浙江大学学报(农业与生命科学版)  2017, Vol. 43 Issue (6): 691-699
文章快速检索     高级检索
农田生态系统抗生素抗性研究进展与挑战[PDF全文]
张毓森1,2, 叶军1, 苏建强1    
1. 中国科学院城市环境研究所城市环境与健康重点实验室,厦门 361021;
2. 中国科学院大学,北京 100049
摘要: 抗生素抗性在全球范围内的传播严重危害了人类健康。农田生态系统作为抗性基因的源与汇,因与人类健康密切相关而受到了广泛关注。本文综述了近年来农田生态系统中抗性基因的来源、多样性和丰度的研究进展,介绍了农田生态系统抗性基因的主要研究手段,解析了影响抗性基因在农田生态系统中增殖和扩散的因素。抗性基因污染的主要风险是其可能转移到人类病原菌中,危害人类健康。在将来的研究中,应首先从具有高度多样性的环境抗性基因中甄别高威胁的抗性基因,而后深入研究这些抗性基因在农田生态系统中的传播和扩散机制,尤其是评估其转移到人类病原菌中的可能性,继而定量地获取抗性基因暴露数据,并开展大尺度的流行病学数据调查,从而评估农田生态系统抗性基因对人类健康的风险。
关键词: 农田生态系统    抗生素抗性基因    水平基因转移    人类健康风险评估    
Antibiotic resistance in agroecosystem: Progress and challenges
ZHANG Yusen1,2, YE Jun1, SU Jianqiang1    
1. Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Global spread of antibiotic resistance has hampered the infection therapies by antibiotics and posed great threat to human health. Agroecosystem is the source and sink of antibiotic resistance genes (ARGs) and strongly associated with human health. Antibiotics have been extensively used in human medicine and animal production for prevention and treatment of disease, and promotion of animal growth. Animal farms and sewage treatment plants are the hotspots for dissemination of ARGs in environments. Application of animal wastes and sludges contributes largely to the increased resistance in agroecosystems via directly introduction of antibiotic resistant bacteria or ARGs, or through introduction of antibiotic residues and selection of indigenous resistant bacteria. However, discriminating their contribution to the ARGs level in agroecosystem is difficult. Both culture-dependent and culture-independent technologies, including metagenomic, microarray and high-throughput quantitative polymerase chain reaction have been utilized in the characterization of ARGs in agroecosystem, and each has its strength and weakness. Numerous researches have investigated the diversity and abundance of ARGs in agroecosystems. However, the baseline or background data of ARGs and the knowledge of biogeography of ARGs in agroecosystems are limited. Lack of standard surveillance system hinders the comparison of results from various studies. Horizontal gene transfer (HGT) plays a pivotal role in the dissemination of ARGs in environments. Plasmids, integrons, bacterial phages and extracellular DNA are important mobile genetic elements (MGEs) mediating HGT in agroecosystems. The concentration of antibiotics, heavy metals and other chemicals contribute to the HGT of ARGs. The primary risk of ARGs is that they could be transferred from environmental bacteria to human or animal pathogens, resulting in antibiotic treatment failure. However, knowledge gaps remain in evaluating the impact of ARGs in agroecosystems to human health. ARGs in environments are ubiquitous and diverse, prioritizing the risk of ARGs in the environments is an essential step to human health risk assessment (HHRA). Then to investigate the dissemination of these highly risk ARGs, particularly estimate the likelihood of their introduction into human pathogens is necessary. Finally, the lack of quantitative estimates of human exposure to these ARGs and their link with large-scale epidemiological survey are the key data gaps in the assessment of human health risk.
Key words: agroecosystems    antibiotic resistance genes    horizontal gene transfer    human health risk assessment    

细菌对抗生素的耐药性极大地阻碍了抗生素对病原菌感染的治疗效果,危害人类健康[1],如耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus, MRSA)、抗万古霉素肠球菌(vancomycin-resistant Enterococcus, VRE)、抗碳青霉烯抗性菌(New Delhi metallo-β-lactamase 1, NDM-1)[2]、多黏菌素抗性菌(polymyxin resistance bacteria)[3]等,不断地挑战着人们防御细菌感染的防线。2014年世界卫生组织的一份调查报告显示,全球范围内多数人类病原菌对于常见的人用抗生素敏感性均有不同程度的下降,抗生素抗性已成为全球关注的重大问题[4],并于2015年提出建立细菌耐药性全球监控体系[5]。我国也于2016年由国家卫生计生委、发展改革委等14个部门联合印发了《遏制细菌耐药国家行动计划(2016—2020年)》,以遏制细菌耐药性的蔓延,维护人民群众健康,促进经济社会协调发展[6]

除了在医疗领域外,人们在不同环境中均检测到大量的多种抗生素抗性基因(以下简称抗性基因)[7-10]。人类活动,包括生活、工业废水废物的排放,养殖业动物粪便和污水处理厂污泥的排放和施用,农业生产活动中抗生素的使用等,均是导致环境中抗生素抗性细菌和抗性基因富集和扩散的主要原因[11-16]。因此,近年来各国科学家在环境中抗生素和抗性基因的残留、丰度、迁移和扩散等方面开展了一系列深入的研究,以应对抗生素抗性在环境中的传播,从而减少抗性基因扩散到人类病原菌的风险,保护人类健康[17-18]

农田生态系统中抗生素抗性研究受到了广泛的关注。首先,农田生态系统是环境中抗生素和抗性基因的源与汇。抗生素大量使用于动物养殖业来预防和治疗疾病,促进动物生长,使得动物肠道富含抗性细菌和抗性基因[19-20],同时大量未被代谢的抗生素残留经粪便排放到动物体外,导致施用了动物粪便的农田土壤产生抗生素和抗性基因污染[21-23]。人类和工业生活污水含有大量残留抗生素、抗性细菌和抗性基因[13, 24],污水的排放以及污泥的长期施用也可导致抗生素和抗性基因在农田中富集,进而可能通过渗漏和地表径流扩散到周边环境中[18, 25-27]

其次,农田生态系统是抗生素和抗性基因暴露的重要环境,其中农产品的食用是抗性基因暴露的主要途径之一,食品安全是关乎国计民生的重大问题。2011年德国爆发了“毒黄瓜”事件,引起本次疫情的O104:H4血清型肠出血性大肠杆菌携带有氨基糖苷类、大环内酯类、磺胺类等抗生素的耐药基因[28]。农产品尤其是生食产品的抗性细菌和抗性基因摄入风险评估是农田抗性基因研究的主要目标之一。

最后,农田生态系统具有复杂多样的生态功能,微生物在碳氮磷等生源要素的转化中起着重要的作用,而抗生素和抗性基因的输入可能会显著影响农田微生物群落结构与功能,从而影响农田生态系统生产力以及元素生物地球化学循环。从大健康的角度来看,农田生态系统是研究抗性基因对于人类和动物健康、生态系统功能和生产力影响的理想环境[29-30]。本文的主要目的并非要全面地综述目前在农田生态系统中抗性基因的研究进展,而是试图从目前的研究成果中指出还存在的科学问题,为进一步深入研究提供可能的研究方向。

1 农田抗生素抗性基因来源

根据细菌对抗生素抗性发展的特点,细菌抗性可以分为固有抗性(intrinsic resistance)和获得性抗性(acquired resistance)。固有耐药是某类细菌具有的耐药特征,是细菌对抗生素的天然耐药性,获得性耐药是细菌通过突变或水平转移获得抗性[15, 28, 31]。土壤微生物复杂多样,是自然环境中抗性基因的储存库[9],比如放线菌门细菌是目前大多数天然抗生素的产生菌,其本身含有相应的抗性基因作为脱毒机制[7]。土壤中土著细菌的抗性基因种类跟细菌组成显著相关,可通过改变细菌群落结构来影响抗性基因的组成[8]

多种农业措施可影响土壤抗性基因的组成和丰度,甚至引入新的抗性基因到农田土壤中。粪肥施用可显著导致农田土壤抗性细菌和抗性基因的富集,提高土壤抗性水平[21, 32-34]。污泥直接施用或堆肥后使用也可提高农田土壤抗性基因的丰度和多样性[18, 26, 35-36]。因此,许多科学家致力于研究不同的粪便和污泥处理方式,比如堆肥、厌氧消化等对其中抗性细菌和抗性基因的影响,以减少抗性基因扩散到农田土壤的风险[27, 37-38]

粪肥和污泥以及相关有机肥的施用对农田土壤抗性基因的影响主要体现在3个方面:1)动物粪便和污泥本身含有丰富的抗性基因[19],作为肥料使用可直接将抗性基因引入到农田中;2)有机肥含有丰富的有机质,施用有机肥可改变土壤物理结构,影响土壤肥力,从而改变微生物群落结构,影响抗性基因;3)有机肥中通常含有较多的抗生素残留[39],随着肥料的施用进入到土壤中,形成选择压力,使得抗性细菌增殖,甚至可引起细菌基因突变形成新的抗性。然而在实际研究中,要定性定量地区分这3个方面对农田抗性基因的影响非常困难。

2 农田生态系统抗生素抗性研究方法

关于农田抗生素抗性的研究方法已有多篇综述[40-41],主要有以抗性细菌分离培养为基础的培养法和不依赖于培养的分子生物学方法。其中培养法是利用含有抗生素的培养基选择性的培养相应的抗性细菌,随后测定其最小抑制浓度(minimum inhibition concentration, MIC),确定分离菌株的抗性水平,进而通过基因组测序等手段确定抗性菌株中起作用的抗性基因。该方法的优势在于可将抗性菌株的基因型和表型有效联系起来,进行不同类型基因型和抗性水平的相关研究,同时通过基因组测序可获得该菌株多种抗性基因及相关可移动遗传元件的信息,有助于深入开展抗性菌株多重耐药和水平基因转移的机制等相关研究。其主要缺点是难以克服土壤中多种细菌以现有手段无法培养的问题,只能针对一小部分可培养细菌开展研究。

分子生物学手段则可以克服培养法的缺陷,直接对细菌的核酸进行操作,通过荧光定量聚合酶链式反应(quantitative polymerase chain reaction, 以下简称荧光定量PCR)、宏基因组测序、基因芯片、高通量荧光定量PCR(high-throughput quantitative polymerase chain reaction)等手段,高通量的调查和监控抗性基因的变化。分子生物学方法的缺点在于:1)荧光定量PCR、基因芯片和宏基因组测序数据的分析依赖于现有数据库进行抗性基因的引物和探针的设计,以及序列的比对,对于数据库没有相关信息的抗性基因无法检测;2)宏基因组大量测序数据的拼接和比对需要有较丰富的生物信息学背景,而且限于目前的技术手段,很难在精细的分类水平上鉴定抗性基因的宿主菌;3)宏基因组分析主要是根据序列的相似度进行抗性基因的注释,由于没有进行抗性表型的验证,可能导致结果出现假阳性,即所鉴定的抗性基因很可能并不具备抗生素抗性的功能。功能宏基因组学技术和新近发展迅速的单细胞测序技术可在一定程度上克服这些缺陷,但他们也存在克隆偏好和异源表达、单细胞分选和扩增等技术难题[42]。此外,在群落水平上,可采用检测细菌呼吸、胞外酶活性变化以及细菌生产力等方法来监控细菌群落整体的抗性水平[43]

在目前的医疗领域中,针对常见的人或动物病原菌的抗性水平,已有一系列详细而标准的研究方法可对细菌耐药进行监测,进而建立全球耐药监测体系[5, 44]。然而,针对农田抗生素抗性的研究虽然已有多种技术手段可用,但由于各国研究者根据其关注的科学问题不同和实验室所拥有的技术手段限制,目前还尚未有标准的抗生素抗性监测方法可用,这使得难以对各国科学家的研究成果进行横向比较,同时也难以建立全球环境抗生素抗性监控系统来研究抗生素抗性基因的传播和扩散。

3 农田抗生素抗性基因的丰度

采用现有的分子生物学技术,各国研究者对不同区域的农田土壤抗性基因丰度及其影响因子进行了研究。荧光定量PCR和宏基因组学技术是最常用的方法。采用荧光定量PCR,人们发现不同类型农田土壤抗性基因组成有显著差异[8, 45],几乎所有常见抗生素抗性基因均可在土壤中检测到,其丰度也有较大差异,不同的抗性基因其拷贝数可达1011每克干土,其中多重耐药基因、四环素类、大环内脂类、氨基糖苷类、β-内酰胺类抗性基因等均有较高丰度[35, 46-48]。为了避免由于各样品微生物量不同导致的抗性基因丰度差异,通常在定量抗性基因时会计算抗性基因/16S rRNA基因相对丰度,来进行不同样品间的比较[46, 49]。宏基因组技术也常用于研究不同环境样品中抗性基因多样性和丰度,其所监测到的抗性基因也可根据16S rRNA基因进行归一化处理,土壤抗性基因相对丰度低于污水处理厂和动物粪便样品[20, 45, 50]

荧光定量PCR方法通常只能检测数类抗性基因,即使是高通量荧光定量PCR目前也只能针对200余类抗性基因进行定量[26],而宏基因组技术可检测到的抗性基因种类多于荧光定量PCR方法。抗性基因的相对丰度代表了某类抗性基因在特定样品的微生物群落中的富集情况,这2种方法均可计算抗性基因的相对丰度,且不同研究间的结果可以进行横向比较。但抗性基因的绝对拷贝数也是一类重要的数据,尤其是在今后进行抗性基因的风险评估时,抗性基因的拷贝数是计算抗性基因人群暴露量的重要参数[51]

目前关于不同农田土壤整体抗性基因丰度的数据仍然欠缺,至今尚未见到大范围的样品采集和定量数据,这使得我们对于抗性基因的分布特征与时空变化并不清楚,对于各类土壤抗性基因的背景值和基线值了解甚少,而这一类数据在评估人类农业生产活动对土壤抗性基因的影响具有重要的意义[52]

4 影响抗生素抗性基因增殖和扩散的因素

抗性基因在环境中增殖和扩散主要有2种方式,一是抗性基因随着其宿主微生物在不同环境介质中增殖和扩散,二是抗性基因可通过水平基因转移到其他宿主中进而增殖和扩散。其增殖和扩散的过程可能受到不同环境介质的理化性质、抗生素和金属离子浓度、微生物群落结构等因素的影响。探明这些抗性基因在不同环境中增殖和扩散的机制,以及哪些抗性基因较容易在不同环境介质中传播及其主要影响因素,都是阐释抗性基因在环境中扩散机制的关键问题。

位于移动元件上可以进行水平转移的抗性基因称为获得性抗性基因。获得性抗性基因可以通过移动元件在不同细菌间迅速转移,已成为细菌耐药发展最为重要的因素。同时,由于其可形成多重耐药菌株,并可能将抗性基因转移到人类病原菌中危害人体健康,因此受到广泛关注[53]。环境细菌中也存在获得性抗性基因。采用功能宏基因组学方法、细菌基因组和环境宏基因组测序发现,环境中存在着大量的获得性抗性基因以及与其相关的基因元件[8, 54-57]

水平基因转移是环境中细菌获得抗生素抗性,导致抗生素抗性基因在环境中传播和扩散的重要分子机制之一,因此,研究移动元件所携带的抗性基因是阐释抗性基因传播机制的关键[58-60]。近年来,环境中抗生素抗性基因的水平转移不断被证实[57],研究认为,质粒、整合子是最重要的移动元件[61-62]。水平基因转移不仅仅局限于亲缘关系较近的菌株,还可在不同属之间、革兰氏阳性细菌和阴性细菌之间发生[63-64]。整合子是目前环境抗生素抗性基因领域中研究最为广泛的基因传播元件[65],是革兰氏阴性菌中主要抗性基因的组件,其中Ⅰ类整合子存在最为广泛,尤其是在多重耐药的革兰氏阴性病原菌中[66]。到目前为止,已发现至少130种整合子基因盒携带有针对当前多数抗生素的抗性基因[62]。动物粪便的施用显著提高了土壤抗性基因的丰度和整合子丰度[32, 67]

胞外DNA和噬菌体同样也是水平基因转移中抗性基因的重要来源[68]。然而相对于质粒和整合子[69],胞外DNA在环境中水平基因转移所起的作用还不明确[70],而对于噬菌体所携带的抗性基因种类和丰度也了解甚少,特别是溶源性噬菌体[68]。目前常用的研究抗性基因水平转移的方法主要包括细菌培养法、荧光标记质粒法和分子生物学分析等,研究内容侧重于探讨抗性基因在不同宿主或群落中水平转移的过程和频率[13, 64, 71-73]。此外,还可对环境样品进行宏基因组测序,通过序列的比对以及抗性基因和可移动遗传元件在基因组上的分布特征来估算水平基因转移[8, 53],该方法无需特定的供体菌,且不仅仅局限于质粒介导的水平基因转移。但在复杂环境中,目前的研究手段还无法获得定量的水平基因转移频率,因而也无法评估水平基因转移在抗性基因扩散和传播中的贡献。

抗性基因发生水平转移的必要条件是:1)要有抗性基因作为供体;2)要有介导水平基因转移的可移动遗传元件;3)要有合适的菌株作为抗性基因的受体;4)供体和受体需共存于同一或相邻的可以进行物质交换的环境介质中[74]。抗性基因的水平转移还受到其他环境因子的影响。抗生素是其中最重要的因子之一,大约30%~90%的抗生素无法被人或动物代谢而排入环境中[75],从而形成持久的选择压力,加速了抗性基因的突变和传播[76]。此外,季铵类化合物[77]、金属离子[78-79]、纳米材料[71, 80]等也可通过共选择作用促进抗性基因的水平转移。抗性基因的水平转移还受到适应度代价(fitness cost)[81]和奠基者效应的影响[82]。因此,在研究环境中抗性基因水平转移时应充分考虑这些因素的影响。

5 抗生素抗性基因健康风险

研究环境中抗性基因的目的是通过研究抗性基因在不同环境中的来源、进化、增殖和扩散,进而评估其对人类的健康风险。目前,关于抗性基因的人类健康风险评价还缺少定量数据和模式方法,环境抗性基因转移到致病菌中进而危害人类健康的直接数据也还很少[83]。ASHBOLT等[51]提出了一个概念模型来预测由于环境抗生素抗性水平升高所带来的人类健康风险,特别关注甄别环境抗生素抗性高发热点区域、环境暴露途径及暴露量评估以及建立抗性基因和人类健康的剂量-反应关系,并参考传统的病原菌微生物风险评估方法进行抗性基因风险评价,同时也指出这一概念模型中还存在大量的不确定性。

人群健康风险评估的经典模型包括风险评估“四步法”,即危害识别、剂量-反应关系、暴露评价和风险特征[84]。在危害识别中,应充分考虑抗性基因的丰度和种类、暴露途径和暴露时间对人群健康效应的影响,同时也要注意到在某些特定条件下抗性基因具有“一次性效应”,即新型抗性基因形成后,其从环境细菌转移到人类致病菌中只需发生一次即有可能造成严重威胁[74]。环境中抗性基因具有高度多样性[85],很难对所有抗性基因都进行健康风险评价。世界卫生组织(World Health Organization, WHO)[86-87]认为在动物养殖业中喹诺酮类、第三代头孢菌素和大环内酯类是最关键的抗生素,同样,在抗性基因危害识别中也应该根据其可能的危害程度对抗性基因进行分级。MARTÍNEZ等[74]认为在病原菌中发现的、对于常用的医疗抗生素具有抗性、位于可移动遗传元件上的抗性基因具有最高的威胁,并据此将抗性基因分为7个危害级别,该法可以作为抗性基因危害识别的参考。

抗性基因的水平转移需要供体菌和受体菌的直接接触,环境中供体菌、受体菌和可移动遗传元件的丰度是决定水平基因转移的关键因子。因此,在进行抗性基因剂量-反应关系评估中,应同时对抗性基因、可移动遗传元件和环境中的高风险受体菌(致病菌或条件致病菌)的种类和丰度进行定量分析,进而结合影响水平基因转移的环境因素定量评估抗性基因水平转移频率,最后开展大范围的流行病学数据调查,建立环境抗生素抗性和人类健康的联系,最终可能形成有效的抗性基因的剂量-反应关系[83]。抗性基因广泛存在于地球上所有的生境中,任何可与人直接接触的环境介质均有可能造成抗性基因的暴露。因此,有必要采用标准方法建立各种环境介质抗性基因监测数据库[5],为抗性基因的暴露评估提供数据。此外,还应甄别农业生态系统中抗性基因高发的热点区域,比如在粪肥和污泥等生物质施用的农田土壤,开展抗性基因土壤-植物的传播研究,同时针对可能高暴露人群进行风险评价。

抗生素污染对于环境中微生物丰度、组成和群落结构有显著影响,进而改变了微生物介导的生态系统功能,比如土壤氮循环等[43, 83, 88-89]。然而除了人类健康风险以外,抗性基因本身对于农田系统生态健康的影响目前还非常缺乏[83]。抗性基因转移到受体菌中可能导致受体菌生理功能发生变化,比如糖肽类或β-内酰胺类抗生素可以明显改变革兰氏阳性细菌的肽聚糖结构[90],抗性基因的形成也可改变细菌的代谢[91],因此,抗性水平的提高也可能改变自然环境中微生物多样性、进化和功能[92]。然而目前关于这方面的研究很少,今后应通过模拟实验和长期观察来考察抗性水平升高对于生态系统功能的影响[83]

6 结论与展望

抗性基因对人类健康的最大威胁是它们可能通过水平基因转移等途径进入人类病原菌中,形成新的、多重的抗性表型,从而降低现有的抗生素治疗效果甚至使其失效,危害人类健康。农田生态系统与食品安全和人类健康息息相关,其抗性基因的相关研究也备受关注。动物养殖废弃物和污水处理厂污泥的施用是农田系统抗生素和抗性基因的重要来源。农田土壤是一个复杂的生态系统,矿物、有机质等土壤关键组分,土壤理化参数和抗生素,重金属等污染物等均可影响抗性基因在农田土壤系统中的水平基因转移、增殖和扩散,进而对人类健康造成潜在威胁。在将来很长一段时间内,抗生素仍然是治疗细菌感染的重要手段,动物养殖业中抗生素在短期内无法完全禁用,因此,抗生素抗性问题是医疗和环境领域关注的重要主题。在今后的研究中,迫切需要系统、定量地开展农田抗性基因风险评价,同时特别关注:1)建立标准的抗生素和抗性基因监测方法,推动长期的农田环境抗生素和抗性基因监测体系的构建,从而定量地跟踪和评估农田环境抗性水平的变化;2)甄别具有高风险的抗性基因,深入研究抗性基因水平转移的机制及其影响因素,解析抗性基因增殖和扩散的机制,特别要关注抗性基因转移到人类或动物病原菌中的风险;3)开展大尺度的流行病学数据收集及关联分析。通过这几个方面的研究,基本形成农田环境抗性基因人类健康风险评价体系,为持续完善抗生素管理体系提供理论指导和数据支撑。

参考文献
[1] HEDE K. Antibiotic resistance: An infectious arms race. Nature, 2014, 509(7498): S2-S3. DOI:10.1038/509S2a
[2] WALSH T R, WEEKS J, LIVERMORE D M, et al. Dissemination of Ndm-1 positive bacteria in the New Delhi environment and its implications for human health: An environmental point prevalence study. The Lancet Infectious Diseases, 2011, 11(5): 355-362. DOI:10.1016/S1473-3099(11)70059-7
[3] LIU Y Y, WANG Y, WALSH T R, et al. Emergence of plasmidmediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. The Lancet Infectious Diseases, 2015, 16(2): 161-168.
[4] World Health Organization. Antimicrobial Resistance: Global Report on Surveillance. 2014. http://www.who.int/drugresistance/documents/surveillancereport/en/.
[5] World Health Organization. Global Antimicrobial Resistance Surveillance System. 2015. http://apps.who.int/iris/bitstream/10665/188783/1/9789241549400_eng.pdf.
[6] 中华人民共和国国家卫生和计划生育委员会. 遏制细菌耐药国家行动计划(2016—2020年). [2016-08-05]. http://www.nhfpc.gov.cn/yzygj/S3593/201608/f1ed26a0c8774e1c8fc89dd481ec84d7.shtml.
National Health and Family Planning Commission of the People' s Republic of China. National Action Plan on the Containment of Bacteria Resistance (2016—2020). [2016-08-05]. http://www.nhfpc.gov.cn/yzygj/S3593/201608/f1ed26a0c8774e1c8fc89dd481ec84d7.shtml. (in Chinese)
[7] D' COSTA V M, MCGRANN K M, HUGHES D W, et al. Sampling the antibiotic resistome. Science, 2006, 311(5759): 374-377. DOI:10.1126/science.1120800
[8] FORSBERG K J, PATEL S, GIBSON M K, et al. Bacterial phylogeny structures soil resistomes across habitats. Nature, 2014, 509(7502): 612-616. DOI:10.1038/nature13377
[9] NESME J, SIMONET P. The soil resistome: A critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environmental Microbiology, 2015, 17(4): 913-930. DOI:10.1111/emi.2015.17.issue-4
[10] 徐春燕, 苏建强, 鄢庆枇, 等. 抗生素抗性组学研究进展. 海南大学学报(自然科学版), 2011, 29(2): 188-192.
XU C Y, SU J Q, YAN Q P, et al. Research progresses of antibiotic resistomics. Natural Science Journal of Hainan University, 2011, 29(2): 188-192. (in Chinese with English abstract)
[11] ZHU Y G, ZHAO Y, LI B, et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology, 2017, 2: 16270. DOI:10.1038/nmicrobiol.2016.270
[12] SU J Q, AN X L, LI B, et al. Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. Microbiome, 2017, 5(1): 84. DOI:10.1186/s40168-017-0298-y
[13] RIZZO L, MANAIA C, MERLIN C, et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of the Total Environment, 2013, 447(1): 345-360.
[14] THANNER S, DRISSNER D, WALSH F. Antimicrobial resistance in agriculture. mBio, 2016, 7(2): e02227-15.
[15] DAVIES J, DAVIES D. Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 2010, 74(3): 417-433. DOI:10.1128/MMBR.00016-10
[16] ZHU Y G, GILLINGS M, SIMONET P, et al. Microbial mass movements. Science, 2017, 357(6356): 1099-1100. DOI:10.1126/science.aao3007
[17] BERENDONK T U, MANAIA C M, MERLIN C, et al. Tackling antibiotic resistance: The environmental framework. Nature Reviews Microbiology, 2015, 13(5): 310-317. DOI:10.1038/nrmicro3439
[18] BONDARCZUK K, MARKOWICZ A, PIOTROWSKA-SEGET Z. The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application. Environment International, 2016, 87: 49-55. DOI:10.1016/j.envint.2015.11.011
[19] WICHMANN F, UDIKOVIC-KOLIC N, ANDREW S, et al. Diverse antibiotic resistance genes in dairy cow manure. mBio, 2014, 5(2): e01017-13.
[20] LI B, YANG Y, MA L P, et al. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. The ISME Journal, 2015, 9(11): 2490-2502. DOI:10.1038/ismej.2015.59
[21] ZHU Y G, JOHNSON T A, SU J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the USA, 2013, 110(9): 3435-3440. DOI:10.1073/pnas.1222743110
[22] ZWONITZER M R, SOUPIR M L, JARBOE L R, et al. Quantifying attachment and antibiotic resistance from conventional and organic swine manure. Journal of Environment Quality, 2016, 45(2): 609-617. DOI:10.2134/jeq2015.05.0245
[23] HE L Y, YING G G, LIU Y S, et al. Discharge of swine wastes risks water quality and food safety: Antibiotics and antibiotic resistance genes from swine sources to the receiving environments. Environment International, 2016, 92/93: 210-219. DOI:10.1016/j.envint.2016.03.023
[24] MICHAEL I, RIZZO L, MCARDELL C S, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Research, 2013, 47(3): 957-995. DOI:10.1016/j.watres.2012.11.027
[25] LAU C H F, LI B, ZHANG T, et al. Impact of pre-application treatment on municipal sludge composition, soil dynamics of antibiotic resistance genes, and abundance of antibioticresistance genes on vegetables at harvest. Science of the Total Environment, 2017, 587/588: 214-222. DOI:10.1016/j.scitotenv.2017.02.123
[26] CHEN Q L, AN X L, LI H, et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environment International, 2016, 92/93: 1-10. DOI:10.1016/j.envint.2016.03.026
[27] SU J Q, WEI B, OUYANG W Y, et al. Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environmental Science Technology, 2015, 49(12): 7356-7363. DOI:10.1021/acs.est.5b01012
[28] 苏建强, 黄福义, 朱永官. 环境抗生素抗性基因研究进展. 生物多样性, 2013, 21(4): 481-487.
SU J Q, HUANG F Y, ZHU Y G. Antibiotic ressistance genes in the environment. Biodiversity Science, 2013, 21(4): 481-487. (in Chinese with English abstract)
[29] SOHN E. Environment: Hothouse of disease. Nature, 2017, 543(7647): S44-S46. DOI:10.1038/543S44a
[30] KAHN L H. Perspective: The one-health way. Nature, 2017, 543(7647): S47. DOI:10.1038/543S47a
[31] PERRY J A, WESTMAN E L, WRIGHT G D. The antibiotic resistome: What' s new?. Current Opinion in Microbiology, 2014, 21: 45-50. DOI:10.1016/j.mib.2014.09.002
[32] NÕLVAK H, TRUU M, KANGER K, et al. Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil. Science of the Total Environment, 2016, 562: 678-689. DOI:10.1016/j.scitotenv.2016.04.035
[33] CYTRYN E. The soil resistome: The anthropogenic, the native, and the unknown. Soil Biology & Biochemistry, 2013, 63: 18-23.
[34] FANG H, WANG H F, CAI L, et al. Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey. Environmental Science and Technology, 2015, 49(2): 1095-1104. DOI:10.1021/es504157v
[35] XIE W Y, MCGRATH S P, SU J Q, et al. Long-term impact of field applications of sewage sludge on soil antibiotic resistome. Environmental Science and Technology, 2016, 50(23): 12602-12611. DOI:10.1021/acs.est.6b02138
[36] RAHUBE T O, MARTI R, SCOTT A, et al. Impact of fertilizing with raw or anaerobically-digested sewage sludge on the abundance of antibiotic-resistant coliforms, antibiotic resistance genes and pathogenic bacteria in soil, and on vegetables at harvest. Applied and Environmental Microbiology, 2014, 80(22): 6898-6907. DOI:10.1128/AEM.02389-14
[37] YOUNGQUIST C P, MITCHELL S M, COGGER C G. Fate of antibiotics and antibiotic resistance during digestion and composting: A review. Journal of Environment Quality, 2016, 45(2): 537-545. DOI:10.2134/jeq2015.05.0256
[38] WU Y, CUI E P, ZUO Y R, et al. Influence of two-phase anaerobic digestion on fate of selected antibiotic resistance genes and class Ⅰ integrons in municipal wastewater sludge. Bioresource Technology, 2016, 211: 414-421. DOI:10.1016/j.biortech.2016.03.086
[39] GOTHWAL R, SHASHIDHAR T. Antibiotic pollution in the environment: A review. Clean-Soil, Air, Water, 2015, 43(4): 479-489. DOI:10.1002/clen.v43.4
[40] MCLAIN J E, CYTRYN E, DURSO L M, et al. Culture-based methods for detection of antibiotic resistance in agroecosystems: Advantages, challenges, and gaps in knowledge. Journal of Environment Quality, 2016, 45(2): 432-440. DOI:10.2134/jeq2015.06.0317
[41] LUBY E, IBEKWE A M, ZILLES J, et al. Molecular methods for assessment of antibiotic resistance in agricultural ecosystems: Prospects and challenges. Journal of Environment Quality, 2016, 45(2): 441-453. DOI:10.2134/jeq2015.07.0367
[42] SU J Q, CUI L, CHEN Q L, et al. Application of genomic technologies to measure and monitor antibiotic resistance in animals. Annals of the New York Academy of Sciences, 2017, 1388(1): 121-135. DOI:10.1111/nyas.2017.1388.issue-1
[43] BRANDT K K, AMÉZQUITA A, BACKHAUS T, et al. Ecotoxicological assessment of antibiotics: A call for improved consideration of microorganisms. Environment International, 2015, 85: 189-205. DOI:10.1016/j.envint.2015.09.013
[44] 国家卫生计生委合理用药专家委员会. 全国细菌耐药监测技术方案. [2016-08-09]. http://www.carss.cn/download/details/334.
Committee of Experts on Rational Drug Use, National Health and Family Planning Commission of the People' s Republic of China. National Technology Programme of Monitoring Bacterial Resistance. [2016-08-09]. http://www.carss.cn/download/details/334. (in Chinese)
[45] XIAO K Q, LI B, MA L, et al. Metagenomic profiles of antibiotic resistance genes in paddy soils from south China. FEMS Microbiology Ecology, 2016, 92(3): fiw023. DOI:10.1093/femsec/fiw023
[46] KNAPP C W, MCCLUSKEY S M, SINGH B K, et al. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils. PLoS One, 2011, 6(11): e27300. DOI:10.1371/journal.pone.0027300
[47] LI J, WANG T, SHAO B, et al. Plasmid-mediated quinolone resistance genes and antibiotic residues in wastewater and soil adjacent to swine feedlots: Potential transfer to agricultural lands. Environmental Health Perspectives, 2012, 120(8): 1144-1149. DOI:10.1289/ehp.1104776
[48] WANG F H, QIAO M, CHEN Z, et al. Antibiotic resistance genes in manure-amended soil and vegetables at harvest. Journal of Hazardous Materials, 2015, 299: 215-221. DOI:10.1016/j.jhazmat.2015.05.028
[49] KNAPP C W, DOLFING J, EHLERT P A I, et al. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environmental Science & Technology, 2010, 44(2): 580-587.
[50] PAL C, BENGTSSON-PALME J, KRISTIANSSON E, et al. The structure and diversity of human, animal and environmental resistomes. Microbiome, 2016, 4(1): 54. DOI:10.1186/s40168-016-0199-5
[51] ASHBOLT N J, AMEZQUITA A, BACKHAUS T, et al. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environmental Health Perspectives, 2013, 121(9): 993-1001.
[52] ROTHROCK M J, KEEN P L, COOK K L, et al. How should we be determining background and baseline antibiotic resistance levels in agroecosystem research?. Journal of Environment Quality, 2016, 45(2): 420-431. DOI:10.2134/jeq2015.06.0327
[53] FORSBERG K J, REYES A, WANG B, et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science, 2012, 337(6098): 1107-1111. DOI:10.1126/science.1220761
[54] D' COSTA V M, KING C E, KALAN L, et al. Antibiotic resistance is ancient. Nature, 2011, 477(7365): 457-461. DOI:10.1038/nature10388
[55] FIERER N, LEFF J W, ADAMS B J, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the USA, 2012, 109(52): 21390-21395. DOI:10.1073/pnas.1215210110
[56] SU J Q, WEI B, XU C Y, et al. Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China. Environment International, 2014, 65: 9-15. DOI:10.1016/j.envint.2013.12.010
[57] ZHANG G, LECLERCQ S O, TIAN J J, et al. A new subclass of intrinsic aminoglycoside nucleotidyltransferases, ANT(3")-Ⅱ, is horizontally transferred among Acinetobacter spp. by homologous recombination. PLoS Genetics, 2017, 13(2): e1006602. DOI:10.1371/journal.pgen.1006602
[58] DARMON E, LEACH D R F. Bacterial genome instability. Microbiology and Molecular Biology Reviews, 2014, 78(1): 1-39. DOI:10.1128/MMBR.00035-13
[59] SOUCY S M, HUANG J, GOGARTEN J P. Horizontal gene transfer: Building the web of life. Nature Reviews Genetics, 2015, 16(8): 472-482. DOI:10.1038/nrg3962
[60] GILLINGS M R. Lateral gene transfer, bacterial genome evolution, and the anthropocene. Annals of the New York Academy of Sciences, 2016, 1389(1): 20-36.
[61] SENTCHILO V, MAYER A P, GUY L, et al. Community-wide plasmid gene mobilization and selection. The ISME Journal, 2013, 7(6): 1173-1186. DOI:10.1038/ismej.2013.13
[62] PARTRIDGE S R, TSAFNAT G, COIERA E, et al. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiology Reviews, 2009, 33(4): 757-784. DOI:10.1111/j.1574-6976.2009.00175.x
[63] KLüMPER U, DECHESNE A, RIBER L, et al. Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner. The ISME Journal, 2017, 11(1): 152-165. DOI:10.1038/ismej.2016.98
[64] KLüMPER U, RIBER L, DECHESNE A, et al. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. The ISME Journal, 2015, 9(4): 934-945. DOI:10.1038/ismej.2014.191
[65] ANDAM C P, FOURNIER G P, GOGARTEN J P. Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. FEMS Microbiology Reviews, 2011, 35(5): 756-767. DOI:10.1111/j.1574-6976.2011.00274.x
[66] CAMBRAY G, GUEROUT A M, MAZEL D. Integrons. Annual Review of Genetics, 2010, 44: 141-166. DOI:10.1146/annurev-genet-102209-163504
[67] JECHALKE S, SCHREITER S, WOLTERS B, et al. Widespread dissemination of class 1 integron components in soils and related ecosystems as revealed by cultivation-independent analysis. Frontiers in Microbiology, 2014, 4: 420.
[68] MODI S R, LEE H H, SPINA C S, et al. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature, 2013, 499(7457): 219-222. DOI:10.1038/nature12212
[69] TOUSSAINT A, CHANDLER M. Prokaryote genome fluidity: Toward a system approach of the mobilome//VAN HELDEN J, TOUSSAINT A, THIEFFRY D. Bacterial Molecular Networks: Methods and Protocols. New York, USA: Springer, 2012:57-80.
[70] DAVID B, RADZIEJWOSKI A, TOUSSAINT F, et al. Natural DNA transformation is functional in Lactococcus lactis subsp. cremoris Kw2. Applied and Environmental Microbiology, 2017, 83(16): e01074-17.
[71] QIU Z G, YU Y M, CHEN Z L, et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proceedings of the National Academy of Sciences of the USA, 2012, 109(13): 4944-4949. DOI:10.1073/pnas.1107254109
[72] KLüMPER U, DROUMPALI A, DECHESNE A, et al. Novel assay to measure the plasmid mobilizing potential of mixed microbial communities. Frontiers in Microbiology, 2014, 5: 730.
[73] BELLANGER X, GUILLOTEAU H, BONOT S, et al. Demonstrating plasmid-based horizontal gene transfer in complex environmental matrices: A practical approach for a critical review. Science of the Total Environment, 2014, 493: 872-882. DOI:10.1016/j.scitotenv.2014.06.070
[74] MARTÍNEZ J L, COQUE T M, BAQUERO F. Prioritizing risks of antibiotic resistance genes in all metagenomes. Nature Reviews Microbiology, 2015, 3(6): 396.
[75] SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 2006, 65(5): 725-759. DOI:10.1016/j.chemosphere.2006.03.026
[76] ANDERSSON D I, HUGHES D. Microbiological effects of sublethal levels of antibiotics. Nature Reviews Microbiology, 2014, 12(7): 465-478. DOI:10.1038/nrmicro3270
[77] GAZE W H, ABDOUSLAM N, HAWKEY P M, et al. Incidence of class 1 integrons in a quaternary ammonium compound-polluted environment. Antimicrobial Agents & Chemotherapy, 2005, 49(5): 1802-1807.
[78] HU H W, WANG J T, LI J, et al. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils. Environmental Microbiology, 2016, 18(11): 3896-3909. DOI:10.1111/1462-2920.13370
[79] PAL C, BENGTSSON- PALME J, RENSING C, et al. BacMet: Antibacterial biocide and metal resistance genes database. Nucleic Acids Research, 2013, 42(D1): D737-D743.
[80] 丁诚实, 潘杰, 高园, 等. 纳米金属氧化物对耐药基因水平转移的影响. 济南大学学报(自然科学版), 2016, 30(4): 281-286.
DING C S, PAN J, GAO Y, et al. Horizontal transfer of drug resistance genes promoted by metal oxide nanoparticles. Journal of University of Jinan (Science and Technology), 2016, 30(4): 281-286. (in Chinese with English abstract)
[81] SAN MILLAN A, TOLL-RIERA M, QI Q, et al. Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa. Nature Communications, 2015, 6: 6845. DOI:10.1038/ncomms7845
[82] MARTINEZ J L. General principles of antibiotic resistance in bacteria. Drug Discovery Today: Technologies, 2014, 11: 33-39. DOI:10.1016/j.ddtec.2014.02.001
[83] WILLIAMS-NGUYEN J, SALLACH J B, BARTELT-HUNT S, et al. Antibiotics and antibiotic resistance in agroecosystems: State of the science. Journal of Environment Quality, 2016, 45(2): 394-406. DOI:10.2134/jeq2015.07.0336
[84] 李湉湉. 环境健康风险评估方法第一讲:环境健康风险评估概述及其在我国应用的展望(待续). 环境与健康杂志, 2015, 32(3): 266-268.
LI T T. Environmental health risk assessment methods, first lecture: Environmental health risk assessment overview and outlook in our application (to be continued). Journal of Environment and Health, 2015, 32(3): 266-268. (in Chinese with English abstract)
[85] YANG Y, JIANG X T, CHAI B L, et al. ARGs-OAP: Online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database. Bioinformatics, 2016, 32(15): 2346-2351. DOI:10.1093/bioinformatics/btw136
[86] World Health Organization. Report of the 1st Meeting of the WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance, Copenhagen, 15-19 June 2009. Geneva, Switzerland, 2011.
[87] SUBBIAH M, MITCHELL S M, CALL D R. Not all antibiotic use practices in food-animal agriculture afford the same risk. Journal of Environment Quality, 2016, 45(2): 618-629. DOI:10.2134/jeq2015.06.0297
[88] KLEINEIDAM K, SHARMA S, KOTZERKE A, et al. Effect of sulfadiazine on abundance and diversity of denitrifying bacteria by determining nirK and nirS genes in two arable soils. Microbial Ecology, 2010, 60(4): 703-707. DOI:10.1007/s00248-010-9691-9
[89] CEVHERI C. Maize growth promotion of bacteria isolates from semi-arid region of Turkey. Journal of Food Agriculture & Environment, 2012, 10(2): 1269-1272.
[90] MAINARDI J L, VILLET R, BUGG T D, et al. Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in gram-positive bacteria. FEMS Microbiology Reviews, 2008, 32(2): 386-408. DOI:10.1111/j.1574-6976.2007.00097.x
[91] HEINEMANN M, KÜMMEL A, RUINATSCHA R, et al. In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnology and Bioengineering, 2005, 92(7): 850-864. DOI:10.1002/bit.v92:7
[92] MARTINEZ J L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 2009, 157(11): 2893-2902. DOI:10.1016/j.envpol.2009.05.051