异谱系分化[54]

宾州大学的Mauck 和Elliott 研究组则进一步意识到斜交叠层纤维结构的重要性,在聚己内酯取向纳米纤维支架上培养间充质干细胞后,交错叠合两层细胞—支架复合体,发现融合后斜交叠层结构的拉伸模量较非斜交叠层结构有较大提高[16]。他们认为这是由于斜交叠层结构的中间过渡层的剪切形变所致[55],并依照这一理念进一步制备了具有斜交叠层结构的纤维环组织工程支架,接种细胞并培养后,得到的仿生纤维环的压缩模量有所提高[56]。最近,该团队还进一步将这一理念成功付诸小动物模型实验中[44]。因此,在支架材料的制备上,对实际组织微观结构的精确模拟有助于实现纤维环组织的有效构建。

2.2 支架力学特性

目前的组织工程构建中,通常都将纤维环作为均一组织构建,忽视了其由内至外细胞类型、基质组成和力学特性的递变特性。从材料角度而言,在各区使用的材料的力学性能均维持一致。但实际上,支架的力学特性如弹性模量明显影响细胞的行为,如细胞的黏附、增殖、迁移、分化等[57-58]。研究表明,在弹性模量与相应的自然组织相似的硬、中、软基材上,骨髓间充质干细胞能有效分化为骨、肌肉、神经谱系细胞[57]。我们团队最近制备了系列弹性模量与纤维环组织接近的纳米纤维聚氨酯支架[59],发现支架材料的弹性模量明显影响纤维环源干细胞的生化、力学特性和细胞外基质成分的表达:在低弹性模量支架上,细胞中Ⅰ型胶原基因表达相对较低,而Ⅱ型胶原和聚集蛋白聚糖的基因表达相对较高,这一趋势与自然纤维环组织内外区域的基质表达的分布相仿[59]。因此,通过使用不同弹性模量的材料用以模拟实际组织各区的力学性能变化,进一步可影响种子细胞类型分化及后续的基质表达,有利于实现对实际组织的精确模拟。

3 生长因子及力学刺激

大量研究已表明,包括TGF-β1、骨形态发生蛋白(BMP)-2 、BMP-7、血小板衍生生长因子(PDGF)、碱性成纤维细胞生长因子(bFGF)、表皮生长因子(EGF)和胰岛素样生长因子Ⅰ (IGF-I)等在内的许多生长因子能增强纤维环细胞增殖和促进细胞外基质分泌[60-63]。例如,TGF-β1和IGF-1可刺激外层纤维环细胞的Ⅰ型胶原及Ⅱ型胶原的合成,同时削弱BMP-2活性,诱导细胞呈现纤维软骨的表型[60, 64];BMP-7可刺激细胞外基质的合成并减少椎间盘变性[65];BMP-2影响椎间盘的代谢。因此,应用合适的生长因子可能有效地促进纤维环组织的构建[66]表 1列举了一些常见的生长因子及其对纤维环组织工程种子细胞的影响。

表 1 纤维环组织工程所涉及的生长因子对种子细胞的影响一览 Table 1 Growth factors for seeded cells in AF tissue engineering
生长因子细胞类型主要影响参考文献
骨形态发生蛋白2椎间盘细胞Ⅰ型胶原、Ⅱ型胶原、聚集蛋白聚糖增加[67]
骨形态发生蛋白3纤维环细胞Ⅰ型胶原、Ⅱ型胶原、聚集蛋白聚糖增加[68]
骨形态发生蛋白7椎间盘细胞Ⅱ型胶原、聚集蛋白聚糖增加[69]
骨形态发生蛋白12纤维环细胞胶原、蛋白聚糖、非胶原蛋白增加[70]
转化生长因子β1纤维环细胞硫酸化糖胺聚糖、Ⅰ型胶原、Ⅱ型胶原增加,细胞增殖[71]
血小板衍生生长因子椎间盘细胞维持细胞活力,细胞增殖; 脱氧核糖核酸合成增加[72]
碱性成纤维细胞生长因子椎间盘细胞蛋白多糖增加[73]
胰岛素样生长因子Ⅰ椎间盘细胞Ⅰ型胶原、Ⅱ型胶原、聚集蛋白聚糖增加[74]
血管内皮生长因子纤维环细胞缝隙连接蛋白40、43增加[75]
神经生长因子纤维环细胞Ⅰ型胶原、Ⅱ型胶原、聚集蛋白聚糖增加[76]

大量研究已经表明,力学刺激可有效调控细胞的行为和功能,如增殖、分化、基因表达和蛋白分泌等,最终影响组织的动态平衡和病理生理状态[77-78]。纤维环细胞长期处于包括拉伸、压缩、剪切、扭转等各类应力在内的复杂力学环境中,合适的力学加载对维持椎间盘包括纤维环组织的动态平衡和功能非常重要,相反,过度力学加载则导致纤维环组织退变[79]。例如,力学刺激可使仿生椎间盘中的基质成分发生重塑,分泌类似于内区纤维环组织的细胞外基质[80]。Driscoll等[15]利用双轴力学刺激,提高纤维环细胞—支架复合体的弹性模量,可达自然纤维环组织的60%。有趣的是,来源于正常和退变组织的纤维环细胞对力学刺激具有不同的敏感性,其差异可能与促炎性细胞因子如IL-1、IL-4等密切相关[81-82]。应力加载对纤维环组织的构建具有重要作用,其加载方式的影响亦不容忽视。周期性的压应力对纤维环基质定向、细胞的贴附/成活和纤维环与髓核样组织交联起到了不可或缺的作用;而周期性的扭转应力则诱使纤维环层状结构上细胞的定向排列,影响构建组织的力学性能[83]。因此,除生长因子外,力学刺激是纤维环组织工程另一需着重考虑的调控因素。

4 结 语

由于纤维环组织内无血供,难以自我修复,获取和种植适当类型和数量、有再生能力的细胞是纤维环组织工程的关键。尽管纤维环细胞和软骨细胞已经作为纤维环组织工程的细胞来源,但受限于细胞的数量和来源少,难以实际应用。间充质干细胞有较强的增殖及分化潜能,而纤维环源干细胞易于向纤维环组织分化,有望成为纤维环组织工程新型种子细胞。

纤维环组织支架的制备需高度模拟天然组织的结构。作为细胞生长微环境,其微观尺寸、结构、力学性能对细胞的生长、增殖、分化等具有重要调控作用。细胞的多孔性、层状结构、纤维的取向以及弹性模量,甚至支架材料本身,均可触发细胞中的生物学信号,从而引起相应的效应[54]

除常用的生长因子外,力学刺激在纤维环组织工程中的作用亦不可忽视。目前研究通常应用单轴拉伸应力培养细胞,与实际椎间盘组织的复杂的力学环境并不相符。而在生理力学加载条件下进行纤维环组织评价对于揭示其临床应用的利弊非常重要。因此,纤维环组织工程研究需要建立合适的模拟天然椎间盘生理环境的力学负载。如能进一步模拟实际组织的微观结构特性,则有望更有效地提高再生组织的性能[45]

综上所述,纤维环组织修复对于椎间盘组织构建至关重要,该领域的研究愈来愈受到重视,并已取得一定成效。但因实际组织组成、结构和功能的复杂性,纤维环组织工程仍面临着巨大的挑战。为此,需结合细胞生物学、化学、物理学、力学等手段,选取高效的细胞来源、制备多重仿生的支架、利用合适的生长因子和力学刺激等,充分模拟实际纤维环组织,从而构建有效的纤维环组织,最终应用于椎间盘退行性疾病的治疗[47]

参考文献
[1] FINCH P. Technology insight: imaging of low back pain[J]. Nat Clin Pract Rheumatol, 2006, 2 (10) :554–561 .
[2] HÄKKINEN A, KIVIRANTA I, NEVA M H, et al. Reoperations after first lumbar disc herniation surgery; a special interest on residives during a 5-year follow-up[J]. BMC Musculoskelet Disord, 2007, 8 (1) :1–6 .
[3] HUGHES S P, FREEMONT A J, HUKINS D W, et al. The pathogenesis of degeneration of the intervertebral disc and emerging therapies in the management of back pain[J]. J Bone Joint Surg Br, 2012, 94 (10) :1298–1304 .
[4] SHARIFI S, BULSTRA S K, GRIJPMA D W, et al. Treatment of the degenerated intervertebral disc; closure, repair and regeneration of the annulus fibrosus[J]. J Tissue Eng Regen Med, 2015, 9 (10) :1120–1132 .
[5] SMITH L J, FAZZALARI N L. Regional variations in the density and arrangement of elastic fibres in the anulus fibrosus of the human lumbar disc[J]. J Anat, 2006, 209 (3) :359–367 .
[6] LEWIS N T, HUSSAIN M A, MAO J J. Investigation of nano-mechanical properties of annulus fibrosus using atomic force microscopy[J]. Micron, 2008, 39 (7) :1008–1019 .
[7] IATRIDIS J C. Tissue engineering: function follows form[J]. Nat Mater, 2009, 8 (12) :923–924 .
[8] 单治, 范顺武, 赵凤东. 腰椎间盘纤维环的生物力学性能研究进展[J]. 中华骨科杂志, 2014, 34 (3) : 330–335 . SHAN Zhi, FAN Shunwu, ZHAO Fengdong. Research progress on the biomechanical properties of the lumbar intervertebral disc annulus fibrosus[J]. Chinese Journal of Orthopaedics, 2014, 34 (3) :330–335 .
[9] WAN Y, FENG G, SHEN F H, et al. Novel biodegradable poly(1, 8-octanediol malate) for annulus fibrosus regeneration[J]. Macromol Biosci, 2007, 7 (11) :1217–1224 .
[10] NERURKAR N L, MAUCK R L, ELLIOTT D M. ISSLS prize winner: integrating theoretical and experimental methods for functional tissue engineering of the annulus fibrosus[J]. Spine(Phila Pa 1976), 2008, 33 (25) :2691–2701 .
[11] BOWLES R D, GEBHARD H H, HARTL R, et al. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine[J]. Proc Natl Acad Sci U S A, 2011, 108 (32) :13106–13111 .
[12] MIZUNO H, ROY A K, VACANTI C A, et al. Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement[J]. Spine(Phila Pa 1976), 2004, 29 (12) :1290–1297 .
[13] WAN Y, FENG G, SHEN F H, et al. Biphasic scaffold for annulus fibrosus tissue regeneration[J]. Biomaterials, 2008, 29 (6) :643–652 .
[14] BHATTACHARJEE M, MIOT S, GORECKA A, et al. Oriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation: towards annulus fibrosus tissue engineering[J]. Acta Biomater, 2012, 8 (9) :3313–3325 .
[15] DRISCOLL T P, NAKASONE R H, SZCZESNY S E, et al. Biaxial mechanics and inter-lamellar shearing of stem-cell seeded electrospun angle-ply laminates for annulus fibrosus tissue engineering[J]. J Orthop Res, 2013, 31 (6) :864–870 .
[16] NERURKAR N L, BAKER B M, SEN S, et al. Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus[J]. Nat Mater, 2009, 8 (12) :986–992 .
[17] GOU S, OXENTENKO S C, ELDRIGE J S, et al. Stem cell therapy for intervertebral disk regeneration[J]. Am J Phys Med Rehabil, 2014, 93 (3) :122–131 .
[18] LIU C, GUO Q, LI J, et al. Identification of rabbit annulus fibrosus-derived stem cells[J]. PLoS One, 2014, 9 (9) :e108239 .
[19] BRUEHLMANN S B, RATTNER J B, MATYAS J R, et al. Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc[J]. J Anat, 2002, 201 (2) :159–171 .
[20] CHOU A I, REZA A T, NICOL S B. Distinct intervertebral disc cell populations adopt similar phenotypes in three-dimensional culture[J]. Tissue Eng Part A, 2008, 14 (12) :2079–2087 .
[21] CHOU A I, BANSAL A, MILLERR G J, et al. The effect of serial monolayer passaging on the collagen expression profile of outer and inner anulus fibrosus cells[J]. Spine(Phila Pa 1976), 2006, 31 (17) :1875–1881 .
[22] LIEBSCHER T, HAEFELI M, WUERTZ K, et al. Age-related variation in cell density of human lumbar intervertebral disc[J]. Spine(Phila Pa 1976), 2011, 36 (2) :153–159 .
[23] PAESOLD G, NERLISH A G, BOOS N. Biological treatment strategies for disc degeneration: potentials and shortcomings[J]. Eur Spine J, 2007, 16 (4) :447–468 .
[24] GRUBER H E, INGRAM J A, NORTON H J, et al. Senescence in cells of the aging and degenerating intervertebral disc: immunolocalization of senescence-associated beta-galactosidase in human and sand rat discs[J]. Spine(Phila Pa 1976), 2007, 32 (3) :321–327 .
[25] POIRAUDEAU S, MONTEIRO I, ANRACT P, et al. Phenotypic characteristics of rabbit intervertebral disc cells[J]. Spine(Phila Pa 1976), 1999, 24 (9) :837–844 .
[26] WANG Y, ZHANG J, HUANG X, et al. Preparation of stir cake sorptive extraction based on polymeric ionic liquid for the enrichment of benzimidazole anthelmintics in water, honey and milk samples[J]. Anal Chim Acta, 2014, 840 :33–41 .
[27] RAJABI H R, SHAMSIPUR M, POURMORTAZAVI S M. Preparation of a novel potassium ion imprinted polymeric nanoparticles based on dicyclohexyl 18C6 for selective determination of K+ion in different water samples[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33 (6) :3374–3381 .
[28] BRITTBERG M, LINDAHL A, NILSSON A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation[J]. N Engl J Med, 1994, 331 (14) :889–895 .
[29] BLUM B, BAR-NUR O, GOLAN-LEV T, et al. The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells[J]. Nat Biotechnol, 2009, 27 (3) :281–287 .
[30] LI J, LIU C, GUO Q, et al. Regional variations in the cellular, biochemical, and biomechanical characteristics of rabbit annulus fibrosus[J]. PLoS One, 2014, 9 (3) :e91799 .
[31] RICHARDSON S M, KALAMEGAM G, PUSHPARRAJ P N, et al. Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration[J]. Methods, 2015, S1046-2023 (15) :30091-8 .
[32] LIANG C, LI H, TAO Y, et al. Responses of human adipose-derived mesenchymal stem cells to chemical microenvironment of the intervertebral disc[J]. J Transl Med, 2012, 10 (1) :1–10 .
[33] YIM R L, LEE J T, BOW C H, et al. A systematic review of the safety and efficacy of mesenchymal stem cells for disc degeneration: insights and future directions for regenerative therapeutics[J]. Stem Cells Dev, 2014, 23 (21) :2553–2567 .
[34] ALEXANIAN A R, KWORK W M, PRAVDIC D, et al. Survival of neurally induced mesenchymal cells may determine degree of motor recovery in injured spinal cord rats[J]. Restor Neurol Neurosci, 2010, 28 (6) :761–767 .
[35] HENRIKSSON H, THORNEMO M, KARLSSON C, et al. Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species[J]. Spine(Phila Pa 1976), 2009, 34 (21) :2278–2287 .
[36] WISMER N, GRAD S, FORTUNATO G, et al. Biodegradable electrospun scaffolds for annulus fibrosus tissue engineering: effect of scaffold structure and composition on annulus fibrosus cells in vitro[J]. Tissue Eng Part A, 2014, 20 (3-4) :672–682 .
[37] GUILLAUME O, DALY A, LENNON K, et al. Shape-memory porous alginate scaffolds for regeneration of the annulus fibrosus: effect of TGF-beta3 supplementation and oxygen culture conditions[J]. Acta Biomaterialia, 2014, 10 (5) :1985–1995 .
[38] HELEN W, GOUGH J E. Cell viability, proliferation and extracellular matrix production of human annulus fibrosus cells cultured within PDLLA/Bioglass composite foam scaffolds in vitro[J]. Acta Biomater, 2008, 4 (2) :230–243 .
[39] CHAN L K Y, LEUNG V Y L, TAM V, et al. Decellularized bovine intervertebral disc as a natural scaffold for xenogenic cell studies[J]. Acta Biomater, 2013, 9 (2) :5262–5272 .
[40] CHANG G, KIM H J, VUNJAK-NOVAKOVIC G, et al. Enhancing annulus fibrosus tissue formation in porous silk scaffolds[J]. J Biomed Mater Res A, 2010, 92 (1) :43–51 .
[41] BOWLES R D, WILLIAMS R M, ZIPFEL W R, et al. Self-assembly of aligned tissue-engineered annulus fibrosus and intervertebral disc composite via collagen gel contraction[J]. Tissue Eng Part A, 2010, 16 (4) :1339–1348 .
[42] SCHEK R M, MICHALEK A J, IATRIDIS J C. Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair[J]. Eur Cell Mater, 2011, 21 (1) :373–383 .
[43] KOEPSELL L, REMUND T, BAO J, et al. Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers[J]. J Biomed Mater Res A, 2011, 99 (4) :564–575 .
[44] MARTIN J T, MILBY A H, CHIARO J A, et al. Translation of an engineered nanofibrous disc-like angle-ply structure for intervertebral disc replacement in a small animal model[J]. Acta Biomater, 2014, 10 (6) :2473–2481 .
[45] TURNER K G, AHMED N, SANTERRE J P, et al. Modulation of annulus fibrosus cell alignment and function on oriented nanofibrous polyurethane scaffolds under tension[J]. Spine J, 2014, 14 (3) :424–434 .
[46] SHARIFI S, VAN KOOTEN T G, KRANENBURG H J, et al. An annulus fibrosus closure device based on a biodegradable shape-memory polymer network[J]. Biomaterials, 2013, 34 (33) :8105–8113 .
[47] PIRVU T, BLANQUER S B, BENNEKER L M, et al. A combined biomaterial and cellular approach for annulus fibrosus rupture repair[J]. Biomaterials, 2015, 42 :11–19 .
[48] SHAO X, HUNTER C J. Developing an alginate/chitosan hybrid fiber scaffold for annulus fibrosus cells[J]. J Biomed Mater Res A, 2007, 82 (3) :701–710 .
[49] GRUBER H E, HOELSCHER G, INGRAM J A, et al. Culture of human anulus fibrosus cells on polyamide nanofibers: extracellular matrix production[J]. Spine(Phila Pa 1976), 2009, 34 (1) :4–9 .
[50] YU J, SCHOLLUM M L, WADE K R, et al. ISSLS Prize Winner: a detailed examination of the elastic network leads to a new understanding of annulus fibrosus organization[J]. Spine(Phila Pa 1976), 2015, 40 (15) :1149–1157 .
[51] PARK S H, GIL E S, CHO H, et al. Intervertebral disk tissue engineering using biphasic silk composite scaffolds[J]. Tissue Eng Part A, 2012, 18 (5-6) :447–458 .
[52] NERURKAR N L, ELLIOTT D M, MAUCK R L. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering[J]. J Orthop Res, 2007, 25 (8) :1018–1028 .
[53] LIU C, ZHU C, LI J, et al. The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells[J]. Bone Res, 2015, 3 (2) :15012 .
[54] BAKER B M, HANDORF A M, IONESCU L C, et al. New directions in nanofibrous scaffolds for soft tissue engineering and regeneration[J]. Expert Rev Med Devices, 2009, 6 (5) :515–532 .
[55] NERURKAR N L, MAUCK R L, ELLIOTT D M. Modeling interlamellar interactions in angle-ply biologic laminates for annulus fibrosus tissue engineering[J]. Biomech Model Mechanobiol, 2011, 10 (6) :973–984 .
[56] NERURKAR N L, SEN S, HUANG A H, et al. Engineered disc-like angle-ply structures for intervertebral disc replacement[J]. Spine(Phila Pa 1976), 2010, 35 (8) :867–873 .
[57] ENGLER A J, SEN S, SWEENEY H L, et al. Matrix elasticity directs stem cell lineage specification[J]. Cell, 2006, 126 (4) :677–689 .
[58] PARK J S, CHU J S, TSOU A D, et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta[J]. Biomaterials, 2011, 32 (16) :3921–3930 .
[59] GUO Q, LIU C, LI J, et al. Gene expression modulation in TGF-beta3-mediated rabbit bone marrow stem cells using electrospun scaffolds of various stiffness[J]. J Cell Mol Med, 2015, 19 (7) :1582–1592 .
[60] HAYES A J, RALPHS J R. The response of foetal annulus fibrosus cells to growth factors: modulation of matrix synthesis by TGF-beta1 and IGF-1[J]. Histochem Cell Biol, 2011, 136 (2) :163–175 .
[61] VADALÀ G, MOZETIC P, RAINER A, et al. Bioactive electrospun scaffold for annulus fibrosus repair and regeneration[J]. Eur Spine J, 2012, 21 :S20–S26 .
[62] CHO H, LEE S, PARK S H, et al. Synergistic effect of combined growth factors in porcine intervertebral disc degeneration[J]. Connect Tissue Res, 2013, 54 (3) :181–186 .
[63] MOON S H, NISHIDA K, GILBERTSON L G, et al. Biologic response of human intervertebral disc cells to gene therapy cocktail[J]. Spine(Phila Pa 1976), 2008, 33 (17) :1850–1855 .
[64] PATTISON S T, MELROSE J, GHOSH P, et al. Regulation of gelatinase-A(MMP-2) production by ovine intervertebral disc nucleus pulposus cells grown in alginate bead culture by Transforming Growth Factor-beta(1)and insulin like growth factor-I[J]. Cell Biol Int, 2001, 25 (7) :679–689 .
[65] WANG Z, HUTTON W C, YOON S T. Bone morphogenetic protein-7 antagonizes tumor necrosis factor-alpha-induced activation of nuclear factor kappaB and up-regulation of the ADAMTS, leading to decreased degradation of disc matrix macromolecules aggrecan and collagenⅡ[J]. Spine J, 2014, 14 (3) :505–512 .
[66] WANG S Z, RUI Y F, TAN Q, et al. Enhancing intervertebral disc repair and regeneration through biology: platelet-rich plasma as an alternative strategy[J]. Arthritis Res Ther, 2013, 15 (5) :220 .
[67] KARAMICHOS D, SKINNER J, BROWN R, et al. Matrix stiffness and serum concentration effects matrix remodelling and ECM regulatory genes of human bone marrow stem cells[J]. J Tissue Eng Regen Med, 2008, 2 (2-3) :97–105 .
[68] LI B, LIN M, TANG Y, et al. A novel functional assessment of the differentiation of micropatterned muscle cells[J]. J Biomech, 2008, 41 (16) :3349–3353 .
[69] WINTER A, BREIT S, PARSCH D, et al. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells[J]. Arthritis Rheum, 2003, 48 (2) :418–429 .
[70] SIEMINSKI A L, HEBBEL R P, GOOCH K J. The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro[J]. Exp Cell Res, 2004, 297 (2) :574–584 .
[71] NESTI L J, Li W J, SHANTI R M, et al. Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold(HANFS) amalgam[J]. Tissue Eng Part A, 2008, 14 (9) :1527–1537 .
[72] KLUBA T, NIEMEYER T, GAISSMAIER C, et al. Human anulus fibrosis and nucleus pulposus cells of the intervertebral disc: effect of degeneration and culture system on cell phenotype[J]. Spine(Phila Pa 1976), 2005, 30 (24) :2743–2748 .
[73] YOSHIMURA H, MUNETA T, NIMURA A, et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle[J]. Cell Tissue Res, 2007, 327 (3) :449–462 .
[74] MATSUDA C, TAKAGI M, HATTORI T, et al. Differentiation of human bone marrow mesenchymal stem cells to chondrocytes for construction of three-dimensional cartilage tissue[J]. Cytotechnology, 2005, 47 (1-3) :11–17 .
[75] DEZAWA M. Systematic neuronal and muscle induction systems in bone marrow stromal cells: the potential for tissue reconstruction in neurodegenerative and muscle degenerative diseases[J]. Med Mol Morphol, 2008, 41 (1) :14–19 .
[76] PARK K, JU Y M, SON J S, et al. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts[J]. J Biomater Sci Polym Ed, 2007, 18 (4) :369–382 .
[77] GEIGER B, BERSHADSKY A. Exploring the neighborhood: adhesion-coupled cell mechanosensors[J]. Cell, 2002, 110 (2) :139–142 .
[78] VO N V, HARTMAN R A, YURUBE T, et al. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration[J]. Spine J, 2013, 13 (3) :331–341 .
[79] KUNSMANN L, RUTER C, BAUWENS A, et al. Virulence from vesicles: novel mechanisms of host cell injury by Escherichia coli O104: H4 outbreak strain[J]. Sci Rep, 2015, 5 :13252 .
[80] SEE E Y, TOH S L, GOH J C. Effects of radial compression on a novel simulated intervertebral disc-like assembly using bone marrow-derived mesenchymal stem cell cell-sheets for annulus fibrosus regeneration[J]. Spine(Phila Pa 1976), 2011, 36 (21) :1744–1751 .
[81] GILBERT H T, HOYLAND J A, FREEMONT A J, et al. The involvement of interleukin-1 and interleukin-4 in the response of human annulus fibrosus cells to cyclic tensile strain: an altered mechanotransduction pathway with degeneration[J]. Arthritis Res Ther, 2011, 13 (1) :R8 .
[82] GILBERT H T, HOYLAND J A, MILLWARD-SADLER S J. The response of human anulus fibrosus cells to cyclic tensile strain is frequency-dependent and altered with disc degeneration[J]. Arthritis Rheum, 2010, 62 (11) :3385–3394 .
[83] CHIK T K, CHOOI W H, LI Y Y, et al. Bioengineering a multicomponent spinal motion segment construct a 3D model for complex tissue engineering[J]. Adv Healthc Mater, 2015, 4 (1) :99–112 .

文章信息

周平辉, 过倩萍, 凌峰, 钱忠来, 李斌
ZHOU Pinghui, GUO Qianping, LING Feng, QIAN Zhonglai, LI Bin
椎间盘纤维环组织工程研究进展
Progress and challenges in tissue engineering of intervertebral disc annulus fibrosus
浙江大学学报(医学版), 2016, 45(2): 132-140
Journal of Zhejiang University(Medical Sciences), 2016, 45(2): 132-140.
http://dx.doi.org/10.3785/j.issn.1008-9292.2016.03.05

文章历史

收稿日期: 2015-10-12
接受日期: 2015-12-19

工作空间