浙江大学学报(农业与生命科学版)  2018, Vol. 44 Issue (6): 649-658
蜂蜜真伪鉴别和检测技术研究进展[PDF全文]
张一帆1, 陈启2, 崔宗岩3, 张进杰3, 沈立荣1    
1. 浙江大学生物系统工程与食品科学学院食品科学与营养系,杭州 310058;
2. 杭州同创医学检验实验室有限公司,杭州 310003;
3. 秦皇岛出入境检验检疫局检验检疫技术中心,河北 秦皇岛 066000
摘要: 蜂蜜作为营养丰富的天然食品和保健品,深受全球消费者喜爱,但它却是一种极易掺假的食品,因此,研究蜂蜜真伪鉴别技术长期深受关注。本文介绍了近20年来国内外蜂蜜质量控制研究进展,以及蜂蜜真实性研究方法和鉴别技术。综合分析认为,现有蜂蜜检测技术在一定程度上能够有效鉴别蜂蜜真伪,有利于蜂蜜质量控制,但存在所需仪器价格昂贵、操作复杂、检测时间长、需要检测人员有专业背景、操作地点固定等缺陷;同时,现有蜂蜜鉴别分析技术常常落后于掺假技术,难以杜绝蜂蜜掺假。因此,有必要研发主要针对蜂蜜内源性特有成分,而不是依赖外源添加物质的分析鉴别新技术。近年来,基于基因组学、蛋白组学的生物标志物研究在相关领域的应用非常普遍,但尚未见基于相关组学技术应用于蜂蜜真伪和花蜜鉴别的研究报道中。因此,研究开发基于蜂蜜特征标志物的快速检测新技术——免疫胶体金层析试纸条或试剂盒检测,将是今后蜂蜜质量控制及真伪鉴别技术的主要发展方向。
关键词: 蜂蜜    掺假    内源标志物    真实性    鉴别技术    
Research progress in authenticity identification and detection technology of honey
ZHANG Yifan1, CHEN Qi2, CUI Zongyan3, ZHNANG Jinjie3, SHEN Lirong1    
1. Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
2. Hangzhou Tongchuang Medical Detection Laboratory, Ltd., Hangzhou 310003, China;
3. Inspection and Quarantine Technique Centre, Qinhuangdao Entry-Exit Inspection and Quarantine Bureau, Qinhuangdao 066000, Hebei, China
Abstract: As a kind of natural, nutrient-rich food and health care product, honey is favored by consumers around the world. However, it is a highly adulterated food. Therefore, the research on the authenticity identification and detection technology of honey has been long deeply concerned. Here, domestic and international researches on the honey quality were summarized, and a vision about the identification techniques and authenticity analysis of honey in recent 20 years was introduced. According to the comprehensive analysis, the authenticity of honey could be identified to some extent effectively by modern detection technology which is conducive to the quality control of honey. However, there existed defects such as requiring expensive instruments, complex operation, long testing time, professional background and fixed operating location, etc. Moreover, it is difficult to eliminate honey adulteration completely as the development and application of the existing honey detection technology have fallen behind the adulteration technology. It is necessary to develop specific identification technology mainly focusing on the endogenous honey components, not on the exogenous substances. In recent years, the research and application of biomarkers based on genomics and proteomics are very common in related fields. However, there are no reports on identification of honey authenticity and nectar based on these technologies. It is expected that developing a new fast test technique based on honey characteristic markers—immuno-colloidal gold chromatographic test strips or kits will be the main development direction of honey quality control and authenticity identification technology in the future.
Key words: honey    adulteration    endogenous markers    authenticity    identification technology    

蜂蜜是由蜜蜂采集植物的花蜜、分泌物或蜜露,与自身分泌物结合后,经充分酿造而形成的,因其营养价值高,适用人群广泛,受到越来越多的消费者喜爱[1-2]。作为一种天然的甜味物质,蜂蜜中含量最丰富的是糖和水分[3-4],其中糖类主要是果糖和葡萄糖,此外,蜂蜜中还含有机酸、酶和来源于蜜蜂采集的植物花粉等固体颗粒物。根据蜜源植物来源的不同,天然蜂蜜分为单花蜜和杂花蜜[5]。近年来,国内外市场对蜂蜜的需求量持续増加。中国养蜂学会的统计数据显示,我国2015年蜂蜜年产量约46.82万t、蜂王浆年产量3 500 t、蜂花粉年贸易量5 000 t、蜂胶年产量450 t、蜂蜡年产量6 000 t,年产值约200亿元,创造了巨大的经济价值。然而,我国市场上的假蜂蜜问题却非常严重,以2015年统计数据为例,全国蜂蜜年产量为46.82万t,系世界之首,去除出口14.18万t,内销应为32.64万t,但蜂蜜实际市场销量却超过100万t,显然很多蜜不是真蜜。实际上,蜂蜜掺假掺杂是国内长期且普遍存在的问题。近年来,蜂蜜掺假掺杂原料越来越精细,掺假手段越来越高明,由最初的蔗糖、转化糖、饴糖、羧甲基纤维素、糊精或淀粉类等物质掺假,到目前的在蜂蜜中掺入高果糖玉米糖浆、甘蔗糖浆、果葡糖浆、甜菜糖浆、大米糖浆等,通过传统的感官分析己很难鉴别蜂蜜是否掺假。长此以往,掺假掺杂将对蜂蜜产业健康发展造成严重影响。

虽然在《蜂蜜》(GH/T 18796—2012)“真实性要求”中明确指出,“蜂蜜中不得添加任何当前明确或不明确的添加物”[6]。但因为现有标准检测技术的缺陷,不足以应对新出现的蜂蜜质量问题,消费者更难以识别真假蜂蜜。同时,蜂蜜造假严重影响了我国蜂蜜在国际市场上的质量信誉和市场竞争力,因此,加快蜂蜜的真伪鉴定和质量控制技术研究日显重要[7-8]

1 蜂蜜的质量控制标准

和其他食品一样,蜂蜜质量也必须按照可靠的标准[9],通过物理、化学和生化参数对其进行客观评价[10]。国际上很多相关组织和国家制定了蜂蜜质量标准,我国和欧盟对蜂蜜相关成分指标的标准规定[2, 6]表 12所示。从中可知,我国和欧盟在果糖和葡萄糖、蔗糖、水分、羧甲基糠酸(hydroxy-ethylfurfural, HMF)这4项指标上的标准规定完全相同,而酸度、淀粉酶活性指标则不同,虽然这2类标准都未规定蛋白质含量,但作为蜂蜜的固有营养成分之一,也应将其列入质量控制指标[11]; 如仅检测以上常规指标往往难以应对多种多样的添加物,无法达到鉴别蜂蜜真伪的目的[12]

表1 中国国标蜂蜜成分指标[2,6] Table 1 Composition indicators of honey in Chinese national standard[2,6]
点击放大

表2 欧盟理事会指令(110/2001)蜂蜜成分指标[20] Table 2 Composition indicators of honey in Council Directive of the European Union (110/2001)[20]
点击放大
2 蜂蜜掺假方式

蜂蜜掺假分为直接掺假和间接掺假。直接掺假就是在蜂蜜中添加外源物质,间接掺假则是在蜜蜂自然产卵阶段对其喂食工业糖浆。相比之下,间接掺假更加难以检测。目前,常见的蜂蜜直接掺假方式主要有以下几种[12-14]:1)人工蜜。顾名思义是完全通过人为加工而成,如以糖浆代替花蜜,没有任何天然蜂蜜成分,目前,此掺假手段己越来越少见[15]。2)以低价蜜充高价蜜。蜜蜂采集同一类植物花蜜酿成的蜂蜜为单花蜜,其口感、营养价值比杂花蜜高,因此其市场价格高于杂花蜜。目前相关标准尚未对单一蜜源蜂蜜纯度作明确要求,况且地域及季节不同的同种单花蜜质量差别也很大,因此,给不法商贩以可乘之机。3)添加外源糖浆是目前最常见的蜂蜜掺假手段[16]。天然蜂蜜的主要成分为糖,因此不法商贩往往在蜂蜜中加入如高果糖玉米糖浆等转化糖或糖浆及糖类代用品[18]。由于蜂蜜中的果糖和葡萄糖比例与添加的糖浆中的比例很相似[19],即使掺入这些糖浆,掺假蜂蜜的各项指标也完全符合现有国家标准,因此这些技术性掺假给蜂蜜的真实性检测带来了极大困难。

3 蜂蜜掺假分析法 3.1 色谱及其联用技术 3.1.1 高效液相色谱技术

根据蜂蜜和高果糖浆中高寡糖的不同,常采用高效液相色谱技术(high-performance liquid chromatography, HPLC)检测蜂蜜中是否掺有C4、C3植物高果糖浆。通常是用水将检测的蜂蜜样品溶解,然后直接上样至C18固相萃取柱净化,用甲醇洗脱,建立反相色谱快速检测蜂蜜中大米糖浆含量的方法。蜂蜜中掺假大米糖浆的HPLC方法的检出限为20 mg/mL,在50~200 mg/g范围内线性关系较好[21]。用HPLC分析掺假蜂蜜发现,淀粉糖浆在15.25 min的保留时间内出现糖浆指标峰值,而纯蜂蜜在同样的保留时间内未发现该指标峰; 此外,将这种检测蜂蜜中掺假淀粉糖浆的HPLC方法应用于100多个商业蜂蜜的真实性检验中发现,该方法提高了蜂蜜掺假检测的准确度[22]。总之,HPLC能同时连续分析大量样品,并且能避免样品间的相互影响,但由于样品的检测限易受到基质效应影响,所以采用更高色谱分辨率的超高压液相色谱技术(UHPLC)将是未来的发展趋势。

3.1.2 气相色谱法及气相色谱-质谱法

通过气相色谱法(gas chromatography, GC)或气相色谱-质谱法(gas chromatography-mass spectrometry, GC-MS)可以高灵敏地检测蜂蜜或糖浆中的糖组分,进而发现糖浆中特征组分,为蜂蜜掺假鉴定提供依据。RUIZ-MATURE等建立了用于蜂蜜中外源糖浆检测的GC-MS方法,先后发现双果糖苷(difructose anhydrides, DFAs)[23]和菊粉三糖(inulotriose)[24]分别是工业糖浆和菊粉糖浆的特征标志物,对于蜂蜜中掺入这些糖浆的检出限可达到5%。通过气相色谱和液相色谱联合的方法对蜂蜜中糖分进行分析,获得了样品中糖组分的指纹图谱,然后通过统计学分析来检测样品中掺入的外源糖浆,检出限可达到10%。

3.2 光谱法 3.2.1 近红外光谱法

近红外光谱技术(near infrared spectroscopy, NIR)作为一种比较成熟的光谱技术,在蜂蜜内部品质检测及掺假判别,以及在蜂蜜的产地和植物源判别上取得了一些成果[26]。用NIR定性和定量检测掺入蜂蜜中的高果糖玉米糖浆和麦芽糖浆,可通过竞争性自适应重加权抽样(competitive adaptive reweighted sampling, CARS)来选择关键变量,用偏最小二乘法结合线性判别分析(partial least square method combined with linear discriminant analysis, PLS-LDA)对掺假蜂蜜样品进行分类,并用偏最小二乘回归(partial least-squares regression, PLSR)来预测蜂蜜掺假的程度。用CARS-PLS-LDA模型研究的结果显示:对真蜂蜜与掺高果玉米糖浆蜂蜜的判别精确度为86.3%,而对真蜂蜜与掺麦芽糖浆蜂蜜的判别精确度为96.1%; NIR结合PLSR法不能对掺杂的高果玉米糖浆进行定量分析,但可以对掺杂的麦芽糖浆进行定量分析[27]。用NIR检测不同果糖和葡萄糖的掺比,并结合PLSR、k-近邻k-NN)和SIMCA软件方法分析数据,发现PLSR分析法的准确率最高[28]。因而,MOUAZEN等[29]采用NIR结合PLSR检测了掺入不同葡萄糖浆浓度的沙特阿拉伯蜂蜜和进口蜂蜜样品掺假情况。张妍楠等[30]通过NIR结合主成分分析(principal component analysis, PCA)典型判别分析方法对洋槐蜜中掺入的大米糖浆进行了鉴别,结果显示,所检测的121个样品均得到准确判别,准确率为100‰这些研究表明,NIR结合多元数据分析能够有效检测蜂蜜掺假,具有即时、无损检测等特点。

3.2.2 荧光光谱法

赵杰文等[31]用三维荧光光谱技术来鉴别蜂蜜中掺杂的大米糖浆,其中光谱信息量采用特征参量法和PCA进行压缩提取,而数据则采用线性判别分析法(LDA)和误差反向传播人工神经网络法(back propagation-artificial neural network, BP-ANN)进行分析,结果4个主成分的预测集样本在蜂蜜掺假的鉴别试验中最易被模型识别,此时,LDA和BP-ANN的模型识别率分别为94.44%和100%,表明三维荧光光谱结合BP-ANN模型能够更加有效地鉴别蜂蜜中大米糖浆掺假。

3.2.3 傅里叶变换红外光谱法

傅里叶变换红外光谱法提供了一种快速、无损替代化学测量的定性技术[32],可在指纹区较窄的频带减少重叠的问题,允许采用一些简单的数学处理,如峰高或直接绘制浓度区域[33]。用衰减全反射傅里叶变换红外光谱法(attenuated total reflection Fourier transform infrared spectrum, ATR-FTIR)结合多元方法可鉴别蜂蜜中掺假标准糖溶液或糖浆,用二维和三维PCA评分图可确定掺假蜂蜜类型,并对纯蜂蜜和掺假(0~100%)蜂蜜样品进行分析[34]。用ATR-FTIR鉴别蜂蜜中蔗糖、葡萄糖、果葡糖浆的掺假,其中,主要通过特征吸收峰来判定掺入的葡萄糖和蔗糖,通过计算软件处理红外图谱,再通过比较二阶导数图谱在1 054、817 cm-1处的吸收峰来判定蜂蜜中掺入的果葡糖浆的量; 结果显示,该方法对掺入蜂蜜中的3种物质的最小检出限量为10%[35]。用FTIR检测蜂蜜中糖浆掺假,将光谱数据用PCA压缩、掺假蜂蜜样品用LDA和典型变量技术鉴别,结果显示,用典型变量技术鉴别掺玉米糖浆和糖的混合物、用线性判别分析鉴别掺蔗糖和玉米糖浆的蜂蜜样品的准确率分别为100%和90%[36-37]

3.3 碳同位素法 3.3.1 同位素比值分析法

稳定性碳同位素比率法(stable carbon isotope ratio method, SCIRA),其依据是所有蜜源植物都属于C3植物,我国规定要求采用SCIRA检测掺入蜂蜜中的C4植物糖含量,对蜂蜜真实性进行鉴定[6]。SOUZA-KRULISKI等[38]用SCIRA分析巴西南部和东南部地区的商品蜂蜜,将天然蜂蜜的同位素值δ13C与各自的内标蛋白比较,若样品的蜂蜜蛋白与内标蛋白的同位素值之间的差≦—1‰,则被认为是掺假,结果表明,在分析的61个样品中掺假的蜂蜜比例为18%,表明SCIRA能有效地识别和量化商业蜂蜜掺假。GULER等[39]分析了100个纯蜂蜜和掺不同量商业糖浆的样品蜂蜜及其蛋白质的δ13C值,以及蜂蜜和蛋白质的δ13C值之间的差值Δδ13C和C4 %糖的比,结果显示,当高果玉米糖浆的含量増加时,低含量的糖浆掺假可以更容易地被检测出,其中蜂蜜的C4 %糖分析(AOAC 998.12[40])能更有效地检测掺假; 但也发现内标碳同位素比值分析法不能有效地检测间接蜂蜜掺假,即喂食蜜蜂产自C3植物的糖浆如甜菜和小麦糖浆。总之,SCIRA是检测蜂蜜掺假的标准方法,但相比于NIR等方法,存在耗时长、检测范围窄及准确度低等缺点,促使越来越多的研究者寻求更加高效的方法来检测蜂蜜掺假。

SIMSEK等[41]用元素分析仪-稳定同位素比率质谱仪(element analyser-stable isotope ratio mass spectrometry, EA-IRMS)分析31份来自土耳其不同植物来源、地区的蜂蜜样品的13C/12C及43个商品蜂蜜的掺假情况,结果显示,土耳其蜂蜜和蛋白质组分的13C/12C值的范围分别为-27.58‰~-23.30‰和-26.76‰~-24.13‰,商品蜜的13C/12C值范围分别为-25.54‰~-11.28‰和-25.61‰~-19.35‰,有23%的商品蜜掺假,其中有2个被检测出的掺假蜂蜜样品甚至只含有糖浆。研究人员认为,政府应该采取更加严厉的蜂蜜质量控制措施。

3.3.2 液相色谱-同位素质谱联用技术

众所周知,很多掺假蜂蜜可用EA-IRMS进行真实性测试。但有学者认为,蜂蜜的同位素13C/12C比值可以通过调整糖的比例或添加糖来改变,或许掺假蜂蜜反而会増加。因此,迫切需要改进蜂蜜真实性检测和防止蜂蜜掺假分析方法。采用液相色谱(liquid chromatography, LC)-同位素比率质谱(IRMS)技术,可以测定蜂蜜中果糖、葡萄糖、二糖、三糖等的同位素比,进而对蜂蜜掺假进行判定,一般结合:1)Δδ13C(蛋白质-蜂蜜)≧-1.0‰; 2)Δδ13C (Fru — Glu)在-1.0‰~1.0‰之间;3) Δδ13Cmax为±2.1‰,即可对蜂蜜真假进行判定。DONG等[42]对无法提取出蛋白的蜂蜜样品采用LC-IRMS技术进行测试和真实性判定,结果显示,该方法可以作为AOAC 998.12 C4植物糖方法的有效补充。YOO等[43]比较了EA-IRMS及LC-IRMS优缺点,并结合韩国发生的蜂蜜掺假案例分析,在经过全面技术资格测试后得出,蜂蜜的真实测试应该采用LC-IRMS方法。此外,采用LC-IRMS还可测定蜂蜜中γ-淀粉酶残留量[44]γ-淀粉酶是大米糖浆生产过程中酶解大米淀粉的活性物质[45],因此,蜂蜜中是否掺入大米糖浆可以通过测定y-淀粉酶残留量[46]来进行判别。根据酶解反应中γ-淀粉酶可将底物麦芽糖转化为葡萄糖的特性,可先用凝胶色谱柱将样品所含的酶与糖预分离,再用LC分离麦芽糖和葡萄糖,通过IRMS测定酶解产物葡萄糖含量来确定γ-淀粉酶的残留量。结果表明,蜂蜜中γ-淀粉酶残留量的线性范围为5~200 U/kg,定量限为5 U/kg[44]。相比于HPLC等方法,LC-IRMS方法具有消耗试剂量少、节省分析时间、简化操作程序和弱化样品制备敏感性等优点。

3.4 差示扫描量热法

差示扫描量热法(differential scanning calorimetry, DSC)是通过测定纯蜂蜜与掺假蜂蜜的玻璃化转变温度(Tg)、熔化焓(ΔH)和热容(ΔCp)等热力学参数来判断蜂蜜是否掺假[47]。黄文诚[48]用DSC分别测量从-65~230 ℃及-65~130 ℃时纯蜂蜜和纯糖浆从低温到高温完整的热行为及掺假蜂蜜的热行为发现,用甜菜糖和蔗糖掺假会使法国薰衣草蜂蜜等的Tg明显移位,大大提高熔融热函。表明用Tg并结合熔融热函,有利于定性区别蜂蜜和糖浆。CORDELLA等[49]发现,添加糖浆的百分比和Tg具有线性关系,在40~90 ℃的温度范围内,ΔH也有类似的关系;对实际样品检测发现,该方法对蜂蜜掺工业糖浆的最低检测限为5%。说明作为热分析方法的DSC具有检测快速、需要样品量少等优点[50],近年来被广泛应用于食品掺假分析和质量控制中。

4 蜂蜜蛋白成分和花粉DNA条码分析法

现有蜂蜜真伪鉴别和检测方法在很大程度上是基于蜂蜜中含量最多的糖类化合物等非特异性成分,尚难从根源上解决蜂蜜掺假的问题[51]。为完善真伪鉴别技术,还需要分析研究蜂蜜中其他特异性成分。而蜂蜜蛋白质是蜂蜜特有的内标物,根据蛋白质特异性及含量差异分析,可以判断蜂蜜来源及是否掺假。蜂蜜蛋白质主要来自蜜蜂及蜜源植物花粉或花蜜,含量一般占蜂蜜总质量的0.2%~ 1.0%[52]。通过高效液相色谱-串联质谱联用(HPLC-MS-MS)分析发现,蜂蜜蛋白中含有蜜蜂头部王浆腺分泌的王浆主蛋白MRJP-1、MRJP-2、MRJP-5和MRJP-7, 其中以MRJP-1含量最高[53]。不同蜜源的蜂蜜均含蜜蜂源的MRJP 1~5、抗菌肽defensin-1和α-葡萄糖酶[52]。以MRJP-1作为抗原制备的抗体可应用于掺假蜂蜜的酶联免疫吸附(enzyme-linked immunosorbent assay, ELISA)快速检测[54]

4.1 聚丙烯酰胺凝胶电泳技术分析法

周厚报[55]用十二烷基硫酸钠聚-丙烯酰胺凝胶电泳技术(sodium dodecyl sulfate-polyacrylamide gel electrophoresis, SDS-PAGE)测定8种不同花源的28个单花种蜂蜜样品中的蛋白质含量发现,不同产地的相同花源蜂蜜蛋白质组成基本相同,但蜂蜜蛋白质含量差异较大; 不同花源的单花种蜂蜜的蛋白质组成存在差异。NISBET等[56]用SDS-PAGE法检测不同植物来源和喂食蜂群蔗糖产生的蜂蜜的蛋白图谱发现,通过蛋白条带可以区分纯蜂蜜和掺假蜂蜜。

4.2 淀粉酶活性测定法

来源不同的蜂蜜淀粉酶活性差异较大,易出现假阳性和假阴性结果,如制假者通过加入人工淀粉酶的方法提高淀粉酶值,甚至在同工酶谱方面进行优化,会造成难以与天然淀粉酶区分的结果[57]。蜂蜜中含有α-淀粉酶及少量的自身转化酶,其中淀粉酶活性值的高低与蜂蜜的新鲜程度及蜂蜜营养价值呈正相关,目前己有关于蜂蜜样品中的α-淀粉酶与耐高温α-淀粉酶酶学性质及蛋白质含量比较分析的报道[58]:在所选的枣花蜜、油菜蜜、刺槐蜜样品中,发现蜂蜜中淀粉酶的最适及最稳定条件为温度40 C,pH 5.3, 在低温条件下可长期保持其酶值基本不变,但在高温条件下,随着储存时间延长,其酶值就会明显下降; 相比之下,耐高温的α-淀粉酶的最适温度为60 C,最适pH值为6.0, 且pH值不会随着温度变化而变化。由于蜂蜜中的淀粉酶是来源于蜜蜂身体的动物淀粉酶,稳定性较差,活性易受外界温度影响,而蜂蜜掺假者为达到国家标准,会在产品中添加耐高温的α-淀粉酶,所以通过测定酶学性质可以区别真假蜂蜜[59]

4.3 花粉DNA条码检测

蜂蜜孢粉学(melissopalynology)是通过蜂蜜中的花粉及蜜源植物花粉形态来确定蜂蜜来源、产地和种类的科学[60]。除上述2种基于蛋白质差异的蜂蜜真伪鉴别研究外,近年来蜜源花粉DNA扩増的DNA条码也己开始运用于蜜源植物的鉴别研究中[61],如采用DNA条码的方法描述蜜蜂采集的花粉特征,用放置在高山保护区3个区里的改良蜂箱收集花粉颗粒。DNA条码的参考数据库是从693种植物中收集的序列,GALIMBERTI等[62]基于该数据库识别从蜂箱采集的花粉,对其中的104种进行了测序,在分子水平上确定了52种植物。该研究结果表明,花粉组成在很大程度上受植物区系生物多样性、植物物候和外来开花物种的影响。因此,基于DNA条码的花粉分子特性或许有利于养蜂人获得为市场需要的、具有特定营养的蜂产品,为常规分析应用提供了一种实用而有效的蜂蜜和蜂花粉DNA提取方法[63]。但蜂蜜孢粉学分析在某些情况下必须辅以感官分析,此分析法对某些蜂蜜而言过程过于复杂,结果精确性难以保证[64]

5 结语

在与掺假行为的较量中,蜂蜜真伪检测技术一直处于下风,原因主要有以下2点:

1) 检测技术的开发落后于掺假技术:目前检测技术的目标物通常是“掺假物”,当掺假技术更新换代,检测技术需要一定的开发和验证时间,这就造成了蜂蜜掺假监管的“空窗期”,无法对新型掺假技术进行预警和有效控制。在这段“空窗期”内,蜂蜜掺假对消费者带来的食品安全风险会大幅度増加。

2) 掺假监管成本过高:现代分析技术在一定程度上能够有效鉴别蜂蜜真伪,有利于蜂蜜质量控制,但是所需仪器设备价格昂贵、操作技术复杂、检测时间长、需要检测人员有专业背景、操作地点固定,这些是现有分析技术普遍存在的缺点。同时,单一技术检测范围有限,无法保证结果的准确性,需要分析化学、有机化学、生物学、波谱分析技术等多学科的交叉联用,才能准确判断蜂蜜真伪。由于现有鉴别分析技术落后于掺假技术,造成蜂蜜掺假难以杜绝。

面对新的挑战,制订新的蜂蜜掺假检测技术应转变思路,要从过去的“样品中是否含有掺假物”转变为“样品中是否全部都是蜂蜜”,后者即为目前国际检测界所推崇的真实性检测(authenticity test)[65-67]。实际上,理想的蜂蜜真伪鉴别方法应准确、快速、方便、价格便宜,并且无需进行专业技术培训。针对现有鉴别技术缺陷和未来分析鉴别技术发展趋势,应重点针对蜂蜜特有真实性成分,改变长期以来主要针对添加到蜂蜜中的外源物质的策略。近20多年来,由于质谱、高通量、免疫、生物信息学和生物统计学算法等技术的快速发展,基于基因组学、蛋白组学和代谢组学的生物标志物的筛选和检测技术己在生命科学、环境科学和医疗诊断领域广泛应用。但迄今为止,国内外尚未见相关技术在蜂蜜真伪和花蜜鉴别领域应用研究的报道,开展基于蛋白组学等新兴技术的真实性标志物筛选和快速检测技术研究,如基于胶体金免疫层析法(gold immuno chromatographic strip)的快速诊断试纸条,将是目前和未来蜂蜜真伪鉴别和检测技术的潜在发展方向。快速诊断试纸条的作用原理是滴加在膜一端的样品溶液受膜的毛细管作用[基于层析作用的横流(lateral flow)]向另一端移动,在移动过程中被分析物与固定在膜上某一区域的受体(抗原或者抗体)结合而被固相化,无关物质则越过该区域而被分离,然后通过标志物显色来判定试验结果。它是一种快速、简便、经济、无需仪器的方法,能在几分钟内直观地获得检测结果,这也是实现生物识别的理想生物学标记法,并且目前在食品安全监督、生物医学、动植物检疫等领域都逐渐有所应用,但在蜂蜜真实性检测方面尚未有报道,未来可开发应用于蜂蜜真实性检测的快速诊断试纸条。

参考文献
[1]
BERTELLI D, LOLLI M, PAPOTTI G, et al. Detection of honey adulteration by sugar syrups using one-dimensional and two-dimensional high-resolution nuclear magnetic resonance. Journal of Agricultural and Food Chemistry, 2010, 58(15): 8495-8501. DOI:10.1021/jf101460t
[2]
中华人民共和国卫生部.食品安全国家标准蜂蜜: GB 14963—2011.北京: 中国标准出版社, 2011: 1-5.
Ministry of Health of the People's Republic of China. National Food Safety Standard Honey: GB 14963—2011. Beijing: Chinese Standard Publication House, 2011: 1-5. (in Chinese)
[3]
CORDELLA C B Y, MILITAO J S L T, CLEMENT M C, et al. Honey characterization and adulteration detection by pattern recognition applied on HPAEC-PAD profiles. 1. Honey floral species characterization. Journal of Agricultural and Food Chemistry, 2003, 51(11): 3234-3242. DOI:10.1021/jf021100m
[4]
SOLAYMAN M, ISLAM M A, PAUL S, et al. Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 2016, 15(1): 219-233. DOI:10.1111/1541-4337.12182
[5]
MENDES C D G, SILVA J B A D, MESQUITA L X D, et al. The analysis of meis: Review. Revista Caatinga, 2009, 22(2): 7-14.
[6]
中华全国供销合作总社. 蜂蜜: GH/T 18796—2012. 中国蜂业, 2012, 63(7): 39-42.
China Federation of Supply and Marketing Cooperatives. Honey: GH/T 18796—2012. Apiculture of China, 2012, 63(7): 39-42. (in Chinese with English abstract)
[7]
CHEN H, JIN L H, CHANG Q Y, et al. Discrimination of botanical origins for Chinese honey according to free amino acids content by high-performance liquid chromatography with fluorescence detection with chemometric approaches. Journal of the Science of Food and Agriculture, 2016, 97(7): 2042-2049.
[8]
TOSUN M. Detection of adulteration in honey samples added various sugar syrups with 13C/12C isotope ratio analysis method. Food Chemistry, 2013, 138(2/3): 1629-1632.
[9]
URENA V M, ARRIETA B E, UMANA E, et al. Evaluation of the potential adulteration of commercial honey distributed in Costa Rica compared with artesanian honey samples coming from specific apiaries. Archivos Latinoamericanos De Nutrición, 2007, 57(1): 63-68.
[10]
PITA-CALVO C, GUERRA-RODRIGUEZ M E, VAZQUEZ M. Analytical methods used in the quality control of honey. Journal of Agricultural and Food Chemistry, 2017, 65(4): 690-703. DOI:10.1021/acs.jafc.6b04776
[11]
周萍, 钱志来, 胡福良, 等. 浅谈蜂蜜质量控制指标制定及质量控制措施. 中国蜂业, 2011(S8): 55-58.
ZHOU P, QIAN Z L, HU F L, et al. Discussion on the establishment of quality control index and quality control measures of honey. Apiculture of China, 2011(S8): 55-58. (in Chinese with English abstract)
[12]
赵立夫, 姜宇懋, 张清清, 等. 掺假蜂蜜识别技术的研究进展. 经济动物学报, 2012, 16(2): 115-118.
ZHAO L F, JIANG Y M, ZHANG Q Q, et al. Progress in identification techniques for adulteration in honey. Journal of Economic Animal, 2012, 16(2): 115-118. (in Chinese with English abstract)
[13]
胡方园, 杨方, 黄诚, 等. 蜂蜜掺假检测技术研究进展. 轻工科技, 2014(2): 3-5.
HU F Y, YANG F, HUANG C, et al. Progress in detection techniques for adulteration in honey. Light Industry Science and Technology, 2014(2): 3-5. (in Chinese with English abstract)
[14]
杜宗绪. 蜂蜜掺假鉴别检测方法研究进展. 保鲜与加工, 2015, 15(5): 67-71.
DU Z X. Research progress on detection methods of honey adulteration. Storage and Process, 2015, 15(5): 67-71. (in Chinese with English abstract)
[15]
ANKLAM E. A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chemistry, 1998, 63(4): 549-562. DOI:10.1016/S0308-8146(98)00057-0
[16]
GULER A, BAKAN A, NISBET C, et al. Determination of important biochemical properties of honey to discriminate pure and adulterated honey with sucrose (Saccharum officinarum L.) syrup. Food Chemistry, 2007, 105(3): 1119-1125. DOI:10.1016/j.foodchem.2007.02.024
[17]
侯平然, 刘佐才, 方贞华. 转化糖浆中5-羟甲基糠醛的形成. 冷饮与速冻食品工业, 2001, 7(1): 1-3.
HOU P R, LIU Z C, FANG Z H. 5-Hydroxymethylfur fural (5-HMF) formation during the invert syrup. Beverage and Fast Frozen Food Industry, 2001, 7(1): 1-3. (in Chinese with English abstract)
[18]
MORALES V, CORZO N, SANZ M L. HPAEC-PAD oligosaccharide analysis to detect adulterations of honey with sugar syrups. Food Chemistry, 2008, 107(2): 922-928. DOI:10.1016/j.foodchem.2007.08.050
[19]
ZABRODSKA B, VORLOVA L. Adulteration of honey and available methods for detection: A review. Acta Veterinaria Brno, 2014, 83(10): 85-102. DOI:10.2754/avb201483S10S85
[20]
European Parliament, Council of European Union. 2014/63/ EU: Amending Council directive 2001/110/EC relating to honey. 2014.http://law.foodmate.net/show-183013.html
[21]
张其安, 杨少波, 王坤, 等. 高效液相色谱法检测蜂蜜中大米糖浆掺假. 中国蜂业, 2016, 67(1): 47-50.
ZHANG Q A, YANG S B, WANG K, et al. Determination of honey adulteration by addition of rice syrup using HPLC. Apiculture of China, 2016, 67(1): 47-50. (in Chinese with English abstract) DOI:10.3969/j.issn.0412-4367.2016.01.026
[22]
WANG S Q, GUO Q L, WANG L L, et al. Detection of honey adulteration with starch syrup by high performance liquid chromatography. Food Chemistry, 2015, 172(1): 669-674.
[23]
RUIZ-MATUTE A I, SORIA A C, MARTĹNEZ-CASTRO I, et al. A new methodology based on GC-MS to detect honey adulteration with commercial syrups. Journal of Agricultural and Food Chemistry, 2007, 55(18): 7264-7269. DOI:10.1021/jf070559j
[24]
RUIZ-MATUTE A I, RODRĺGUEZ-SÁNCHEZ S, SANZ M L, et al. Detection of adulterations of honey with high fructose syrups from inulin by GC analysis. Journal of Food Composition and Analysis, 2010, 23(3): 273-276. DOI:10.1016/j.jfca.2009.10.004
[25]
COTTE J F, CASABIANCA H, CHARDON S, et al. Application of carbohydrate analysis to verify honey authenticity. Journal of Chromatography A, 2003, 1021(1/2): 145-155.
[26]
屠振华, 朱大洲, 籍保平, 等. 红外光谱技术在蜂蜜质量检测中的研究进展. 光谱学与光谱分析, 2010, 30(11): 2971-2975.
TU Z H, ZHU D Z, JI B P, et al. Progress in quality analysis of honey by infrared spectroscopy. Spectroscopy and Spectral Analysis, 2010, 30(11): 2971-2975. (in Chinese with English abstract) DOI:10.3964/j.issn.1000-0593(2010)11-2971-05
[27]
LI S F, ZHANG X, SHAN Y, et al. Qualitative and quantitative detection of honey adulterated with high fructose corn syrup and maltose syrup by using near infrared spectroscopy. Food Chemistry, 2017, 218: 231-236. DOI:10.1016/j.foodchem.2016.08.105
[28]
DOWNEY G, FOURATIER V, KELLY J. Detection of honey adulteration by addition of fructose and glucose using near infrared transflectance spectroscopy. Journal of Near Infrared Spectroscopy, 2003, 11(1): 447-456.
[29]
MOUAZEN A M, AL-WALAAN N. Glucose adulteration in Saudi honey with visible and near infrared spectroscopy. International Journal of Food Properties, 2014, 17(10): 2263-2274. DOI:10.1080/10942912.2013.791837
[30]
张妍楠, 陈兰珍, 薛晓锋, 等. 基于近红外光谱检测技术鉴别洋槐蜜中掺入大米糖浆的可行性研究. 光谱学与光谱分析, 2015, 35(9): 2536-2539.
ZHANG Y N, CHEN L Z, XUE X F, et al. Discrimination of rice syrup adulterant of acacia honey based using near infrared spectroscopy. Spectroscopy and Spectral Analysis, 2015, 35(9): 2536-2539. (in Chinese with English abstract)
[31]
赵杰文, 韩小燕, 陈全胜, 等. 基于三维荧光光谱技术对掺假蜂蜜无损鉴别研究. 光谱学与光谱分析, 2013, 33(6): 1626-1630.
ZAHO J W, HAN X Y, CHEN Q S, et al. Identification of adulterated honey based on three-dimensional fluorescence spectra technology. Spectroscopy and Spectral Analysis, 2013, 33(6): 1626-1630. (in Chinese with English abstract) DOI:10.3964/j.issn.1000-0593(2013)06-1626-05
[32]
KELLY J D, PETISCO C, DOWNEY G. Application of Fourier transform midinfrared spectroscopy to the discrimination between Irish artisanal honey and such honey adulterated with various sugar syrups. Journal of Agriculture and Food Chemistry, 2006, 54(17): 6166-6171. DOI:10.1021/jf0613785
[33]
LICHTENBERG-KRAAG B, HEDTKE C, BIENEFELD K. Infrared spectroscopy in routine quality analysis of honey. Apidologie, 2002, 33(3): 327-337. DOI:10.1051/apido:2002010
[34]
RIOS-CORRIPIO M A, ROJAS-LOPEZ M, DELGADO MACUIL R. Analysis of adulteration in honey with standard sugar solutions and syrups using attenuated total reflectance Fourier transform infrared spectroscopy and multivariate methods. CyTA-Journal of Food, 2012, 10(2): 119-122. DOI:10.1080/19476337.2011.596576
[35]
赵延华, 刘成雁, 韩旭, 等. 傅里叶变换红外光谱法快速鉴别掺假蜂蜜. 理化检验:化学分册, 2012, 48(2): 136-139.
ZHAO Y H, LIU C Y, HAN X, et al. Rapid discrimination of adulteration of honey by Fourier transform infrared spectrometry. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2012, 48(2): 136-139. (in Chinese with English abstract)
[36]
IRUDAYARAJ J, SIVAKESAVA S. Detection of adulte ration in honey by discriminant analysis using FTIR spectroscopy. Transactions of the ASAE, 2001, 44(3): 643-650.
[37]
陈兰珍, 赵静, 叶志华, 等. 蜂蜜真伪的近红外光谱鉴别研究. 光谱学与光谱分析, 2008, 28(11): 2565-2568.
CHEN L Z, ZHAO J, YE Z H, et al. Determination of adulteration in honey using near-infrared spectroscopy. Spectroscopy and Spectral Analysis, 2008, 28(11): 2565-2568. (in Chinese with English abstract) DOI:10.3964/j.issn.1000-0593(2008)11-2565-04
[38]
SOUZA-KRULISKI C R D, DUCATTI C, VENTURINI FILHO W G, et al. A study of adulteration in Brazilian honeys by carbon isotope ratio. Ciência E Agrotecnologia, 2010, 34(2): 434-439. DOI:10.1590/S1413-70542010000200023
[39]
GULER A, KOCAOKUTGEN H, GARIPOGLU A V, et al. Detection of adulterated honey produced by honeybee (Apis mellifera L.) colonies fed with different levels of commercial industrial sugar (C3 and C4 plants) syrups by the carbon isotope ratio analysis. Food Chemistry, 2014, 155: 155-160. DOI:10.1016/j.foodchem.2014.01.033
[40]
AOAC Official Method of Analysis, 998.12, C4 plant sugars in honey. International standard stable carbon isotope ratio method. MD, US: International Gaithersburg, 2005: 27-30.
[41]
SIMSEK A, BILSEL M, GOREN A C. 13C/12C pattern of honey from Turkey and determination of adulteration in commercially available honey samples using EA-IRMS. Food Chemistry, 2012, 130(4): 1115-1121. DOI:10.1016/j.foodchem.2011.08.017
[42]
DONG H, XIAO K J, XIAN Y P, et al. Authenticity determination of honeys with non-extractable proteins by means of elemental analyzer (EA) and liquid chromatography (LC) coupled to isotope ratio mass spectroscopy (IRMS). Food Chemistry, 2018, 240: 717-724. DOI:10.1016/j.foodchem.2017.08.008
[43]
YOO E C, KONG Y K, YOON B S. A study on the improved analysis-methods to determine adulterated honeys. Korean Journal of Apiculture, 2010, 25(1): 63-76.
[44]
费晓庆, 吴斌, 沈崇钰, 等. 蜂蜜中外源性γ-淀粉酶残留量的测定. 色谱, 2012, 30(8): 777-781.
FEI X Q, WU B, SHEN C Y, et al. Determination of exogenous γ-amylase residue in honey. Chinese Journal of Chromatography, 2012, 30(8): 777-781. (in Chinese with English abstract)
[45]
陈廷登, 林夕慧. 大米糖浆制造及应用. 浙江工业大学学报, 2005, 33(5): 576-578.
CHEN T D, LIN X H. Study on the manufacture of rice syrup and its application in brewing. Journal of Zhejiang University of Technology, 2005, 33(5): 576-578. (in Chinese with English abstract) DOI:10.3969/j.issn.1006-4303.2005.05.022
[46]
SERRANO S, ESPEJO R, VILLAREJO M, et al. Diastase and invertase activities in Andalusian honeys. International Journal of Food Science & Technology, 2007, 42(1): 76-79.
[47]
吴燕涛, 穆同娜, 王绍清, 等. 现代分析技术在蜂蜜掺假鉴别中应用研究进展. 食品研究与开发, 2015, 36(5): 137-142.
WU Y T, MU T N, WANG S Q, et al. Review of modern analysis technique used in identification of adulterated honey. Food Research and Development, 2015, 36(5): 137-142. (in Chinese with English abstract) DOI:10.3969/j.issn.1005-6521.2015.05.033
[48]
黄文诚. 差示扫描量热法(DSC)是检测蜂蜜掺假的一项新技术. 中国蜂业, 2007, 58(9): 33-34.
HUANG W C. Differential scanning calorimetry (DSC) is a new technique for detection of adulteration in honey. Apiculture of China, 2007, 58(9): 33-34. (in Chinese with English abstract) DOI:10.3969/j.issn.0412-4367.2007.09.027
[49]
CORDELLA C, ANTINELLI J F, AURIERES C, et al. Use of differential scanning calorimetry (DSC) as a new technique for detection of adulteration in honeys. 1. Study of adulteration effect on honey thermal behavior. Journal of Agricultural and Food Chemistry, 2002, 50(1): 203-208. DOI:10.1021/jf010752s
[50]
PILIZOTA V, TIBAN N N. Advances in honey adulteration detection. Food Safety Magazine, 2009, 15(4): 62-64.
[51]
周厚报, 邓建军, 胡苗苗, 等. 基于蛋白质差异鉴别蜂蜜真伪的研究进展. 食品与发酵工业, 2013, 39(6): 116-119.
ZHOU H B, DENG J J, HU M M, et al. Advance in identifying honey adulteration based on the protein differentiation. Food and Fermentation Industries, 2013, 39(6): 116-119. (in Chinese with English abstract)
[52]
DI GIROLAMO F, D'AMATO A, RIGHETTI P G. Assessment of the floral origin of honey via proteomic tools. Journal of Proteomics, 2012, 75(12): 3688-3693. DOI:10.1016/j.jprot.2012.04.029
[53]
CHUA L S, LEE J Y, CHAN G F. Characterization of the proteins in honey. Analytical Letters, 2015, 48(4): 697-709. DOI:10.1080/00032719.2014.952374
[54]
BILIKOVA K, SIMUTH J. New criterion for evaluation of honey: Quantification of royal jelly protein apalbumin 1 in honey by ELISA. Journal of Agriculture and Food Chemistry, 2010, 58(15): 8776-8781. DOI:10.1021/jf101583s
[55]
周厚报. 单花种蜂蜜中蛋白质及氨基酸组分研究. 西安: 西北大学, 2015.
ZHOU H B. Study on the components of protein and amino acids in monofloral honey. Xi'an: Northwest University, 2015. (in Chinese with English abstract)
[56]
NISBET C, GULER A T, CIFTCI G, et al. The investigation of protein prophile of different botanic origin honey and density saccharose-adulterated honey by SDS-PAGE method. Journal of the Faculty of Veterinary Medicine University of Kafkas Kars, 2009, 15(3): 443-446.
[57]
费晓庆, 丁涛, 汤娟, 等. 淀粉酶值常规检测方法用于鉴别掺假蜂蜜的研究. 轻工标准与质量, 2013(6): 45-48.
FEI X Q, DING T, TANG J, et al. Amylase value of conventional detection methods for identification of adulterated honey. Standard & Quality of Light Industry, 2013(6): 45-48. (in Chinese with English abstract)
[58]
徐颖, 汪辉. α-淀粉酶在检验真假蜂蜜中的应用. 食品科技, 2008(3): 214-216.
XU Y, WANG H. Application of α-amylase in detecting honey qualification. Food Science and Technology, 2008(3): 214-216. (in Chinese with English abstract) DOI:10.3969/j.issn.1005-9989.2008.03.062
[59]
李军生, 何仁, 江权燊, 等. 蜂蜜淀粉酶在鉴别蜂蜜掺假中的应用研究. 食品科学, 2004, 25(10): 59-62.
LI J S, HE R, JIANG Q S, et al. The amylase activity of honey was used as new target for detecting honey adulteration. Food Science, 2004, 25(10): 59-62. (in Chinese with English abstract) DOI:10.3321/j.issn:1002-6630.2004.10.009
[60]
赵风云, 董霞, 李建军. 蜂蜜孢粉学的研究与应用. 云南农业大学学报, 2007, 22(2): 270-274.
ZHAO F Y, DONG X, LI J J. Study and application of melissopalynology. Journal of Yunnan Agricultural University, 2007, 22(2): 270-274. (in Chinese with English abstract) DOI:10.3969/j.issn.1004-390X.2007.02.023
[61]
HAWKINS J, VERE N D, GRIFFITH A, et al. Using DNA metabarcoding to identify the floral composition of honey: A new tool for investigating honey bee foraging preferences. PLoS One, 2015, 10(8): e0134735. DOI:10.1371/journal.pone.0134735
[62]
GALIMBERTI A, MATTIA F D, BRUNI I, et al. A DNA barcoding approach to characterize pollen collected by honeybees. PLoS One, 2014, 9(10): e109363. DOI:10.1371/journal.pone.0109363
[63]
TORRICELLI M, PIERBONI E, TOVO G R, et al. In-house validation of a DNA extraction protocol from honey and bee pollen and analysis in fast real-time PCR of commercial honey samples using a knowledge-based approach. Food Analytical Methods, 2016, 9(12): 3439-3450. DOI:10.1007/s12161-016-0539-x
[64]
SOUSA M E B C, DIAS L G, VELOSO A C A, et al. Practical procedure for discriminating monofloral honey with a broad pollen profile variability using an electronic tongue. Talanta, 2014, 128: 284-292. DOI:10.1016/j.talanta.2014.05.004
[65]
ASENSIO L, GONZÁLEZ I, GARCĺA T, et al. Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control, 2008, 19(1): 1-8.
[66]
VON B C, DOJAHN J, WAIDELICH D, et al. New sensitive high-performance liquid chromatography-tandem mass spectrometry method for the detection of horse and pork in halal beef. Journal of Agricultural & Food Chemistry, 2013, 61(49): 11986-11994.
[67]
CHEN Q, KE X, ZHANG J S, et al. Proteomics method to quantify the percentage of cow, goat, and sheep milks in raw materials for dairy products. Journal of Dairy Science, 2016, 99(12): 9483-9492. DOI:10.3168/jds.2015-10739