浙江大学学报(农业与生命科学版)  2017, Vol. 43 Issue (4): 493-501
文章快速检索     高级检索
肠杆菌CV-b脱色孔雀石绿的特性及机制[PDF全文]
李刚, 都林娜, 许方程, 王阳, 泮琇    
温州科技职业学院,浙江 温州 325006
摘要: 采用单因素实验研究温度、pH值、碳氮源、金属离子等操作参数对菌株(Enterobacter sp.)菌株CV-b降解孔雀石绿的影响,并采用紫外可见光分光光度法、红外扫描光谱法和气相质谱分析法等对代谢产物进行分析。结果显示:多数供试碳源对脱色没有显著影响,其中以淀粉对脱色的促进效果最优;多数有机氮源对脱色有显著的促进效应,其中以蛋白胨的促进效果最优。在pH 5.0~10.0、温度20~50 ℃时,菌株CV-b对孔雀石绿的6 h脱色率在92%以上;培养6 h后,该菌株对质量浓度低于900 mg/L的孔雀石绿脱色率可达90%以上。此外,在所测金属离子中,铜离子对脱色有显著的抑制效应。酶分析数据表明,酪氨酸酶可能参与菌株CV-b降解孔雀石绿的过程。代谢产物分析实验结果显示,菌株CV-b降解孔雀石绿的主要产物之一为二甲氨基二苯甲酮。总体而言,该菌株在孔雀石绿的生物修复中具有广阔的应用潜能。
关键词: 肠杆菌属    孔雀石绿    降解特性    酶分析    产物分析    
Characteristics and mechanism of Malachite Green Decolorization by Enterobacter sp. CV-b.
LI Gang, DU Linna, XU Fangcheng, WANG Yang, PAN Xiu    
Wenzhou Vocational College of Science and Technology, Wenzhou 325006, Zhejiang Province, China
Abstract: Malachite Green (MG) is a typical triphenylmethane dye that has been extensively used in ceramics, dyeing, textile and leather industries etc. Meanwhile, MG can also be used as insect repellant, insecticide and anti-microbial in aquaculture industry. However, it is difficult to degrade, and has been reported with potential carcinogenicity and genotoxicity for humans, animals, and microorganisms. As a result, MG has been prohibited from using in aquaculture by Food and Drug Administration of United States, United Kingdom, China, European Union, and some other countries. Therefore, to remove MG residue in the aquatic environment, screening for microorganisms for biodegradation of MG is very necessary and important to protect human beings and maintain the ecological balance. Biodegradation of MG by microorganisms has gained more and more attention due to its inexpensive and eco-friendly feature. Raoultella sp., Pandoraea sp., Pseudomonas sp. and Arthrobacter sp. have been reported to have potential ability for biodegradation of MG. The degradation behavior was distinctly affected by culturing condition and environmental factors. In this study, a bacterial strain named as Enterobacter sp. CV-b was isolated, the characteristics of MG decolorization by Enterobacter sp. CV-b were investigated using single-factor experiments, the enzymes and metabolites related to MG degradation were further detected by UV-visible, FTIR, and GC-MS technologies, to screen for in situ bacteria with stronger environmentally adaptability. The results indicated that most of tested carbon sources had no significant effect on decolorization, and starch was the optimal carbon source for promotion of decolorization. In the initial incubating period, the inorganic nitrogen source NH4Cl could slightly inhibit the decolorization of MG, and the inhibition effect became weaker with time. Meanwhile, the inorganic nitrogen source NaNO3 could slightly enhance decolorization of MG. However, most of the organic nitrogen sources could significantly enhance decolorization, and peptone was the optimal nitrogen source for MG decolorization. Under condition with pH range of 5.0-10.0 and 20-50 ℃, MG decolorization rate by strain CV-b was over 92% after incubating for 6 h, indicating this strain have strong environmentally adaptability with broad pH and temperature range. After 6 h of incubation, MG decolorization rate of the strain could reach 90% with initial MG concentration over 900 mg/L, suggesting its great potential in highly efficient biodegradation of MG. Besides, Cu2+ was observed to inhibit MG decolorization significantly. Enzyme data showed that tyrosinase might be involved in the MG degradation by strain CV-b. Meanwhile, results of metabolites analysis indicated that (dimethyl amino-phenyl)-phenyl-methanone was one of the major products of MG degradation by strain CV-b. In conclusion, this strain has a great potential in application of MG bioremediation since its strong environmentally adaptability with broad pH and temperature range and high degradation rate of MG with initially high dye concentrations. Moreover, the enzyme analysis and metabolites detection will be helpful to understand the mechanism of MG decolorization by the strain CV-b.
Key words: Enterobacter sp.    malachite green    degradation characteristics    enzyme analysis    intermediate analysis    

孔雀石绿(malachite green,MG)属于碱性三苯甲烷类染料,常被用于制陶业、印染业、纺织业、皮革业等领域,同时可作为驱虫剂、杀虫剂和防腐剂广泛应用于在水产养殖业中。此外,孔雀石绿具有广谱抗寄生虫功效,在水产品的运输、暂养、销售、保鲜、防腐等过程中也有较广泛的应用[1-4]。但由于孔雀石绿在多种动物和细胞系实验中被证明具有潜在的致畸形、致癌和致突变的“三致”效应,因而被美国、欧洲等许多国家和地区禁止使用于水产养殖业。我国也于2002年将该染料列入“食品动物禁用的兽药及其化合物清单”[5-6]。因此,筛选具有降解孔雀石绿能力的微生物,消除环境水体中的孔雀石绿残留,对维护水产养殖业健康发展和保护人类健康尤为重要。

微生物降解孔雀石绿是一种价格低廉、环境友好型的处理方式,该方法的关键在于获得具有孔雀石绿降解功能的微生物。目前已报道的孔雀石绿降解菌主要有拉乌尔菌属(Raoultella sp.)、潘多拉菌属(Pandoraea sp.)、假单胞菌属(Pseudomonas sp.)、节杆菌属(Arthrobacter sp.)等[7-10]。这些孔雀石绿降解菌的降解行为各异,其脱色效率也因脱色培养条件的差异而各不相同。但就重现性强、操作因素较易控制、机制研究较清晰的纯培养实验而言,多数已报道的菌株受环境因素影响显著。因此,加强筛选环境适应性更强的降解菌株能有效解决实际孔雀石绿污染修复难题。同时,与代谢机制清晰的偶氮染料微生物降解相比,细菌降解三苯甲烷染料孔雀石绿的机制尚不清晰。目前,国际上公认度较高的孔雀石绿微生物降解的第一步反应往往是加-H/-OH还原反应或脱甲基反应,进而生成原发性和继发性芳胺,其代谢终产物通常为苯甲酮[11]。而已有研究报道显示,酪氨酸酶、漆酶、木质素过氧化物酶、锰过氧化物酶、NADH-DCIP还原酶及孔雀石绿还原酶等可能与孔雀石绿的微生物降解相关[12-13]。所以,根据降解菌株的降解行为进一步研究其降解机制,有利于更深层次地解释其降解行为,从而更好地指导生产实践。综上所述,加强对降解菌株的孔雀石绿降解途径和降解相关酶的性质研究十分有必要。因此,本研究通过筛选环境适应性更强的孔雀石绿降解菌株,研究其降解行为和降解机制,以期更好地指导实际孔雀石绿污染水体的微生物修复。

1 材料与方法 1.1 菌种来源

肠杆菌(Enterobacter sp.)菌株CV-b分离于皮革废水底泥中,在4 ℃条件下保藏于温州科技职业学院农业生态与环境保护实验室。

1.2 试剂与培养基

三苯甲烷类染料孔雀石绿(λmax=620 nm)购自国药集团化学试剂有限公司。其他生化试剂均为国产分析纯。

碳源影响实验培养基母液(pH 7.0)组成为:15.13 g/L Na2HPO4,3.0 g/L KH2PO4,0.5 g/L NaCl,1.0 g/L NH4Cl,0.491 g/L MgSO4·7H2O,0.026 g/L CaCl2·2H2O。氮源影响实验培养基母液(pH 7.0)组成为:15.13 g/L Na2HPO4,3.0 g/L KH2PO4,0.5 g/L NaCl,0.491 g/L MgSO4·7H2O,0.026 g/L CaCl2·2H2O。其他因子影响实验培养基母液(pH 7.0)为2.0 g/L蛋白胨溶液。LB培养基(pH 7.0~7.2)组成为:10.0 g/L蛋白胨,5.0 g/L酵母膏,10.0 g/L NaCl。

1.3 脱色实验

碳、氮源对孔雀石绿脱色的影响,分别向碳源和氮源影响培养基中添加终浓度为2.0 g/L的碳源与氮源,灭菌后添加已灭菌的终浓度为100 mg/L的孔雀石绿。接种等量菌株CV-b过夜培养物(菌体干重为0.15~0.25 g/L),并于30 ℃、180 r/min条件下振荡培养,定时取样分析。

温度对孔雀石绿脱色的影响,分别设定一系列温度梯度,接种等量菌株CV-b后于180 r/min条件下振荡培养,定时取样分析。为研究pH值和初始染料浓度对孔雀石绿脱色的影响,设定一系列pH和浓度梯度的染料培养基,接种等量菌株CV-b后于30℃、180 r/min条件下振荡培养,定时取样分析。

金属离子对孔雀石绿脱色的影响,分别向培养基中添加终浓度为1.0、2.0和3.0 mmol/L的供试金属离子,灭菌后添加已灭菌的终浓度为100 mg/L的孔雀石绿,接种等量菌株CV-b过夜培养物后于30℃、180 r/min条件下振荡培养,定时取样分析。所有实验均重复3次,并设置对照。

1.4 降解酶分析

孔雀石绿脱色过程中的相关酶分析方法参照文献[12-13]:培养12 h后收集含有和不含有100 mg/L孔雀石绿的酵母粉溶液(2.0 g/L)中的菌体培养物,离心后将菌体沉淀用无菌磷酸盐缓冲液冲洗3次,然后重悬于5 mL磷酸盐缓冲液中(100 mmol/L, pH 7.4),超声破碎并离心,取上清液作为粗酶液进行分析。

酪氨酸酶、漆酶、木质素过氧化物酶、锰过氧化物酶、NADH-DCIP还原酶及孔雀石绿还原酶活性测定方法参照文献[12-13]。酪氨酸酶、漆酶、锰过氧化物酶和木质素过氧化物酶的一个单位定义为一个吸光度值变化,单位为unit/min/mg of protein。NADH-DCIP还原酶活性用DCIP的消光系数90 mmol/(L·cm)计算。孔雀石绿还原酶活性用孔雀石绿的消光系数1.47×105 mol/(L·cm)计算。

1.5 降解中间产物分析

采用紫外可见光分光光度法(UV-visible analysis)、红外扫描光谱法(Fourier transform infrared spectroscopy, FTIR)和气相质谱分析法(gas chromatography-mass spectrometry, GC-MS)对降解前后的孔雀石绿溶液进行分析。分别收集降解前(未加菌)和降解后(培养24 h后)的混合培养物,并在1万r/min条件下离心10 min,取上清,用Evolution 300分光光度计进行全波长扫描分析。同时,用Bruker VERTEX 70红外光谱仪在可清洗的水溶液专用透射池中进行红外扫描分析,扫描波长范围为1 000~3 000 cm-1,检测器系统为DigiTect。此外,将4 mL混合培养物经三苯甲烷萃取后用于GC-MS分析。采用Trace GC Ultra和ISQ Ⅱ MS对降解产物进行分析。GC-MS柱为TG-35ms的石英毛细管柱(内径30 m×0.25 m, 0.25 μm)柱温设定为从100 ℃程序升温至280 ℃(8 ℃/min),10 min内升至280 ℃。载气(氦气)流速为1 mL/min,注射器和检测器温度为250 ℃。降解产物的质谱分析在EI模式、70 eV条件下进行满扫。

2 结果与讨论 2.1 各操作因素对菌株CV-b脱色孔雀石绿的影响 2.1.1 碳、氮源对菌株CV-b脱色孔雀石绿的影响

图 1A可知,多数所测碳源对脱色率没有显著影响,仅葡萄糖、果糖和木糖对脱色有微弱的抑制效应,而淀粉对脱色有促进效果。由图 1B可知:在所测无机氮源中,氯化铵对孔雀石绿的6 h和12 h脱色率有微弱抑制效应,而当培养时间超过12 h后则随之消失;硝酸钠则对孔雀石绿脱色有微弱的促进效应,而多数所测有机氮源,如牛肉浸提物、酵母粉、蛋白胨和甘氨酸,对脱色有显著的促进作用,其中蛋白胨是脱色的最佳氮源,谷氨酸则可轻微抑制脱色。总体而言,当培养时间达到12 h后,该菌株对孔雀石绿的脱色率可达80%以上。微生物的生长需要相应的碳、氮源,因此,碳、氮源是影响微生物脱色染料的制约因素。而实际含染料废水的处理过程中,活性污泥中的微生物往往因缺乏相应的碳、氮源而无法高效脱色。无机盐培养基是一种寡营养培养基,故而能够反映微生物在寡营养条件下的脱色。微生物在无机盐培养基中对孔雀石绿的脱色率通常较低,例如,CHEN等[14]在研究菌株(Coriolopsis sp.)菌株脱色孔雀石绿的过程中发现,在寡营养条件下培养9 d后,该菌株对100 mg/L的孔雀石绿脱色率仅为52%,与其他三苯甲烷类染料相比,孔雀石绿是最难降解的三苯甲烷染料。而本研究中菌株CV-b在无机盐培养基中缺乏碳源或氮源的条件下,对孔雀石绿的24 h脱色率仍可达90%以上,脱色优势显著,说明该菌株有望用以解决实践生产难题。

图1 碳(A)、氮源(B)对菌株CV-b脱色孔雀石绿的影响 Fig. 1 Effect of carbon (A) and nitrogen (B) sources on decolorization of Malachite Green by strain CV-b
2.1.2 pH值和温度对菌株CV-b脱色孔雀石绿的影响

图 2A中可以发现:当初始pH值在2.0~10.0之间时,菌株CV-b对孔雀石绿(100 mg/L)的6 h脱色率在77%以上;当初始pH值在5.0~10.0之间时,孔雀石绿脱色率维持在97%以上。培养12 h后,当初始pH值在4.0~10.0之间时,该菌株可脱色90%以上的孔雀石绿(100 mg/L);当培养时间超过24 h,该菌株可在pH 4.0~10.0之间完全脱色100 mg/L的孔雀石绿。JUNG等[15]从南极洲土壤中分离筛选到了一株能够高效降解孔雀石绿的假单胞菌(Pseudomonas sp.) MGO菌株,在pH 5.0~7.0之间时,该菌株对孔雀石绿的脱色率可达90%以上,而当pH值在5.0以下或7.0以上时,该菌株对孔雀石绿的脱色率则降至20%以下。此外,类似的现象也在安贤惠等[16]和L 等[17]的报道中发现。相较这些报道,菌株CV-b对初始pH值的适应性更强,培养24 h后可于pH 4.0~10.0之间完全脱色100 mg/L的孔雀石绿,具有更加广阔的应用前景。

图2 pH值(A)和温度(B)对菌株CV-b脱色孔雀石绿的影响 Fig. 2 Effect of pH (A) and temperature (B) on decolorization of malachite green by strain CV-b

图 2B表明,在20-50℃的温度范围内,培养6 h的菌株CV-b即可脱色92%的孔雀石绿(100 mg/L);当培养时间在12 h以下时,该菌株对孔雀石绿的脱色率呈现先升高后降低的趋势,最适温度在30-35℃之间;而当培养时间达到24 h后,该菌株对孔雀石绿的脱色率呈现出逐渐降低的趋势。但总体而言,该菌株对温度的适应性也较强,进一步地说明该菌株的应用前景广阔。

2.1.3 染料浓度对菌株CV-b脱色孔雀石绿的影响

图 3可知,培养6 h的菌株CV-b对浓度低于900 mg/L的孔雀石绿的脱色率在90%以上,而当孔雀石绿的浓度上升至1 000 mg/L时,该菌株对孔雀石绿的脱色率则降为70%左右,说明高浓度的孔雀石绿可对降解菌株产生毒性效应,这与PEARCE等[18]的报道相符。随着培养时间的延长,菌株CV-b对孔雀石绿的脱色率也逐渐升高,当培养时间达到36 h后,该菌株可完全脱色浓度低于1000 mg/L的孔雀石绿。已有研究显示,高浓度的孔雀石绿对微生物脱色染料影响较大,甚至完全抑制脱色,如JUNG等[15]在研究孔雀石绿对南极洲土壤样品中细菌群落的毒性效应及对孔雀石绿降解菌株Pseudomonas sp. MGO的生理影响的过程中发现,当孔雀石绿浓度从50 mg/L上升到1000 mg/L时,共培养36 h的脱色率从98.1%下降至20%以下。相较而言,菌株CV-b在36 h内可完全脱色≦1000 mg/L的孔雀石绿,脱色优势显著,应用前景广阔。

图3 染料浓度对菌株CV-b脱色孔雀石绿的影响 Fig. 3 Effect of initial dye concentration on decolorization of Malachite Green by strain CV-b
2.1.4 金属离子对菌株CV-b脱色孔雀石绿的影响

图 4可以看出,多数1 mM的金属离子对孔雀石绿脱色没有显著影响或仅有微弱促进效应,其中,仅铜离子对脱色有显著的抑制效应。随着所测金属离子浓度的升高,铜离子对脱色的抑制效应也随之增大,同时,铁离子和锌离子也开始对脱色显示出显著的抑制效应,且这种抑制效应随金属离子浓度的升高而增大。YAN等[19]在研究金属离子对(Trametes)菌株脱色孔雀石绿的影响时也发现,铜离子对该菌株脱色孔雀石绿抑制效应显著,高浓度的铁离子同样也对脱色有显著的抑制效应。本研究中铜离子和高浓度的铁离子也对孔雀石绿脱色有显著的抑制效应,但至于其抑制机制仍需进一步探索。

1:1.0 mmol/L CuCl2;2:2.0 mmol/L CuCl2;3:3.0 mmol/L CuCl2;4:1.0 mmol/L FeCl3;5:2.0 mmol/L FeCl3;6:3.0 mmol/L FeCl3;7:1.0 mmol/L CaCl2;8:2.0 mmol/L CaCl2;9:3.0 mmol/L CaCl2;10:1.0 mmol/L ZnCl2;11:2.0 mmol/L ZnCl2;12:3.0 mmol/L ZnCl2;13:1.0 mmol/L MgCl2;14:2.0 mmol/L MgCl2;15:3.0 mmol/L MgCl2;16:1.0 mmol/L MnCl2;17:2.0 mmol/L MnCl2;18:3.0 mmol/L MnCl2;19:CK。 图4 金属离子对菌株CV-b脱色孔雀石绿的影响 Fig. 4 Effect of different metal ions on decolorization of Malachite Green by strain CV-b
2.2 菌株CV-b降解孔雀石绿的酶学特征

微生物降解有毒害染料可归因于微生物体内的降解酶,而报道较多的染料降解相关酶主要为有酪氨酸酶、漆酶、木质素过氧化物酶、锰过氧化物酶和NADH-DCIP还原酶等,它们可能与微生物降解染料密切相关[20]。菌株CV-b降解孔雀石绿过程中相关酶活性分析结果(表 1)显示,酪氨酸酶(P<0.05)和NADH-DCIP还原酶(P<0.01)活性在降解前后差异显著,说明这两种酶可能与菌株CV-b降解孔雀石绿密切相关。值得关注的是,酪氨酸酶活性在含孔雀石绿的培养基中显著升高,而NADH-DCIP还原酶活性则显著降低,说明酪氨酸酶可被孔雀石绿诱导,而NADH-DCIP还原酶则被孔雀石绿抑制,进而说明酪氨酸酶是参与孔雀石绿脱色的主要酶之一。此外,漆酶活性在降解后略有升高,但差异不显著;降解前后均未检测到木质素过氧化物酶和锰过氧化物酶酶活,说明二者与该菌株降解孔雀石绿不相关;同时,孔雀石绿还原酶酶活在降解前后的差异也不显著,说明此酶也不参与该菌株降解孔雀石绿。

表1 菌株CV-b降解孔雀石绿相关酶的活性 Table 1 The enzyme activities relative to degradation of Malachite Green by strain CV-b
点击放大
2.3 菌株CV-b降解孔雀石绿的产物分析及代谢途径推测

菌株CV-b对孔雀石绿脱色前后的UV-visible全波长扫描图谱(图 5)显示,孔雀石绿的特征吸收峰(620 nm)在脱色后近乎消失,而在波长210 nm和257 nm处的吸收峰略有升高,300~400 nm之间的吸收峰也较脱色前也略有升高。以往的报道显示,细菌对染料的脱色机制可归纳为生物吸附、生物富集和生物降解,若脱色归因于生物吸附,则脱色后的全波长扫描图谱中的特征吸收峰较之前会呈比例性降低,同时无新吸收峰产生;若脱色归因于生物降解,则脱色后的特征吸收峰完全消失的同时可产生新吸收峰[21-22]。因此,可推测本研究中菌株CV-b对孔雀石绿的脱色主因为生物降解。

图5 孔雀石绿脱色前后的全波长扫描图谱 Fig. 5 UV-visible spectrum of Malachite Green before and after decolorization

由菌株CV-b对孔雀石绿降解前后的FTIR扫描图谱(图 6)可知,孔雀石绿降解后产生的主要新吸收峰位于1 644 cm-1、1 458 cm-1和1 363 cm-1。经检索获知,波数为1 644 cm-1处的吸收峰可归因于二芳酮的-C=O基团的伸缩振动,波数为1 458 cm-1处的吸收峰可归因于芳酸的-OH基团的伸缩振动,波数为1 363 cm-1处的吸收峰可归因于芳胺的-NH2基团的伸缩振动[23]。因此,推测孔雀石绿降解后产生的主要新产物基团包括-OH、-C=O和-NH2

图6 孔雀石绿脱色前后的FTIR图谱 Fig. 6 FTIR spectrum of malachite green before and after decolorization

进一步对孔雀石绿降解产物进行GC-MS分析发现(图 7),孔雀石绿降解产物的主要检出成分为二甲氨基二苯甲酮(保留时间为14.05 min),其特征离子片段主要为77(72)、105(28)、148(100)和225(34)。将该检出物与GC-MS NIST数据库中的标准物比对,发现其与标准物的相似度较高,为77.7%,因此,可推断该产物为孔雀石绿降解的主要产物。KALYANI等[11]的研究显示,绿脓假单胞菌(Pseudomonas aeruginosa) NCIM2074降解孔雀石绿的中间产物主要为隐性孔雀石绿,并可进一步通过系列酶反应将隐性孔雀石绿转化为N-去甲基化和N-氧化产物(包括原发性和继发性芳胺),代谢终产物为苯甲酮。我们在以往的研究中也发现Pseudomonas sp. DY1对孔雀石绿的降解中间产物为孔雀石绿甲醇,并可进一步继续降解为N,N-二甲基苯胺,甲氨基二苯甲酮,氨基二苯甲酮和二苯甲酰甲烷[12]。微球菌(Micrococcus sp.) BD15对孔雀石绿的降解产物则为二甲氨基二苯甲酮和4-羟基-N,N-二甲基苯铵[13]。本研究中菌株CV-b降解孔雀石绿的代谢产物与已报道其他菌株降解孔雀石绿的降解产物一致,因此推测其途径相似。

图7 二甲氨基二苯甲酮与GC-MS NIST数据库中的标准物比对的质谱图 Fig. 7 Mass spectrum of (dimethyl amino-phenyl)-phenyl-methanone in comparison with the standard in GC-MS NIST database
3 结论

本实验研究了菌株CV-b对孔雀石绿的脱色特性,并经实验证实该菌株具有较强的pH和温度适应性,应用前景较为广阔。酶学分析数据显示,酪氨酸酶可能是催化菌株CV-b降解孔雀石绿的主要降解酶。进一步的降解产物分析显示,菌株CV-b降解孔雀石绿的主要产物为二甲氨基二苯甲酮,该产物可能通过进一步的脱甲基反应生成含-NH2基团的产物,此外,芳酸也可能是孔雀石绿降解中间产物之一。

参考文献
[1] 李怡, 何珊, 曹海鹏, 等. 孔雀石绿脱色菌恶臭假单胞菌菌株M6的分离、鉴定及其生长特性研究. 微生物学通报, 2009, 36(1): 57-63.
LI Y, HE S, CAO H P, et al. Isolation, identification and growth characteristics of Pseudomonas putida strain M6 with malachite green decolorization. Microbiology China, 2009, 36(1): 57-63. (in Chinese with English abstract)
[2] CHATURVEDI V, BHANGE K, BHATT R, et al. Biodetoxification of high amounts of malachite green by a multifunctional strain of Pseudomonas mendocina and its ability to metabolize dye adsorbed chicken feathers. Journal of Environmental Chemical Engineering, 2013, 1(4): 1205-1213. DOI:10.1016/j.jece.2013.09.009
[3] 龚朋飞, 王权, 陈永军. 孔雀石绿毒性及其检测研究进展. 水利渔业, 2007, 27(4): 1-4.
GONG P F, WANG Q, CHEN Y J. Toxicity and detection of malachite green. Reservoir Fisheries, 2007, 27(4): 1-4. (in Chinese with English abstract)
[4] 李孝军, 唐行忠, 王素华, 等. 水产品中孔雀石绿残留的风险评估. 检验检疫学刊, 2009, 19(3): 62-65.
LI X J, TANG X Z, WANG S H, et al. Risk assessment of malachite green residues in aquatic. Journal of Inspection and Quarantine, 2009, 19(3): 62-65. (in Chinese with English abstract)
[5] 余培建. 降解水体中孔雀石绿的药物的初步研究. 水生态学杂志, 2009, 2(1): 21-24.
YU P J. Degradation of malachite green in the fishery water by medicine. Journal of Hydroecology, 2009, 2(1): 21-24. (in Chinese with English abstract)
[6] 王邃, 陈丹峰, 郭智勇, 等. 孔雀石绿的污染治理及样品中残留物的分离检测方法. 水生态学杂志, 2009, 2(4): 146-150.
WANG S, CHEN D F, GUO Z Y, et al. The treatment of malachite green and the methods of separation and detection in samples. Journal of Hydroecology, 2009, 2(4): 146-150. (in Chinese with English abstract)
[7] 梅嬛, 洪青, 李顺鹏. 一株孔雀石绿降解菌的分离鉴定及降解特性. 应用与环境生物学报, 2010, 16(3): 390-393.
MEI H, HONG Q, LI S P. Isolation, identification and characterization of a malachite green-degrading bacterium. Chinese Journal of Applied & Environmental Biology, 2010, 16(3): 390-393. (in Chinese with English abstract)
[8] CHEN C Y, KUO J T, CHENG C Y, et al. Biological decolorization of dye solution containing malachite green by Pandoraea pulmonicola YC32 using a batch and continuous system. Journal of Hazardous Materials, 2009, 172(2/3): 1439-1445.
[9] WU J, JUNG B G, KIM K S, et al. Isolation and characterization of Pseudomonas otitidis WL-13 and its capacity to decolorize triphenylmethane dyes. Journal of Environmental Science, 2009, 21(7): 960-964. DOI:10.1016/S1001-0742(08)62368-2
[10] 房桂华, 李联泰, 李荣, 等. 孔雀石绿降解菌Arthrobacter sp. M6的分离及降解特性. 应用与环境生物学报, 2010, 16(4): 581-584.
FANG G H, LI L T, LI R, et al. Isolation and characterization of a malachite green-degrader Arthrobacter sp. M6. Chinese Journal of Applied and Environmental Biology, 2010, 16(4): 581-584. (in Chinese with English abstract)
[11] KALYANI D C, TELKE A A, SURWASE S N, et al. Effectual decolorization and detoxification of triphenylmethane dye malachite green (MG) by Pseudomonas aeruginosa NCIM 2074 and its enzyme system. Clean Technologies and Environmental Policy, 2012, 14(5): 989-1001. DOI:10.1007/s10098-012-0473-6
[12] DU L N, WAND S, LI G, et al. Biodegradation of malachite green by Pseudomonas sp. strain DY1 under aerobic condition: characteristics, degradation products, enzyme analysis and phytotoxicity. Ecotoxicology, 2011, 20(2): 438-446. DOI:10.1007/s10646-011-0595-3
[13] DU L N, ZHAO M, LI G, et al. Biodegradation of malachite green by Micrococcus sp. strain BD15: biodegradation pathway and enzyme analysis. International Biodeterioration & Biodegradation, 2013, 78(2): 108-116.
[14] CHEN S H, YIEN TING A S. Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost. Journal of Environmental Management, 2015, 150: 274-280. DOI:10.1016/j.jenvman.2014.09.014
[15] JUNG J, SEO H, LEE S H, et al. The effect of toxic malachite green on the bacterial community in Antarctic soil and the physiology of malachite green-degrading Pseudomonas sp. MGO. Applied Microbiology and Biotechnology, 2013, 97(10): 4511-4521. DOI:10.1007/s00253-012-4669-9
[16] 安贤惠, 张静, 王秀丽, 等. 一株孔雀石绿降解菌的分离筛选及其初步鉴定. 淮海工学院学报(自然科学版), 2013, 22(4): 77-81.
AN X H, ZHANG J, WANG X L, et al. Isolation and identification of malachite green degrading bacteria strain 2e. Journal of Huaihai Institute of Technology (Natural Science Edition), 2013, 22(4): 77-81. (in Chinese with English abstract)
[17] L G Y, CHENG J H, CHEN X Y, et al. Biological decolorization of malachite green by Deinococcus radiodurans R1. Bioresource Technology, 2013, 144: 275-280. DOI:10.1016/j.biortech.2013.07.003
[18] PEARCE C I, LLOYD J R, GUTHRIE J T. The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes and Pigments, 2003, 58(3): 179-196. DOI:10.1016/S0143-7208(03)00064-0
[19] YAN J P, NIU J Z, CHEN D D, et al. Screening of Trametes strains for efficient decolorization of malachite green at high temperatures and ionic concentrations. International Biodeterioration & Biodegradation, 2014, 87: 109-115.
[20] SHEDBALKAR U, DHANVE R, JADHAV J. Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. Journal of Hazardous Materials, 2008, 157(2/3): 472-479.
[21] AYED L, CHAIEB K, CHEREF A, et al. Biodegradation and decolorization of triphenylmethane dyes by Staphylococcus epidermidis. Desalination, 2010, 260(1/2/3): 137-146.
[22] CHEN S H, SU A, TING Y. Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample. International Biodeterioration & Biodegradation, 2015, 103: 1-7.
[23] 吴瑾光. 近代傅立叶变换红外光谱技术及应用. 北京: 科学技术文献出版社, 1994: 573-648.
WU J G. Modern Fourier-Transform Infrared Spectroscopy Technology and Application. Beijing: Science and Technology Literature Press, 1994: 573-648. (in Chinese with English abstract)