浙江大学学报(农业与生命科学版)  2016, Vol. 42 Issue (5): 617-625
文章快速检索     高级检索
干旱胁迫对拉萨半干旱河谷主要灌木树种耗水及光合的影响[PDF全文]
辛福梅1,2, 贾黎明1, 杨小林2, 臧建成2    
1. 北京林业大学林学院, 北京  100083;
2. 西藏大学农牧学院, 西藏 林芝 860000
摘要: 采用盆栽苗木直接称量和Li-6400光合系统测定法, 研究了拉萨半干旱河谷5种灌木在不同水分条件下的耗水及光合特性变化规律.结果表明:1)随着干旱胁迫加剧, 细叶小红柳、江孜沙棘和小叶醉鱼草的耗水量均下降, 江孜沙棘和小叶醉鱼草在轻度干旱时降幅最大, 细叶小红柳在重度干旱时的耗水量较中度干旱时下降了71.8%.香柏和砂生槐则在轻度干旱时耗水量最大.重度干旱时各苗木的耗水量均最小.2)在正常供水条件下, 细叶小红柳、香柏和小叶醉鱼草的耗水速率日变化为明显的双峰曲线, 细叶小红柳峰值出现在10:00—12:00和14:00—16:00, 香柏和小叶醉鱼草峰值出现在12:00—14:00和16:00—18:00;江孜沙棘和砂生槐均为单峰曲线, 江孜沙棘在12:00—14:00耗水速率最大, 砂生槐峰值出现在14:00—16:00.其他3种在干旱条件下, 5个树种的耗水速率日变化为单峰曲线; 轻度干旱下香柏和小叶醉鱼草的峰值出现在12:00—14:00, 其余3个树种最大值出现在14:00—16:00;中度和重度干旱下各树种的耗水速率均在14:00—16:00达到最大值.3)在正常供水时小叶醉鱼草、细叶小红柳和江孜沙棘的净光合速率达到各自最大值, 分别为19.67 μmol/(m2·s)、17.1 μmol/(m2·s)和18.06 μmol/(m2·s), 显著高于香柏; 香柏和砂生槐在轻度干旱下净光合速率达到最大值, 分别为18.52 μmol/(m2·s)和21.99 μmol/(m2·s).随着干旱加剧, 细叶小红柳、江孜沙棘、小叶醉鱼草的蒸腾速率呈下降趋势.而香柏和砂生槐在轻度干旱胁迫下蒸腾速率最大, 重度干旱时各树种的蒸腾速率均达到最小值.4)砂生槐的水分利用效率在正常供水条件下的最大值达到6.0 μmol/mmol, 其在各水分条件下均显著高于其他树种近50%.随干旱胁迫加剧, 小叶醉鱼草的水分利用效率递增.香柏、细叶小红柳和江孜沙棘均在轻度干旱时达到最大水分利用效率.
关键词: 拉萨河谷    干旱胁迫    灌木树种    耗水    光合    
Effects of drought stress on characteristics of water consumption and photosynthesis of the main shrub species in Lhasa semi-arid valley.
XIN Fumei1,2, JIA Liming1, YANG Xiaolin2, ZANG Jiancheng2    
1. College of Forestry, Beijing Forestry University, Beijing 100083, China;
2. College of Agricultural and Animal Husbandry, Tibet University, Linzhi 860000, Tibet, China
Abstract: Vegetation restoration and reconstruction in Lhasa semi-arid valley is an important part of the Tibetan plateau national ecological security barrier construction. Water remains a major limiting factor in the area of vegetation restoration. Considering the climatic characteristics of the region, the less types of species and difficult to introduction, it is very important to carry out water research about native tree species and screen low-water drought-resistant species. This paper observed the water consumption and photosynthesis of the main shrub species in Lhasa semi-arid valley. The selected five species wer. Salix microstachya, Hippophae gyantsensis, Sabina pingii var. wilsonii, Sophora moorcroftiana and Buddleja minima. The water consumption (WC) and water consumption rate (WCR) of all seedlings under different drought stresses were measured by pot seedling mass method, and net photosynthetic rate (Pn), transpiration rate (Tr) and water use efficiency (WUE) of them were measured by an Li-6400 photosynthetic system. The results showed that: 1) With the intensification of drought stress, the WCs of Salix microstachya, H. gyantsensis and B. minima were all gradually declined. The WC of H. gyantsensis and B. minima had the steepest decline under light drought stress. Compared with the moderate drought stress, the WC of Salix microstachya under heavy drought stress was decreased by 71.8%. The WCs of Sabina pingii var. wilsonii and Sophora moorcroftiana were the largest under light drought stress. WC for each seedling was minimal under heavy drought stress. The day-and-night WCs of Sophora moorcroftiana and B. minima were only 208.3 g/m2 and 173.8 g/m2, respectively. 2) Under normal water supply, the WCRs of Salix microstachya, Sabina pingii var. wilsonii an. B. minima were clearly bimodal curve. The peak of Salix microstachya appeared in 10:00—12:00 and 14:00—16:00, and those of Sabina pingii var. wilsonii and B. minima were in 12:00—14:00 and 16:00—18:00. The WCRs of H. gyantsensis and Sophora moorcroftiana were single-peak curve. The largest WCR of H. gyantsensis appeared in 12:00—14:00 and that of Sophora moorcroftiana was in 14:00—16:00. The WCRs of all species were single peak curve under light, moderate and heavy drought stress. But under light drought stress, the peaks of Sabina pingii var. wilsonii and B. minima appeared in 12:00—14:00, and the maximum values of WCRs of the other three species appeared in 14:00—16:00. The maximum WCR of each species was in 14:00—16:00 under moderate and heavy drought stress. 3) Under normal water supply, the Pn of Salix microstachya, H. gyantsensis and B. minima was significantly higher than that of Sabina pingii var. wilsonii, reached their maximum. The Pn of Sabina pingii var. wilsonii and Sophora moorcroftiana reached the maximum under light drought stress. With increased drought stress, the Tr of Salix microstachya, H. gyantsensis an. B. minima was declined. The maximum Tr of Sabina pingii var. wilsonii and Sophora moorcroftiana appeared under light drought stress. Tr of each species had reached the minimum under heavy drought stress. 4) The WUEs of Sophora moorcroftiana under various water stress were significantly higher than that in other species. With increased drought stress, the WUE of B. minima was increasing. The WUE of Salix microstachya, H. gyantsensis and Sabina pingii var. wilsonii reached the maximum in light drought stress.
Key words: Lhasa semi-arid valley    drought stress    shrub species    water consumption    photosynthesis    

水分影响着植物形态、生理生化代谢及地理分布范围, 植物对土壤水分胁迫的响应包含着极其复杂的变化, 并形成了遭受遗传性制约的适应机制[1-3].随着全球性气候变暖和土地沙漠化等, 水资源短缺已成为当今世界上极为严重的社会、经济、生态问题[4].在干旱和半干旱地区, 水资源量的严重不足及降水时空的差异加剧了水资源的亏缺状况及林业对水的依赖程度.树木耐旱和耗水问题也越来越受到国内外相关专家及学者的关注[5-9].由于水资源短缺, 植被破坏严重, 环境条件恶劣, 以致极大地影响着森林植被的恢复及重建.拉萨半干旱河谷地带作为西藏“一江两河”重点区域之一, 人口稠密, 开发历史悠久.特别是近半个世纪以来, 由于人类频繁的活动和不合理的资源开发利用, 河谷地带的干旱化有进一步加剧的趋势, 人口、资源、环境与发展之间的矛盾日趋突出.这不仅影响拉萨河谷一带社会经济的可持续发展, 同时植被严重破坏也使“一江两河”地区失去有力的生态保护, 影响着西藏高原生态安全屏障的建设[10-11].

近年来, 尽管国内外对林木耗水性已有相当多的研究[12-16], 但在西藏这种特殊的环境下有关树木的耗水性研究还极少, 针对拉萨半干旱河谷大量灌木树种蒸腾耗水特性的研究更少.为此,本研究选择拉萨半干旱河谷5个典型造林灌木树种为研究对象, 通过盆栽控制试验, 在拉萨半干旱河谷特定环境条件下对其蒸腾耗水特性和水分利用效率进行研究, 以期掌握各树种的蒸腾耗水规律, 以便对正确选择耐旱树种, 科学制定苗期水分管理措施等发挥一定的指导作用.

1 材料与方法 1.1 研究区概况

试验在西藏自治区林业厅林木科学研究院内完成, 该研究院地处拉萨市堆龙德庆县柳梧乡桑达村, 为典型的拉萨半干旱河谷地带.拉萨半干旱河谷地处雅鲁藏布江支流拉萨河, 喜马拉雅山北侧, 受下沉气流影响, 全年多晴朗天气, 冬无严寒, 夏无酷暑, 属高原季风半干旱气候; 河谷内气候温暖、干燥, 年均气温7.4 ℃, 日温差大, 最热的6月平均气温18.7 ℃, 最冷的1月平均气温为1.0 ℃, 多年极端最高气温为29.6 ℃, 极端最低气温为-16.5 ℃, 分别出现在6月和1月; 干湿季明显, 冬季干燥少雨, 降水主要集中在雨季, 仅6、7、8月降水量就占到全年降水总量的88.3%, 多夜雨, 夜雨率达到80%左右, 是西藏雨季夜雨最多的地区之一; 平均相对湿度30%~50%, 降水量200~500 mm, 蒸发量2 100~2 300 mm, 干燥度1.5~10, 干湿指数3~7, 10 ℃以上积温2 177 ℃, 无霜期133 d, 全年日照时数3 000 h以上; 该地区植被类型主要为亚高山灌丛和草甸植被以及河谷人工林群落[17].

1.2 试验材料与设计

选取3年生、长势良好、形态特征相近的5种该地区典型乡土灌木树种:细叶小红柳(Salix microstachya)、江孜沙棘(Hippophae gyantsensis)、香柏(Sabina pingiivar. wilsonii)、砂生槐(Sophora moorcroftiana)、小叶醉鱼草(Buddleja minima)为研究对象.所用土壤为拉萨河谷典型灌丛草原土, 土壤田间持水量为19.41%, 体积质量为1.23 g/cm3.栽植用盆口直径30 cm, 盆底直径20 cm, 高25 cm的花盆, 每盆装入灌丛草原土14 kg, 每个花盆栽植苗木1株.试验于2013年6月进行, 苗木栽植经2个月缓苗期后, 于8月10日开始干旱胁迫, 8月15日开始称花盆质量以测定苗木耗水特性, 9月18日结束试验, 期间选择5个不连续的典型晴天, 于上午9:00—11:00测定苗木光合特性.试验共设4组处理, 第1组正常供水(control, CK), 土壤含水量为田间持水量的90%~95%;第2组轻度干旱胁迫(light drought stress, LS), 土壤含水量为田间持水量的70%~75%;第3组中度干旱胁迫(moderate drought stress, MS), 土壤含水量为田间持水量的50%~55%;第4组重度干旱胁迫(heavy drought stress, HS), 土壤含水量为田间持水量的30%~35%.每组设5株重复.试验时用保鲜膜覆盖花盆的上表面以防止土壤水分蒸发, 同时密封花盆底部以防止水分渗漏和花盆内土壤漏失.

1.3 测定内容与方法 1.3.1 耗水特性

每天8:00和20:00用精密天平(量程为30 kg, 精度为1/10 kg)称花盆质量以计算各树种苗木每天的耗水量.20:00称完后通过注射器在保鲜膜上扎孔注水以保证花盆内土壤含水量在设定范围内.耗水日变化测定时间为每天8:00—20:00, 每隔2 h进行1次.用剪纸直接称量(硫酸纸法)测定叶面积用于计算耗水量.

1.3.2 光合特性

从4组处理的各重复中均选取5~6片功能叶片, 用便携式光合系统测定仪(Li-6400XT, 美国)测定其净光合速率(Pn, μmol/(m2·s))、蒸腾速率(E, mmol/(m2·s)), 并计算各处理的水分利用效率(WUE, Pn/E).由于所选灌木叶片不能充满叶室, 光合测定完成后, 用扫描仪(Microtek Phantom 3500)扫描各处理叶片, 通过UTHSCSA图像分析系统(University of Texas Health Science Center, San Antonio, Texas, USA)确定叶面积, 之后重新换算净光合速率、蒸腾速率和水分利用效率.

1.4 数据分析

用Excel 2003软件完成全部数据处理并作图, 用SPSS 10.0统计软件进行ANOVA分析, 检验相应数据的差异显著性.

2 结果与分析 2.1 各树种幼苗耗水特性对干旱胁迫的响应 2.1.1 耗水量的变化

林木耗水主要包括自身蒸腾和土壤蒸发2部分, 本研究中盆栽苗木土壤采用保鲜膜密封, 确保苗木蒸腾耗水是其向外界散失水分的唯一途径.表 1显示正常供水时小叶醉鱼草的全天总耗水量和白天总耗水量均最大, 分别为1 330.3 g/m2和1 263.3 g/m2, 砂生槐的耗水量最小, 约为小叶醉鱼草的46.9%和44.6%.轻度干旱时细叶小红柳、江孜沙棘和小叶醉鱼草各耗水量均有较为明显的下降, 白天总耗水量分别下降了17.4%、34.7%和40.5%, 与正常供水相比, 砂生槐和香柏的白天耗水量分别增加了12.2%和24.3%.中度干旱时5种苗木各耗水量均下降, 但各树种下降幅度不同, 各树种全天总耗水量与耗水量最大值相比分别下降63.2%(砂生槐)、56.5%(小叶醉鱼草)、54.8%(江孜沙棘)、33.6%(细叶小红柳)和28.6%(香柏).重度干旱时各苗木的耗水量最小, 砂生槐和小叶醉鱼草的全天总耗水量仅分别为208.3 g/m2和173.8 g/m2.可见,随干旱胁迫加剧细叶小红柳、江孜沙棘和小叶醉鱼草的各耗水量均呈现下降趋势, 江孜沙棘和小叶醉鱼草在轻度干旱时降幅最大, 细叶小红柳在重度干旱时的耗水量较中度干旱时下降了71.8%.香柏和砂生槐均在轻度干旱时耗水量最大, 之后随干旱胁迫的加剧耗水量下降, 中度干旱时耗水量降低较为明显.从表 1各树种白天总耗水量占全天总耗水量的比例可知, 各苗木的耗水主要产生在白天.

表1 不同干旱胁迫下各苗木的日均耗水速率 Table 1 Average daily water consumption rate of each shrub species under different drought stresses
点击放大
2.1.2 耗水速率的日变化

图 1可以看出, 在正常供水条件下, 细叶小红柳、香柏和小叶醉鱼草的耗水速率日变化均为明显的双峰曲线, 细叶小红柳的峰值出现在10:00—12:00和14:00—16:00, 在10:00—12:00之间其耗水速率以263.84 g/(m2·h)的最大值而显著高于其他树种, 香柏和小叶醉鱼草则出现在12:00—14:00和16:00—18:00;江孜沙棘和砂生槐为单峰曲线, 但二者出现峰值的时间不同, 江孜沙棘在12:00—14:00耗水速率最大, 砂生槐峰值出现在14:00—16:00.在轻度干旱下, 5个树种的耗水速率日变化均为单峰曲线, 但不同树种苗木峰值出现的时间有差异, 香柏和小叶醉鱼草的峰值出现的时间较其余3个树种早, 在12:00—14:00耗水速率最大, 细叶小红柳、江孜沙棘和砂生槐的耗水速率最大值则出现在14:00—16:00.在中度干旱下各树种耗水速率同样表现为单峰曲线, 与轻度干旱不同的是此时5个树种的耗水速率均在14:00—16:00达到最大值, 并且各树种耗水速率峰值之间差异明显, 细叶小红柳耗水速率的最大值达到111.86 g/(m2·h), 砂生槐的值仅为细叶小红柳的29.4%.重度干旱时各树种的耗水速率也均为单峰曲线且峰值均出现在14:00—16:00, 各树种耗水速率的峰值之间差异不明显, 最大值(香柏)仅比最小值(小叶醉鱼草)高出6.26 g/(m2·h).

图1 不同干旱胁迫条件下苗木耗水速率的日变化 Fig. 1 Daily variation of water consumption rates of different shrub species under different drought stresses

图 2显示, 各苗木白天平均耗水速率在同一树种的不同干旱胁迫条件下和不同树种的同一干旱胁迫下其差异不同.随苗木受干旱胁迫程度的加剧, 细叶小红柳、江孜沙棘和小叶醉鱼草的白天耗水速率均呈现下降趋势, 且各干旱胁迫处理间均达到显著差异.小叶醉鱼草在正常供水时其白天平均耗水速率达到110.9 g/(m2·h), 显著高于其他各树种的各处理, 轻度干旱开始, 小叶醉鱼草的平均耗水速率急剧下降, 在重度干旱下的最小值为14.5 g/(m2·h).细叶小红柳和江孜沙棘在重度干旱下其白天平均耗水速率仅为正常供水时的17.7%和25.0%.香柏在正常供水和轻度干旱下苗木的白天平均耗水速率差异不显著, 二者与中度、重度干旱间均差异显著, 在重度干旱下其白天平均耗水速率约为轻度干旱下的38.3%.砂生槐在轻度干旱下白天平均耗水速率最大, 正常供水与之相比, 约下降了20.8%, 在中度干旱下其白天平均耗水速率急剧下降, 与轻度干旱相比下降了39.7 g/(m2·h), 重度与轻度干旱间差异不显著.

短栅上的不同大写字母表示同一树种不同干旱胁迫之间在P < 0.05水平差异有统计学意义,不同小写字母表示同一干旱胁迫条件不同树种之间在P < 0.05水平差异有统计学意义. Different capital letters above bars indicate statistically significant differences of the same tree species among different drought stresses, and different lowercase letters indicate statistically significant differences of the same drought stress among different tree species at the 0.05 probability level. 图2 不同干旱胁迫下苗木白天平均耗水速率 Fig. 2 Water consumption rates of different shrub species under different drought stresses
2.2 各树种幼苗光合特性对不同干旱胁迫的响应 2.2.1 净光合速率的变化

图 3显示, 正常供水时小叶醉鱼草净光合速率的最大值达到19.67 μmol/(m2·s), 与小叶醉鱼草相比, 细叶小红柳、江孜沙棘和砂生槐的净光合速率略有下降, 但4个树种间差异不显著.香柏的净光合速率与其余4个树种之间差异显著, 仅为10.5 μmol/(m2·s).与正常供水相比, 在轻度干旱下, 香柏的净光合速率增加了76.3%, 砂生槐和细叶小红柳的净光合速率略有增加, 但砂生槐的净光合速率的最大值为21.99 μmol/(m2·s), 而江孜沙棘和小叶醉鱼草则有所下降, 小叶醉鱼草下降了23.4%.中度干旱时, 小叶醉鱼草的净光合速率与轻度干旱时差异不显著, 其余4个树种的净光合速率均有显著下降, 与轻度干旱相比, 细叶小红柳、江孜沙棘、香柏和砂生槐分别下降了34.7%、44.8%、50.8%和56.0%.重度干旱时, 细叶小红柳的净光合速率急剧下降, 最小值为1.7 μmol/(m2·s), 约为轻度干旱时的1/10, 与中度干旱相比, 小叶醉鱼草的净光合速率下降了68.1%, 其余3个树种则略有下降, 但与中度干旱相比未达到显著差异.

短栅上的不同大写字母表示同一树种不同干旱胁迫之间在P < 0.05水平差异有统计学意义,不同小写字母表示同一干旱胁迫条件不同树种之间在P < 0.05水平差异有统计学意义. Different capital letters above bars indicate statistically significant differences of the same tree species among different drought stresses, and different lowercase letters indicate statistically significant differences of the same drought stress among different tree species at the 0.05 probability level. 图3 不同干旱胁迫下各苗木净光合速率的变化 Fig. 3 Changes of the net photosynthetic rate of different shrub species under different drought stresses
2.2.2 蒸腾速率的变化

图 4显示, 正常供水时细叶小红柳、江孜沙棘和小叶醉鱼草的蒸腾速率之间差异不显著, 细叶小红柳的最大值达到8.80 mmol/(m2·s), 3个树种显著高于香柏和砂生槐, 砂生槐的蒸腾速率仅为3.16 mmol/(m2·s).轻度干旱下香柏和砂生槐的蒸腾速率均有提高, 与正常供水相比, 分别提高了37.1%和32.9%, 而细叶小红柳、江孜沙棘和小叶醉鱼草的蒸腾速率则均呈现下降趋势, 分别比正常供水时下降了26.4%、45.9%和34.7%.中度干旱时各树种的蒸腾速率均有下降, 砂生槐的蒸腾速率最小, 仅为1.7 mmol/(m2·s), 其次为江孜沙棘, 降幅达到37.3%, 相比细叶小红柳和香柏的降幅较小, 分别为23.1%和10.3%, 而小叶醉鱼草则与轻度干旱相差不多, 降幅仅为4.8%.重度干旱时各树种的蒸腾速率仍呈现下降趋势, 达到各处理的最小值, 砂生槐最小值为1.6 mmol/(m2·s), 与中度干旱相比, 各树种蒸腾速率的下降幅度不同, 小叶醉鱼草和细叶小红柳分别下降了近80%和60%, 而香柏、江孜沙棘和砂生槐下降幅度较小, 分别为19.4%、10.5%和5.8%.

短栅上的不同大写字母表示同一树种不同干旱胁迫之间在P < 0.05水平差异有统计学意义,不同小写字母表示同一干旱胁迫条件不同树种之间在P < 0.05水平差异有统计学意义. Different capital letters above bars indicate statistically significant differences of the same tree species among different drought stresses, and different lowercase letters indicate statistically significant differences of the same drought stress among different tree species at the 0.05 probability level. 图4 不同干旱胁迫下各苗木蒸腾速率的变化 Fig. 4 Changes of the transpiration rate of different shrub species under different drought stresses
2.2.3 水分利用效率的变化

图 5可知, 5个树种的水分利用效率在各水分胁迫下表现不同, 砂生槐的水分利用效率在各水分胁迫下均显著高于其他树种.正常供水时砂生槐的水分利用效率的最大值达到6.0 μmol/mmol, 其余4个树种之间差异不显著, 均在2.0 μmol/mmol左右.在轻度干旱下, 砂生槐的水分利用效率有所下降, 与正常供水相比其余4个树种的水分利用效率均有所增加, 江孜沙棘和细叶小红柳分别增加了1.72 μmol/mmol和0.9 μmol/mmol, 而香柏和小叶醉鱼草的增幅较小, 分别增加了29%和16%.中度干旱时砂生槐的水分利用效率仍显著高于其他树种, 与轻度干旱相比, 香柏、细叶小红柳和江孜沙棘的水分利用效率均有所下降, 香柏的降幅达到45.3%, 与轻度干旱相比差异显著, 而小叶醉鱼草的水分利用效率则略有提高.在重度干旱胁迫下细叶小红柳的水分利用效率急剧下降, 仅为0.83 μmol/mmol, 与中度干旱相比小叶醉鱼草的水分利用效率增加, 增幅达到58.1%, 其余3个树种则与中度干旱之间差异不显著.

短栅上的不同大写字母表示同一树种不同干旱胁迫之间在P < 0.05水平差异有统计学意义,不同小写字母表示同一干旱胁迫条件不同树种之间在P < 0.05水平差异有统计学意义. Different capital letters above bars indicate statistically significant differences of the same tree species among different drought stresses, and different lowercase letters indicate statistically significant differences of the same drought stress among different tree species at the 0.05 probability level. 图5 不同干旱胁迫下各苗木水分利用效率的变化 Fig. 5 Changes of the water use efficiency of different shrub species under different drought stress
3 结论与讨论

林木的耗水量真实地反映了树种的耗水能力, 这对了解树种耗水能力有一定的参考价值, 不同树种耗水量的差异能很好地反映树种之间的耗水能力[18].在王鹏,等[19]对青岛市3种灌木耗水研究中, 金银木的日耗水量达到1 018.91 g/m2; 王瑞辉,等[20]对北京市15种园林树木耗水性的研究结果显示秋季灌木日耗水量大叶黄杨达到315.3 g/m2, 金叶女贞和铺地柏均在260 g/m2左右.本研究在正常供水条件下5个树种中砂生槐的耗水量最小为624.4 g/m2, 最高的小叶醉鱼草达到1 330.3 g/m2, 分析可能是由于拉萨白天的光照较强, 导致蒸腾耗水过大所致.所选择5个树种苗木的耗水均主要产生在白天, 随着干旱胁迫的加剧, 细叶小红柳、江孜沙棘和小叶醉鱼草的各耗水量均下降, 江孜沙棘和小叶醉鱼草在轻度干旱时降幅最大, 细叶小红柳在重度干旱时耗水量较中度干旱时下降了71.8%.香柏和砂生槐均在轻度干旱时耗水量最大, 之后随干旱胁迫的加剧耗水量下降.中度干旱时5种苗木的各耗水量均下降.重度干旱时各苗木的耗水量均最小, 砂生槐和小叶醉鱼草的全天总耗水量分别为208.3 g/m2和173.8 g/m2.

耗水速率是树木固有的生理特性, 是衡量植物水分平衡的一个重要生理指标, 可以反映树种调节自身水分损耗能力和在不同环境中的实际耗水能力[21].本次选取的5个树种, 随着苗木受干旱胁迫程度的加剧, 细叶小红柳、江孜沙棘和小叶醉鱼草的白天耗水速率均呈下降趋势, 且各干旱胁迫处理间均达到显著差异.小叶醉鱼草在正常供水时其白天平均耗水速率显著高于其他各树种的各处理, 轻度干旱胁迫开始, 小叶醉鱼草的平均耗水速率急剧下降.细叶小红柳和江孜沙棘在重度干旱胁迫下其白天平均耗水速率仅为正常供水时的17.7%和25.0%.香柏在正常供水和轻度干旱胁迫下苗木的白天平均耗水速率差异不显著, 在重度干旱胁迫下其白天平均耗水速率约为轻度干旱胁迫的38.3%.砂生槐在轻度干旱胁迫下白天平均耗水速率最大, 在中度干旱胁迫下其白天平均耗水速率急剧下降, 在重度干旱与轻度干旱胁迫间差异不显著.在正常供水条件下, 细叶小红柳、香柏和小叶醉鱼草的耗水速率日变化均为明显的双峰曲线, 细叶小红柳在10:00—12:00其耗水速率以263.84 g/(m2·h)最大值而显著高于其他树种, 香柏和小叶醉鱼草峰值出现在12:00—14:00和16:00—18:00;江孜沙棘和砂生槐均为单峰曲线, 江孜沙棘在12:00—14:00耗水速率最大, 砂生槐的峰值出现在14:00—16:00.轻度干旱、中度干旱和重度干旱胁迫下各树种耗水速率均为单峰曲线, 轻度干旱下香柏和小叶醉鱼草的峰值出现在12:00—14:00, 细叶小红柳、江孜沙棘和砂生槐的耗水速率最大值出现在14:00—16:00.中度干旱和重度干旱胁迫下5个树种的耗水速率均在14:00—16:00达到最大值.

植物的光合能力是用来表征不同植物或者作物品种的重要生理指标[22].在最佳或者最适的环境条件下, 叶片的最大光合速率表示叶片的最大光合能力[23].本研究中正常供水时小叶醉鱼草的净光合速率达到最大值, 细叶小红柳、江孜沙棘和砂生槐的净光合速率与小叶醉鱼草相比略有下降.轻度干旱胁迫下, 香柏的净光合速率增加了76.3%, 砂生槐和细叶小红柳的净光合速率略有增加, 而江孜沙棘和小叶醉鱼草则有所下降.中度干旱时, 小叶醉鱼草的净光合速率与轻度干旱时差异不显著, 其余4个树种的净光合速率均有显著下降.重度干旱时, 细叶小红柳的净光合速率急剧下降, 达到最小值, 约为轻度干旱时的1/10, 其余4个树种则均有下降.许多树种的蒸腾速率研究结果表明, 蒸腾速率和气孔导度随着干旱胁迫的增加而降低[24-26], 不同树种蒸腾速率下降的幅度也不同[27].正常供水时细叶小红柳、江孜沙棘和小叶醉鱼草的蒸腾速率之间差异不显著, 3个树种显著高于香柏和砂生槐.轻度干旱胁迫下香柏和砂生槐的蒸腾速率均有提高, 而细叶小红柳、江孜沙棘和小叶醉鱼草的蒸腾速率则均呈现下降趋势.中度干旱时各树种的蒸腾速率均有下降.重度干旱时各树种的蒸腾速率仍呈现下降趋势, 达到各处理的最小值, 砂生槐最小.

水分胁迫下植物水分利用效率的提高是其对干旱的一种适应, 有利于增加对水分胁迫的抵抗, 干旱环境条件下, 植物水分利用效率越高, 表明植物的节水能力越大[28]. 5个树种的水分利用效率在各水分胁迫下表现不同, 砂生槐的水分利用效率在各水分胁迫下均显著高于其他树种.轻度干旱胁迫下, 砂生槐的水分利用效率有所下降, 但与正常供水之间差异不显著, 与正常供水相比其余4个树种的水分利用效率均有所增加.中度干旱时砂生槐的水分利用效率仍显著高于其他树种, 与轻度干旱相比, 香柏、细叶小红柳和江孜沙棘的水分利用效率均有所下降, 而小叶醉鱼草的水分利用效率则略有提高.重度干旱胁迫下细叶小红柳的水分利用效率急剧下降, 与中度干旱相比小叶醉鱼草的水分利用效率增加, 其余3个树种则与中度干旱之间差异不显著.

综合以上结果, 在干旱胁迫下耗水量较低, 而水分利用效率最高的砂生槐耐旱性最好, 一定的干旱胁迫有利于小叶醉鱼草耐旱性的提高, 而在过于湿润的土壤环境条件下细叶小红柳、香柏和江孜沙棘的水分利用效率反而降低.

参考文献
[1] DAMIANO R, ROSSANO M. Comparison of water status indicators for young peach trees. Irrigation Science, 2003, 22(1): 39-46.
[2] FERNANDEZ R J, REYNOLDS J F. Potential growth and drought tolerance of eight desert grasses: lack of a trade off?. Oecologia, 2000, 123: 90-98. DOI:10.1007/s004420050993
[3] EGERT M, TEVINI M. Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environmental and Experimental Botany, 2002, 48: 43-49. DOI:10.1016/S0098-8472(02)00008-4
[4] 朱震达. 中国的脆弱生态带与土地荒漠化. 中国沙漠, 1991, 11(4): 11-22.
ZHU Z D. Fragile ecological zones and land desertification in China. Journal of Desert Research, 1991, 11(4): 11-22. (in Chinese with English abstract)
[5] DAVID W, FRED T D. Water use efficiency and growth analysis of selected woody ornamental species under a non-limiting water regime. Scientia Horticulturae, 1993, 53: 213-223. DOI:10.1016/0304-4238(93)90069-3
[6] 朱妍, 李吉跃, 史剑波. 北京六个绿化树种盆栽蒸腾耗水量的比较研究. 北京林业大学学报, 2006, 28(1): 65-70.
ZHU Y, LI J Y, SHI J B. Comparison of transpiration of six potted afforestation species in Beijing. Journal of Beijing Forestry University, 2006, 28(1): 65-70. (in Chinese with English abstract)
[7] BURGESS S S O. Measuring transpiration responses to summer precipitation in a Mediterranean climate: a simple screening tool for identifying plant water-use strategies. Physiologia Plantarum, 2006, 127(3): 404-412. DOI:10.1111/j.1399-3054.2006.00669.x
[8] 邱权, 潘昕, 李吉跃, 等. 速生树种尾巨桉和竹柳幼苗耗水特性和水分利用效率. 生态学报, 2014, 34(6): 1401-1410.
QIU Q, PAN X, LI J Y, et al. Water consumption characteristics and water use efficiency of Eucalyptus urophylla × Eucalyptus grandis and bamboo-willow seedlings. Acta Ecologica Sinica, 2014, 34(6): 1401-1410. (in Chinese with English abstract)
[9] TATARINOV F A, KUCERA J, CIENCIALA E. The analysis of physical background of tree sap flow measurement based on thermal methods. Measurement Science and Technology, 2005, 16(5): 1157-1169. DOI:10.1088/0957-0233/16/5/016
[10] 张翠叶. 西藏"一江两河"干旱半干旱地区造林林种和树种的选择. 西藏科技, 2005(2): 47-48.
ZHANG C Y. Choose forest types and species in arid and semi-arid areas of Tibet. Tibet Science and Technology, 2005(2): 47-48. (in Chinese with English abstract)
[11] 杨小林, 赵垦田, 马和平, 等. 拉萨半干旱河谷地带的植被数量生态研究. 林业科学, 2010, 46(10): 15-22.
YANG X L, ZHAO K T, MA H P, et al. Ecological studies on vegetation quantity in the semi-arid valley region of Lasa. Scientia Silvae Sinicae, 2010, 46(10): 15-22. (in Chinese with English abstract)
[12] 周平, 李吉跃, 招礼军. 北方主要造林树种苗木蒸腾耗水特性研究. 北京林业大学学报, 2002, 24(6): 50-55.
ZHOU P, LI J Y, ZHAO L J. Characteristics of seedlings water consumption by transpiration of main afforestation tree species in north China. Journal of Beijing Forestry University, 2002, 24(6): 50-55. (in Chinese with English abstract)
[13] 马履一, 王华田, 林平. 北京地区几个造林树种耗水性比较研究. 北京林业大学学报, 2003, 25(2): 1-7.
MA L Y, WANG H T, LIN P. Comparison of water consumption of some afforestation species in Beijing area. Journal of Beijing Forestry University, 2003, 25(2): 1-7. (in Chinese with English abstract)
[14] 秦景.黄土高寒区主要造林树种抗旱耐盐生理及耗水特性.北京:北京林业大学, 2011:9-16.
QIN J. Drought and salinity resistant physiology and water consumption characteristics of main plantation tree species in high-cold region of Loess Plateau. Beijing: Beijing Forestry University, 2011:9-16. (in Chinese with English abstract) http://cdmd.cnki.com.cn/article/cdmd-10022-1011132758.htm
[15] CERMAK J, KUCERA J, NADEZHDINA N. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees, 2004, 18(5): 529-546. DOI:10.1007/s00468-004-0339-6
[16] GIORIO P, GIORIO G. Sap flow of several olive trees estimated with the heat-pulse technique by continuous monitoring of a single gauge. Environmental Experimental Botany, 2003, 49(1): 9-20. DOI:10.1016/S0098-8472(02)00044-8
[17] 中国科学院青藏高原综合科学考察队. 西藏植被. 北京: 科学出版社, 1988: 90-309.
Institute of Tibetan Plateau Comprehensive Scientific Expedition. Vegetation in Tibet. Beijing: Science Press, 1988: 90-309. (in Chinese with English abstract)
[18] 段爱国, 张建国, 何彩云, 等. 干旱胁迫下金沙江干热河谷主要造林树种盆植苗的蒸腾耗水特性. 林业科学研究, 2008, 21(4): 436-445.
DUAN A G, ZHANG J G, HE C Y, et al. Studies on transpiration of seedlings of the main tree species under the condition of drought stress in the dry-hot river valleys of the Jinsha river. Forest Research, 2008, 21(4): 436-445. (in Chinese with English abstract)
[19] 王鹏, 李海梅. 三种灌木的蒸腾耗水特性研究. 北方园艺, 2011(2): 92-94.
WANG P, LI H M. Study on characteristics of transpiration water consumption of three types of shrubs. Northern Horticulture, 2011(2): 92-94. (in Chinese with English abstract)
[20] 王瑞辉, 马履一. 北京15种园林树木耗水性的比较研究. 中南林业科技大学学报, 2009, 29(4): 16-20.
WANG R H, MA L Y. Comparative research of water consumption from 15 garden tree species in Beijing. Journal of Central South University of Forestry & Technology, 2009, 29(4): 16-20. (in Chinese with English abstract)
[21] 招礼军.我国北方主要造林树种耗水特性及抗旱造林技术研究.北京:北京林业大学, 2003:4-6, 120.
ZHAO L J. Studies on water consumption characteristics of main plantation tree species and technology of drought resistance for afforestation in northern China. Beijing: Beijing Forestry University, 2003:4-6, 120. (in Chinese with English abstract)
[22] LARCHER W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Foundation Groups. Springer-Verlag, 1995: 184.
[23] TARTACHNYK I I, BLANKE M M. Effect of delayed fruit harvest on photosynthesis, transpiration and nutrient remobilization of apple leaves. New Phytologist, 2004, 164(3): 441-450. DOI:10.1111/j.1469-8137.2004.01197.x
[24] 李吉跃. 太行山区主要造林树种耐旱特性的研究(Ⅳ). 北京林业大学学报, 1991, 13(增刊): 240-250.
LI J Y. Study on drought tolerance of some main tree species used in afforestation in Taihang mountain region (Ⅳ). Journal of Beijing Forestry University, 1991, 13(Suppl.2): 240-250. (in Chinese with English abstract)
[25] LASSOIE J P, SALO D J. Physiological response of large Douglas-fir to natural and induced soil water deficits. Canadian Journal of Forest Research, 2011, 11(1): 139-144.
[26] SCHLTE P J, MARSHALL P E. Growth and water relation of black locust and pine seedling exposed to control water stress. Canadian Journal of Forest Research, 1983, 13(2): 334-338. DOI:10.1139/x83-047
[27] 张建国, 李吉跃, 沈国舫. 树木耐旱特性及其机理研究. 北京: 中国林业出版社, 2000: 143.
ZHANG J G, LI J Y. Trees Drought Characteristics and Mechanism. Beijing: China Forestry Press, 2000: 143. (in Chinese with English abstract)
[28] 王晓江.库布齐沙漠几种沙生灌木光合、耗水及耐旱生理生态特性研究.北京:北京林业大学, 2007:19-21.
WANG X J. Study on photosynthetic, water consumption characteristics and drought resistance of several shrubs in Kubuqi desert. Beijing: Beijing Forestry University, 2007:19-21. (in Chinese with English abstract) http://cdmd.cnki.com.cn/article/cdmd-10022-2008033919.htm