浙江大学学报(农业与生命科学版)  2016, Vol. 42 Issue (6): 731-738
文章快速检索     高级检索
产地与种源对玛咖化学质量的影响[PDF全文]
周文彬, 成哲弘, 赵云鹏 , 傅承新    
浙江大学生命科学学院,濒危野生动植物保护生物学教育部重点实验室,杭州 310058
摘要: 利用多种源同地栽培的同质园试验和同一种源异地栽培的迁地试验,分析不同类别玛咖(Lepidium meyenii Walp.)的17种氨基酸、8种矿质元素、总生物碱、6种玛咖酰胺等含量的差异及化学分化式样,为玛咖质量控制和标准化栽培提供参考。对玛咖化学成分含量比较表明:同质园试验的4个种源之间的差异小于迁地试验2个产地之间的差异,前者在5个指标成分含量上具显著差异,而后者达11个;种源和产地影响的具体化学成分不尽相同,其中最突出的是同质园试验不同种源之间在分析的8种矿质元素上均无显著差异,而迁地试验玛咖有5种矿质元素含量及总含量差异显著;四川红原栽培的6号种源(H6)的总生物碱含量显著高于阿坝(A6);不同种源和产地对供试材料的玛咖酰胺含量均无显著影响。主成分分析、分级聚类分析和相似度系数(夹角余弦值)比较均表明:相同种源迁地试验的2类玛咖在总体化学相似性上呈现显著的差异和分化,其差异/分化程度显著大于供试的4个不同种源之间的差异/分化程度。供试玛咖的化学质量主要受产地环境的影响,特别是不同产地的土壤条件直接影响玛咖块根的矿质元素含量;而现有不同种源的影响较小。因此,在玛咖规范化生产中,应更注重产地的选择和环境条件的控制,同时,应进一步分析不同种源之间的遗传分化及其与化学相似性的相关性,以更好地解析遗传/种源效应。
关键词: 玛咖    质量评价    化学相似性    同质园试验    迁地试验    
Contribution of environmental and genetic variation to chemical similarity of Maca (Lepidium meyenii Walp.)
ZHOU Wenbin, CHENG Zhehong, ZHAO Yunpeng , FU Chengxin    
Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
Summary: Maca, Lepidium meyenii Walp. (Brassicaceae), has been domesticated as a medicinal crop at high altitude of the Peruvian Andes for two millennia. Its cultivars or landraces with different chemical profiles were bred and introduced out of Peru to various countries for industrial cultivation as driven by the increasing demand. Maca, which was approved on the China Inventory of New Resource Food in 2011, was also massively cultivated in multiple regions in China. The applied Maca cultivars differed among the producers, which may result in significant inconsistency of Maca quality. Thus, it is increasingly urgent to assess the quality of Maca roots with different cultivars and cultivation localities. We simultaneously conducted both common garden and translocation experiments to address the contribution of both genetic and environmental variation to chemical similarity of Maca. Contents of mineral elements, amino acids, total alkaloid, and macamides were determined on five replicate samples of each Maca category using inductively coupled plasma mass spectrometer (ICP-MS), L8900 amino acid analyzer, UV-2700 spectrophotometer and ProStar 210 high performance liquid chromatograph. Both the chemical component contents and overall similarity coefficients were calculated and compared for the four parameters above using analysis of variance (ANOVA), principal component analysis (PCA), hierarchical clustering analysis (HCA) and cosine coefficient. Data analyses were conducted using SPSS version 22.0. The results showed that the same cultivar from the translocation experiment (H6, A6) demonstrated remarkably greater chemical dissimilarity than the four cultivars (H1, H2, H3, H6) from the common garden experiment. The former experimental pair significantly differed in 11 components, while the latter four cultivars differed in five components. Although different groups of components differed to different extents between either cultivars or localities, the contents of mineral elements were prominently different between localities. Specifically, the total content and the contents of five of the total eight mineral elements were significantly different between the two studied localities. Meanwhile, Maca from Hongyuan of Sichuan Province (H6) showed a significantly higher content of total alkaloids than that from Aba of Sichuan Province (A6). Macamides did not differ either between localities or cultivars. A remarkable differentiation and the greater chemical dissimilarity between localities were also supported by the comparisons of the overall chemical similarity using PCA, HCA and cosine coefficient. In conclusion, the chemical quality of the analyzed Maca is mainly determined by the environmental difference, particularly the soils which may directly impact the contents of mineral elements in Maca roots. More attention should be laid on the selection of farm localities and the control of cultivation environments. Further investigations of genetic distances of Maca cultivars and their relationships with chemical similarity will help better understand the exact contribution of cultivars.
Key words: Lepidium meyenii Walp.    quality assessment    chemical similarity    common garden experiment    translocation experiment    

玛咖(Lepidium meyenii Walp.)是十字花科独行菜属多年生草本植物,块根肉质、球形,原产南美秘鲁安第斯山区,海拔4 000~4 500 m,驯化栽培历史约2 000年[1]。研究发现,玛咖根含有丰富的蛋白质、碳水化合物、脂肪酸、矿物质以及玛咖酰胺、玛咖烯等重要的次生代谢产物,具有较高的营养价值和生物活性,有“南美人参”的美誉[2-3]。根据块根颜色的不同,玛咖可分为多个品种。研究表明,不同品种玛咖块根的化学成分含量有差异[1]。我国于2001年开始引种玛咖,已在云南、西藏、新疆、四川等地引种成功[4],并于2011年5月18日将其列入《新资源食品目录》[5]。随着市场需求的激增,在我国西南多地逐渐形成较大规模的栽培,不同地区栽培的品种/种源不尽相同,因此,亟须评价现有的不同栽培品种/种源和产地的玛咖质量差异,并探讨其成因。

目前,对玛咖质量评价多采用氨基酸[6]、矿质元素[7-9]、生物碱[7]、玛咖酰胺含量[10]等单一或少数指标,评价不够全面。因此,本研究采用上述4类指标,通过多种源同地栽培的同质园试验和同一种源异地栽培的迁地试验,综合评价、剖析种源和环境差异对玛咖块根各评价指标成分含量及化学分化式样的影响,旨在为玛咖质量控制和标准化栽培提供参考。

1 材料与方法 1.1 材料采集与处理

试验材料采集自四川省金玛咖生物科技有限公司的红原和阿坝生产基地,其中,红原基地采集全部4个种源(编号为H1、H2、H3、H6),阿坝基地采集6号种源(编号为A6)。每类样品随机采集5个生长势、大小一致的块根,于2014年10月采收,块根切片,于50 ℃烘干至恒量,用Restch MM400球磨仪粉碎,备用。

1.2 化学分析 1.2.1 矿质元素含量测定

精确称取样品0.2 g,加浓硝酸6 mL,95 ℃水浴1 h,转移消解液,定容至50 mL。用电感耦合离子体质谱仪(inductively coupled plasma mass spectrometer,ICP-MS,PerkinElmer NexION 300)测定矿质元素含量[11]

1.2.2 氨基酸含量测定

精确称取样品0.2 g,加体积比为1∶1的硝酸/盐酸(分析纯)5 mL,于110 ℃水解24 h,转移水解液,定容至100 mL。吸取定容液2 mL,用氮吹仪于60 ℃下脱干。加0.02 mol/L HCl混匀,过0.22 μm微孔滤膜,用日立L8900全自动氨基酸分析仪测定氨基酸含量[12]

1.2.3 总生物碱含量测定

精确称取样品0.5 g,加甲醇(分析纯)20 mL,于80 ℃水浴超声提取30 min,过滤,用氮吹仪吹干。分3次、每次加入1 mL盐酸溶解,5 000 r/min离心10 min,取上清液,用10% NaOH调至pH=10,用三氯甲烷萃取3次,合并萃取液,浓缩并定容至10 mL,作为供试液。配制0.1 mg/mL小檗碱标准溶液,依次取0、0.1、0.2、0.3、0.4、0.5和0.6 mL,加三氯甲烷至1.0 mL,配成系列标准液。各取供试液和标准液1 mL,加 2.0×10-4 mol/L溴麝香草酚蓝溶液(溶于pH 7.0的磷酸缓冲液)和三氯甲烷各5 mL,密塞振摇2 min,静置2 h。取三氯甲烷层,加0.2 g无水硫酸钠干燥,摇匀,放置10 min,用导津UV-2700紫外可见分光光度计测定在414 nm处的吸光度值[13]

1.2.4 玛咖酰胺含量测定

参考MCCOLLOM等[14]和朱财延等[15]的高效液相色谱法(high performance liquid chromatography,HPLC)进行优化:精密称取样品0.5 g,加乙酸乙酯(分析纯)10 mL,250 W超声提取30 min,滤液经50 ℃水浴、氮吹仪吹干,用乙腈(色谱纯)定容至10 mL,经0.22 μm疏水性微孔薄膜过滤,滤液用于HPLC分析。HPLC分析仪(ProStar 210,美国Varian公司);柱温箱(天津市旗美科技有限公司);色谱柱:250 mm×4.6 mm,1.8 μm(北京迪马欧泰科技发展中心)。柱温:40 ℃;流速:1 mL/min;流动相A:0.005%三氟乙酸(TFA),流动相B:乙腈;洗脱梯度:0~30 min(15%A∶85%B),30~35 min(15%A∶85%B→0%A∶100%B);检测波长:210和280 nm。

参考YANG等[16]的方法对样品进行考察:取同一供样液,连续进样5次,进行精密度试验,考察其主要共有峰保留时间和峰面积的相对标准偏差(relative standard deviation,RSD)。同时,分别于0、2、4、8、12、24和48 h进样,考察样品的稳定性,计算主要共有峰的保留时间和峰面积的RSD;精确称取N-苄基十八碳酰胺标准品1 μg,并用甲醇(分析纯)稀释至150、100、50、25和10 μg/mL,进行标准曲线绘制,考察最低检测限(limit of detection,LOD)(信噪比为3)和最低定量限(limit of quantitation,LOQ)(信噪比为10)。

1.3 数据分析

采用3种分析方法比较不同来源玛咖之间的化学相似性和分化程度。一是含量比较法:采用单因素方差分析的多重比较和双样本t检验,比较不同来源的玛咖之间在氨基酸、矿质元素、总生物碱、玛咖酰胺含量上的差异。通过Shapiro/Wilk方法,检验数据是否符合正态分布。通过方差齐性检验,确定多重比较的方法:若数据符合方差齐性,则使用最小显著差别法;若不符合,则使用Tamhane法。二是整体相似性的图示比较法:分别利用主成分分析(principal component analysis,PCA)和分级聚类分析(hierarchical clustering analysis,HCA),分析供试样品的聚类和分化式样。供试数据做Z分数标准化,利用PCA提取解释度最大的2个主成分;HCA采用基于欧几里德距离的Ward方法。三是整体相似性的量化比较法:对数据进行0~1标准化处理,计算相似度系数(夹角余弦值),并做单因素方差分析,检验不同类别的供试样品间是否存在显著的化学分化。上述分析均通过SPSS 22.0(美国IBM公司)软件完成。

2 结果与分析 2.1 不同来源玛咖化学成分含量比较

本研究检测玛咖酰胺的HPLC法具有良好的精确性(RSD<3%)、稳定性(RSD<3%)和灵敏性(LOD≤0.09 μg/mL,LOQ≤0.02 μg/mL);查阅文献并结合标准品比对,确定玛咖样品中的峰6是N-苄基十八碳酰胺;此外,还检测到5种未知物质(图 1)。

峰6代表标准品N-苄基十八碳酰胺,1~5对应5种不同未知物质的共有峰。 Peak 6 represents the reference component,N-benzyl-octadecanamide; peaks 1 to 5 represent different unknown shared chemical compounds. 图1 N-苄基十八碳酰胺的HPLC图(A)及玛咖样品代表性物质的HPLC图(B) Fig. 1 N-benzyl-octadecanamide standard chromatographic profile (A) and representative chromatographic profile of Maca (Lepidium meyenii) (B)

表 1可以看出:红原基地同质园栽培的4个种源玛咖在所检测的全部17种氨基酸、8种矿质元素和总生物碱含量以及6个色谱峰面积(包括N-苄基十八碳酰胺)间在统计学上几乎无显著差异(P>0.05),仅有4种氨基酸(天冬氨酸Asp、苯丙氨酸Phe、赖氨酸Lys、脯氨酸Pro)含量和色谱峰1的面积在统计学上存在显著差异;此外,2号种源(H2)的3种氨基酸(天冬氨酸Asp、苏氨酸Thr、丝氨酸Ser)含量总体上高于其他种源,而其色谱峰1面积小于其他种源;相比同地栽培的不同种源,在红原和阿坝异地栽培的相同种源(H6和A6)的化学成分含量差异较大,两者在11个分析指标含量上有显著差异,包括5种矿质元素(Fe、Ca、K、Mg、Na)及矿质元素总含量、3种氨基酸(甲硫氨酸Met、苯丙氨酸Phe、脯氨酸Pro)、总生物碱含量、1个色谱峰面积(峰3),其中,H6有5个指标成分的含量高于A6,A6有6个指标成分的含量高于H6。可见,种源和产地对玛咖具体化学成分的影响不尽相同。而不同种源和产地对供试材料的玛咖酰胺含量均无显著影响。

表1 不同来源玛咖化学成分含量比较 Table 1 Comparisons of chemical composition contents among Maca samples with different cultivars and cultivation localities
点击放大
2.2 不同来源玛咖化学相似性的PCA和HCA分析

基于全部化学数据矩阵的PCA散点图(图 2)直观显示了不同产地和种源的玛咖样品的聚类式样和同类样品间的离散程度。从中可以看出:异地栽培的玛咖明显分成了2类,阿坝栽培的A6位于上半区,而红原栽培的4个种源聚在下半区,后者又大致分化为2个亚类(H1,H2;H3,H6);此外,H1、H2这2类样品个体之间的离散程度较高。

H1、H2、H3、H6表示在红原基地采集的全部4个种源;A6表示在阿坝基地采集的6号种源。 H1,H2,H3,H6 show respectively four Maca cultivars from Hongyuan County of Sichuan Province; A6 shows the Maca cultivar from Aba Autonomous Prefecture of Sichuan Province. 图2 不同来源玛咖基于氨基酸、矿质元素、总生物碱、玛咖酰胺数据的主成分分析 Fig. 2 Principal component analysis (PCA) of Maca samples with different cultivars and cultivation localities using chemical data of amino acids,mineral elements,total alkaloids and macamides

HCA分析结果(图 3)与PCA基本一致:全部样品首先按照产地聚成了分化程度较大的2大分支(H1,H2,H3,H6;A6);异地栽培的6号种源(H6,A6)分别聚在2个分支中;在同地栽培的4个种源中,H1、H6、H2聚类较近,而与H3聚类略远。

H1、H2、H3、H6表示在红原基地采集的全部4个种源;A6表示在阿坝基地采集的6号种源。 H1,H2,H3,H6 show respectively four Maca cultivars from Hongyuan County of Sichuan Province; A6 shows the Maca cultivar from Aba Autonomous Prefecture of Sichuan Province. 图3 不同来源玛咖基于氨基酸、矿质元素、总生物碱、玛咖酰胺数据的分级聚类分析 Fig. 3 Hierarchical clustering analysis (HCA) dendrogram of Maca samples with different cultivars and cultivation localities using chemical data of amino acids,mineral elements,total alkaloids and macamides
2.3 不同来源玛咖化学相似性比较

对不同来源玛咖化学相似度系数(夹角余弦值)进行统计学分析(表 2)表明:虽然相同产地4个不同种源之间在矿质元素和色谱峰的相似度上有显著差异,但是其总化学矩阵的相似度差异并不显著;相反,不同产地的相同种源虽然单类指标的相似度差异不显著,但其总化学矩阵相似度具显著差异。

表2 不同来源玛咖化学相似度(夹角余弦值)比较 Table 2 Comparisons of chemical similarity using cosine coefficient among Maca samples with different cultivars and cultivation localities
点击放大
3 讨论

PCA、HCA及夹角余弦值比较均表明,不同产地环境(红原和阿坝)对供试的相同种源玛咖的总体化学相似性有显著影响,并且其作用大于供试的4种不同种源的差异效应:说明对于现有种源而言,产地环境是影响玛咖块根化学品质的主要因素。玛咖的该特性与短莛飞蓬(灯盏花)(Erigeron breviscapus)[17]、白术(Atractylodes macrocephala)[18]、狮牙苣(Leontodon autumnalis)[19]等植物相似。产地环境对不同类别化学成分的影响不尽相同,如对玛咖酰胺含量无显著影响,而对矿质元素有突出效应,测试的8种矿质元素总含量及其中的5种矿质元素含量差异显著:说明不同产地的土壤性质直接影响了玛咖块根中矿质元素的吸收和积累,导致其产地差异性。此外,四川红原栽培的6号种源(H6)的总生物碱含量显著高于阿坝(A6)。因此,在现有种源的生产实践中,应更注重产地的选择和环境条件的控制。

本研究显示种源效应不如产地效应明显,其原因可能是种源对玛咖化学品质的影响较小,与灯盏花类似[17]。但前人研究发现,玛咖不同品种块根的化学成分含量有差异[1];因此,本结果也可能仅仅是因为供试的种源之间遗传分化较小,尚不足以产生显著的化学表型分化,或者这种化学差异因品种而异。下阶段需要进一步分析玛咖不同种源之间的遗传距离,研究遗传距离(遗传差异程度)与化学距离(化学差异程度)的相关性;同时,通过分析不同种源在不同化学成分指标上的具体表现,进一步明确品种特性和育种目标,促进玛咖的标准化生产和质量控制。

参考文献
[1] NORENBURG J, RITGERS R. Lepidium meyenii. Encyclopedia of Life [OL]. [2014-01-15]. http://www.eol.org/pages/483599/overview.
[2] 兰玉倩, 王玲, 张之会.玛咖研究进展. 北京农业,2013 (30):47.
LAN Y Q, WANG L, ZHANG Z H. Advances of Maca researches. Beijing Agriculture, 2013 (30):47. (in Chinese with English abstract)
[3] GONZALES G F, CORDOVA A, VEGA K, et al. Effect of Lepidium meyenii (Maca), a root with aphrodisiac and fertility-enhancing properties, on serum reproductive hormone levels in adult healthy men. Journal of Endocrinology, 2003,176 (1):163–168. DOI: 10.1677/joe.0.1760163.
[4] 谢荣芳, 瞿熙.玛咖引种及栽培技术. 云南农业科技,2008 (4):42–43.
XIE R F, QU X. Introduction and cultivation technique of Maca. Yunnan Agricultural Science and Technology, 2008 (4):42–43. (in Chinese with English abstract)
[5] 中华人民共和国卫生部.关于批准玛咖粉作为新资源食品的公告[OL].2011-05-18[2015-12-10]. http://www.gov.cn/zwgk/2011-06/16/content_1885915.htm.
Ministry of Health of the People’s Republic of China. Approval of Maca powder as a new resource food. 2011-05-18[2015-12-10]. http://www.gov.cn/zwgk/2011-06/16/content_1885915.htm. (in Chinese)
[6] 冯颖, 何钊, 徐珑峰, 等.云南栽培玛咖的营养成分分析与评价. 林业科学研究,2009,22 (5):696–700.
FENG Y, HE Z, XU L F, et al. Nutritive elements analysis and evaluation of Maca (Lepidium meyenii) cultivated in Yunnan. Forest Research, 2009,22 (5):696–700. (in Chinese with English abstract)
[7] 杨申明, 张蒙, 汪启莲, 等.ICP-AES测定玛咖中微量元素的含量. 微量元素与健康研究,2015,32 (1):26–27.
YANG S M, ZHANG M, WANG Q L, et al. Determination of trace elements in Maca nationality’s medicine by ICP-AES. Studies of Trace Elements and Health, 2015,32 (1):26–27. (in Chinese with English abstract)
[8] 李磊, 周昇昇.玛咖的食品营养与安全评价及开发前景. 食品工业科技,2012,33 (5):376–379.
LI L, ZHOU S S. Nutrition, food security assessment and development prospects of Maca. Science and Technology of Food Industry, 2012,33 (5):376–379. (in Chinese with English abstract)
[9] 丁晓丽, 楚刚辉, 任俊坤.帕米尔玛咖中微量元素及重金属含量分析. 微量元素与健康研究,2011,28 (5):26–27.
DING X L, CHU G H, REN J K. Analysis of trace element and heavy metal contents in Pamir Maca. Studies of Trace Elements and Health, 2011,28 (5):26–27. (in Chinese with English abstract)
[10] 王义强, 陈章靖, 王启业, 等.玛咖药用价值与引种培育研究进展. 经济林研究,2014,32 (2):167–172.
WANG Y Q, CHEN Z Q, WANG Q Y, et al. Advances in research on medicinal value, introduction and cultivation in Lepidium meyenii. Nonwood Forest Research, 2014,32 (2):167–172. (in Chinese with English abstract)
[11] 金鹏飞, 梁晓丽, 夏路风, 等.ICP-MS研究牛黄解毒片中20种微量元素的总量及在水和胃肠液中的溶出特性. 药物分析杂志,2014,34 (6):985–991.
JIN P F, LIANG X L, XIA L F, et al. Study on total contents of 20 trace elements in Niuhuang Jiedu tablets and their extract rates in water and gastrointestinal fluids by ICP-MS. Chinese Journal of Pharmaceutical Analysis, 2014,34 (6):985–991. (in Chinese with English abstract)
[12] 姜涛, 冯永建, 何学超, 等.氨基酸自动分析仪快速分析方法的研究. 化学研究与应用,2012,24 (7):1159–1163.
JIANG T, FENG Y J, HE X C, et al. Research on localized reagent and rapid analysis method of amino acid analyzer. Chemical Research and Application, 2012,24 (7):1159–1163. (in Chinese with English abstract)
[13] 甘瑾, 冯颖, 何钊, 等.云南栽培3种颜色玛咖中总生物碱含量分析. 食品科学,2010,31 (24):415–419.
GAN J, FENG Y, HE Z, et al. Total alkaloids in Maca (Lepidium meyenii) cultivated in Yunnan. Food Science, 2010,31 (24):415–419. (in Chinese with English abstract)
[14] MCCOLLOM M M, VILLINSKI J R, MCPHAIL K L, et al. Analysis of macamides in samples of Maca (Lepidium meyenii) by HPLC-UV-MS/MS. Phytochemical Analysis, 2005,16 (6):463–469. DOI: 10.1002/(ISSN)1099-1565.
[15] 朱财延, 李炳辉, 罗成员, 等.高效液相色谱-质谱法分析植物玛咖中的玛咖烯和玛咖酰胺. 分析仪器,2014 (5):44–49.
ZHU C Y, LI B H, LUO C Y, et al. Analysis of macaenes and macamides in Maca plant by high performance liquid chromatograph-mass. Analytical Instrumentation, 2014 (5):44–49. (in Chinese with English abstract)
[16] YANG S T, CHEN C, ZHAO Y P, et al. Association between chemical and genetic variation of wild and cultivated populations of Scrophularia ningpoensis Hemsl. Planta Medica, 2010,77 :865–871.
[17] LI X, PENG L Y, ZHANG S D, et al. The relationships between chemical and genetic differentiation and environmental factors across the distribution of Erigeron breviscapus (Asteraceae). PLoS One, 2013,8 (11):e74490.. DOI: 10.1371/journal.pone.0074490.
[18] 杨舒婷, 龚华栋, 赵云鹏, 等.产地与种源对白术药材质量的影响. 中药材,2013,36 (6):890–892.
YANG S T, GONG H D, ZHAO Y P, et al. Contributions of environmental and genetic variation to medicinal quality of Atractylodis macrocephalae Rhizoma. Journal of Chinese Medicinal Materials, 2013,36 (6):890–892. (in Chinese with English abstract)
[19] GRASS S, ZIDORN C, BLATTNER F R, et al. Comparative molecular and phytochemical investigation of Leontodon autumnalis (Asteraceae, Lactuceae) populations from Central Europe. Phytochemistry, 2006,67 (2):122–131. DOI: 10.1016/j.phytochem.2005.10.019.