浙江大学学报(农业与生命科学版)  2016, Vol. 42 Issue (6): 720-730
文章快速检索     高级检索
硒对不同水稻幼苗镉胁迫的缓解作用及其对矿质营养的影响[PDF全文]
代邹, 王春雨, 李娜, 蒋明金, 严奉君, 徐徽, 孙永健, 马均    
四川农业大学水稻研究所/农业部西南作物生理生态与耕作重点实验室,成都 611130
摘要: 采用水培试验,研究3 μmol/L Se(亚硒酸钠)对杂交籼稻品种宜香2115(籽粒低Cd积累)和川谷优2348(籽粒高Cd积累)幼苗在不同浓度(0、0.1和1 mmol/L)Cd胁迫下的缓解作用。结果表明:加Se显著增加了不同浓度Cd胁迫下2个水稻品种幼苗的生物量、叶绿素a含量,但川谷优2348叶绿素b含量下降;加Se可增加2个水稻品种体内抗氧化物质(抗坏血酸和谷胱甘肽)含量,且川谷优2348的2种抗氧化物质含量均高于宜香2115,表现出品种间差异;在1 mmol/L Cd胁迫下,Se主要通过促进川谷优2348合成更多的抗坏血酸和谷胱甘肽来提高对Cd的耐受性,而宜香2115主要通过Se促进植物螯合肽的合成来降低Cd的毒害;加Se能使幼苗维持较高的根部活力,从而降低遭受Cd胁迫伤害的程度;随着Cd胁迫程度增加,2个水稻品种幼苗地上部Cd含量显著上升,加Se可直接抑制2个水稻品种对Cd的吸收;在Cd胁迫下,Se能降低2个水稻品种地上部Ca、Zn含量,但对Cu、Mn含量变化的影响存在品种间差异,而Se对2个水稻品种根部矿质元素含量影响表现一致,即在Cd胁迫下根部Ca、Cu含量增加,Mn、Zn含量减少。
关键词: 水稻    苗期    镉胁迫        缓解    
Alleviation role and effects of selenium on mineral nutrients in rice (Oryza sativa) seedlings under cadmium stress
DAI Zou, WANG Chunyu, LI Na, JIANG Mingjin, YAN Fengjun, XU Hui, SUN Yongjian, MA Jun    
Key Laboratory of Crop Physiology, Ecology, and Cultivation in Southwest China, Ministry of Agriculture/Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
Summary: Substantial amounts of heavy metals including cadmium have been released to the environment by geological activities or by anthropogenic impacts and industrialization, such as mining, smelting activities, sewage sluge, and the unreasonable utility of fertilizers and pesticides. Cadmium (Cd) is a toxic heavy metal with high mobility and can be readily absorbed into rice plants and transported to human bodies through the food chain. Selenium (Se) is an essential element for animals and human beings, which usually acts as a co-factor in antioxidant enzymes in human bodies. Though Se is not considered as an essential element for plants, there are lots of evidence suggesting its beneficial effects for plant growth and resistance to heavy metal stress. However, little effort has been found about the comparative study of Se effects with respect to different grain Cd-accumulative rice seedlings. Therefore, the aim of the present study is to explore the mitigation mechanisms of Se to Cd stress in different rice cultivars. In this research, a hydroponic experiment was conducted to study the alleviation role of Se in two hybrid rice variety (Yixiang 2115 with low grain Cd accumulation, Chuanguyou 2348 with high grain Cd accumulation) seedlings. Cd in the concentrations of 0, 0.1, 1 mmol/L with or without 3 μmol/L Se (Na2SeO3) solutions were treated on the two rice seedlings. The root and shoot biomasses, chlorophyll contents, Cd concentration and contents of mineral nutrient elements were measured. The results showed that, Se increased significantly the biomass and chlorophyll a content of the two rice seedlings under the Cd stress, but decreased the chlorophyll b content in Chuanguyou 2348, which had the high Cd content in grain. The contents of ascorbic acid and glutathione in the two rice seedlings also increased with the supplement of Se, but those were higher in Chuanguyou 2348 than in Yixiang 2115, showing the differences between the two varieties. Under the 1 mmol/L Cd stress, Se promoted the synthesis of ascorbic acid and reduced glutatione to alleviate Cd stress in Chuanguyou 2348, but accelerated the synthesis of phytochelatins in Yixiang 2115 to mitigate Cd stress. Se also mitigated the injuries of the Cd stress to roots, which kept root activity in higher level than those without Se supplementation. The Cd content in shoots of the two varieties increased sharply with the Cd concentration increasing in the nutrient solution. Se could inhibit the absorption of Cd in the two varieties directly. Se could decrease the contents of calcium (Ca) and zinc (Zn) in shoots of the two varieties under the Cd stresses, but induced different reactions on cuprum (Cu) and manganese (Mn) contents. To the roots, Se increased the Ca and Cu contents, but decreased the Zn and Mn contents in the two varieties under the Cd stress conditions. It is concluded that, Se can mitigate inhibition of Cd stress to rice seedling growth by elevating seedling biomass, chlorophyll a content, changing the contents of ascorbic acid, glutathione and non-protein thiols, keeping higher root activity compared with only Cd treatment. Besides, Se can directly suppress Cd uptake in rice seedlings and mainly affects Cu and Mn concentrations in shoots between the two rice varieties.
Key words: rice (Oryza sativa)    seedling stage    cadmium stress    selenium    alleviation    

随着我国工农业现代化进程的加快,每年都有大量的重金属通过矿山开采、工业排放、污水灌溉以及不合理的化肥施用等途径进入到土壤环境中,重金属污染问题日益突出[1]。镉(Cd)作为土壤主要无机污染物之一,对植物和人体都有潜在威胁。植物体内过量积累Cd,会导致植物叶片卷曲、生长停滞,严重的甚至造成根部坏死,最终使植株死亡[2]。Cd通过食物链在人体内富集则会对人体骨骼、肾脏等部位造成损伤。20世纪60年代发生在日本的“痛痛病”就是当地居民长期食用Cd超标大米所致[3]。联合国环境规划署在1984年将Cd列入全球12种危害物的首位。水稻是我国的主要粮食作物,全国有60%以上人口以大米为主食,水稻稳产和稻米品质安全关系到我国社会经济稳定运行的大局。Cd在土壤-水稻系统内的高迁移性使其能大量积累在水稻体内,并最终转运到籽粒中。近年来,我国湖南、广州等地曝光的“毒大米”就是因为在Cd污染稻田进行水稻生产而造成的,最终导致农民严重的经济损失。

硒(Se)作为动物体内的必需微量元素,在动物生长发育过程中起着重要的作用,其功能主要是参与动物体内谷胱甘肽过氧化物酶的合成[4]。人体缺Se会导致人体功能的损伤和病变,心脏病、克山病及大骨节病等的发生都与Se摄入不足有重要联系[5]。近年来,关于Se是否为植物的必需元素还有争论,但相关研究均表明Se对高等植物的生长发育有着重要作用[6-7]。施Se可以抑制植物对砷(As)、汞(Hg)、铅(Pb)和镉(Cd)等重金属的吸收或转运[8-9]。因此,基于Se元素在植物中的积极作用,本文研究了施Se对籽粒Cd积累能力不同的水稻品种缓解Cd胁迫的作用机制,旨在为Cd污染土壤上生产低Cd稻米提供理论和实践依据。

1 材料与方法 1.1 试验材料与设计

选用前期筛选出的籽粒低Cd积累杂交稻品种宜香2115(籽粒含Cd量0.96 mg/kg)和籽粒高Cd积累杂交稻品种川谷优2348(籽粒含Cd量2.41 mg/kg)。2015年3月14日将消毒并经催芽的水稻种子播于成都市温江区惠和村2组的试验田里(在土壤中未检测出Cd)。在4月10日,秧苗达到4叶1心时,选择长势一致的水稻幼苗,将根部用蒸馏水洗净后,移栽到含1/2全营养液的塑料盆中进行培养;待水稻幼苗返青后改用全营养液培养(在四川农业大学成都校区水稻研究所钢架大棚内进行)。营养液配方按国际水稻研究所常规配方配制。营养液每3 d更换一次,每天早晚各调节一次营养液pH至5.5±0.05。试验采用裂区试验设计,设品种为主区(P):宜香2115(P1),川谷优2348(P2);硒为副区(S):不施Se(S0),施Se 3 μmol/L(S1);3个Cd浓度为副副区(C):不加Cd(C0),0.1 mmol/L Cd(C1),1 mmol/L Cd(C2)。共12个处理,每个处理2盆,共24盆。塑料盆内径52.5 cm,高21.6 cm。每盆用钻孔塑料定植模板均匀布孔,孔距7.0 cm,每盆共21孔,每孔定植2苗。当培养至5叶1心时,分别用含有0和3 μmol/L亚硒酸钠外加不同浓度Cd的全营养液进行处理,12 d后在每个处理的2盆中随机取样,用于相关指标分析。

1.2 测定项目与方法

生物量测定:每个处理从2盆中随机取6穴水稻幼苗,先用0.1 mmol/L CaCl2溶液浸泡15 min以去掉附着在幼苗表面的Cd2+,然后用去离子水反复冲洗植株,再用吸水纸将植株表面多余的水分吸干,按地上部和根部将幼苗分成2部分,于烘箱中105 ℃杀青30 min,然后调节温度至75 ℃烘至恒量并称量。

采集幼苗倒数第2片完全展开叶用于叶绿素含量测定,叶绿体色素用95%乙醇浸提,分光光度法测定[10];根部活力用2,3,5-氯化三苯基四氮唑法测定[11];非蛋白巯基参考王芳等[12]的方法测定;抗氧化物质(抗坏血酸和谷胱甘肽)按陈京都[13]的方法测定。非蛋白巯基和抗氧化物质含量分别按地上部和根部进行测定。

水稻体内Cd及矿质元素含量测定:分别称取0.500 0 g已烘至恒量的地上部和根部植株样品置于聚四氟乙烯烧杯中,加入20 mL体积比为3∶1的HNO3-HClO4混合酸,在电热板上进行湿法消解,消煮至无色透明时,将溶液用去离子水转移并定容至50 mL容量瓶中,然后用定量滤纸将定容的溶液过滤至100 mL干净的聚乙烯塑料瓶中,使用电感耦合等离子发射光谱仪(IRIS Intrepid Ⅱ,美国Thermo公司)测定样品中的Cd及矿质元素含量。

1.3 数据处理及分析

采用Excel 2013和Origin Pro 8.0进行数据处理及作图,采用DPS 7.05进行方差分析。

2 结果与分析 2.1 Se对Cd胁迫下水稻生物量的影响

表 1可以看出:宜香2115干物质量及根冠比都显著高于川谷优2348;随着Cd胁迫程度加重,水稻地上部和根部的干物质量都急剧降低,宜香2115的根部降幅为32.1%~40.0%,地上部降幅为30.2%~47.5%,川谷优2348相应的降幅为31.8%~52.6%和27.5%~33.6%;在营养液中添加3 μmol/L Se能增加水稻幼苗地上部和根部的干物质量,且在Cd胁迫下,2个水稻品种加Se处理较相对应的不加Se处理显著增加了干物质量;宜香2115的根冠比在1 mmol/L Cd或3 μmol/L Se单独处理下显著高于其余处理,而川谷优2348的根冠比却在1 mmol/L Cd单独处理下最低。这可能与2个品种的基因型差异有关。

表1 Se对不同浓度Cd胁迫下水稻干物质量和根冠比的影响 Table 1 Effects of Se on the biomass and root/shoot ratio of rice seedlings under different Cd concentrations
点击放大
2.2 Se对Cd胁迫下水稻叶绿体色素含量的影响

表 2可以看出:2个水稻品种叶绿素a和叶绿素b含量在统计学上差异显著,而类胡萝卜素含量差异不显著;随着Cd浓度增加,水稻叶片中的叶绿体色素含量均有所降低,加Se能有效缓解其含量下降;在重度Cd胁迫下,宜香2115的叶绿素a含量较川谷优2348降幅更大;S1(3 μmol/L Se)处理使宜香2115在0.1和1 mmol/L Cd胁迫下的叶绿素b含量分别比不加Se处理增加了21.9%和18.3%;加Se使川谷优2348叶绿素b含量在3种Cd浓度下分别比不加Se处理下降了13.6%、20.6%和12.1%,但加Se处理间的叶绿素b含量在统计学上差异不显著;Cd胁迫显著降低了宜香2115的类胡萝卜素含量,Se对宜香2115类胡萝卜素含量没有影响;加Se能够显著提高川谷优2348在重度Cd胁迫下叶片类胡萝卜素含量,比不加Se处理高10.7%。

表2 Se对不同浓度Cd胁迫下水稻幼苗叶绿体色素含量的影响 Table 2 Effects of Se on chloroplast pigment contents in rice under different Cd concentrations
点击放大
2.3 Se对Cd胁迫下水稻根系活力的影响

图 1可知:Cd胁迫显著降低了水稻苗期的根系活力,Cd浓度越大,根系活力越低;在不加Cd处理下,Se对根系活力影响不显著;但施Se能显著提高2个品种在0.1和1 mmol/L Cd胁迫下的根系活力,其中,宜香2115的根系活力分别提高了51.6%和90.2%,川谷优2348分别提高了40.0%和63.6%。可见,Se对宜香2115根系所受Cd胁迫的缓解作用更强。

S0C0:0 μmol/L Na2SeO3+0 mmol/L Cd;S0C1:0 μmol/L Na2SeO3+0.1 mmol/L Cd;S0C2:0 μmol/L Na2SeO3+1 mmol/L Cd;S1C0:3 μmol/L Na2SeO3+0 mmol/L Cd;S1C1:3 μmol/L Na2SeO3+0.1 mmol/L Cd; S1C2:3 μmol/L Na2SeO3+1 mmol/L Cd。短栅上的不同小写字母表示同一品种的不同处理间在P<0.05水平差异有统计学意义。 Different lowercase letters above bars represent statistically significant differences among different treatments for the same variety at the 0.05 probability level. 图1 不同处理下水稻幼苗根部活力 Fig. 1 Root activity of rice seedlings under different treatments
2.4 Se对Cd胁迫下水稻抗坏血酸、谷胱甘肽和非蛋白巯基含量的影响 2.4.1 对抗坏血酸含量的影响

表 3可以看出:宜香2115地上部和根部的抗坏血酸(ascorbic acid,AsA)含量都显著低于川谷优2348;2个品种在对照(S0C0)处理下,其地上部和根部AsA含量都最低;在不加Se处理下,随着Cd浓度增加,宜香2115和川谷优2348地上部AsA含量在0.1和1 mmol/L Cd处理下分别比无Cd处理高45.7%、19.9%和57.8%、28.4%,加Se可促进Cd胁迫下宜香2115和川谷优2348地上部AsA含量的增加;除川谷优2348根部AsA含量在S1C2(3 μmol/L Se+1 mmol/L Cd)处理下显著高于单独的Se处理外,其余各处理根部均表现为在0.1 mmol/L Cd处理下AsA含量最高,不加Cd与1 mmol/L Cd处理间在统计学上无显著差异。

表3 Se对不同浓度Cd胁迫下水稻幼苗AsA、GSH和NPT含量的影响 Table 3 Effects of Se on AsA,GSH,NPT contents in rice seedlings under different Cd concentrations
点击放大
2.4.2 对谷胱甘肽含量的影响

宜香2115地上部谷胱甘肽(glutathione,GSH)含量与川谷优2348在统计学上差异不显著,但根部GSH含量显著低于川谷优2348;在3种Cd浓度下,宜香2115和川谷优2348在0.1 mmol/L Cd处理下地上部GSH含量最大,加Se能促进3种Cd处理下地上部GSH含量的增加;在3种Cd处理中,加Se处理仅显著提高宜香2115在0.1 mmol/L Cd处理下地上部GSH含量(增幅达22.1%),而可以显著提高川谷优2348在0.1和1 mmol/L Cd处理下根部GSH含量(增幅分别为22.1%和26.0%);在0、0.1和1 mmol/L Cd处理下,宜香2115和川谷优2348根部GSH含量在加Se处理下比不加Se处理分别高10.3%、22.8%、23.1%和15.7%、29.4%、16.9%,且在0.1 mmol/L Cd处理下根部GSH含量最高,而1 mmol/L Cd处理使根部GSH含量在加Se或不加Se的3种Cd浓度下含量最低(表 3)。

2.4.3 对非蛋白巯基含量的影响

表 3还可以看出:宜香2115地上部非蛋白巯基(non-protein thiols,NPT)含量显著低于川谷优2348,根部NPT含量高于后者,但在统计学上差异不显著;在3个Cd浓度处理下,除宜香2115在S0C2处理下与对照(S0C0)差异不显著外,2个品种地上部NPT含量在0.1和1 mmol/L Cd处理下显著高于不加Cd处理;加Se使宜香2115和川谷优2348在0、0.1和1 mmol/L Cd处理下比不加Se处理地上部NPT含量增加12.5%、46.6%、44.0%和2.0%、18.1%、19.2%;在3个Cd浓度处理下,宜香2115根部NPT含量显著升高,加Se比不加Se处理在0.1和1 mmol/L Cd浓度下NPT含量分别增加13.3%和25.5%,而单独加Se处理(S1C0)比对照(S0C0)NPT含量下降8.6%,在统计学上差异显著;川谷优2348在0.1和1 mmol/L Cd处理下根部NPT含量也显著高于不加Cd处理,但在1 mmol/L Cd处理下NPT含量显著低于0.1 mmol/L Cd处理;加Se同样使川谷优2348根部NPT含量在0.1和1 mmol/L Cd胁迫下比不加Se处理增加(增幅分别为24.1%和17.2%),但降低不加Cd处理的根部NPT含量,两者在统计学上差异不显著。

2.5 Se对水稻植株Cd含量的影响

由于在0 mmol/L Cd处理下均未在水稻植株中检测到Cd,因此,图 2比较了不同施Cd处理间植株体内Cd含量的变化。从中可以看出:水稻地上部Cd含量随着Cd处理浓度的加大而极显著提高,在不加Se处理下宜香2115和川谷优2348在1 mmol/L Cd处理下的地上部Cd含量分别是各自0.1 mmol/L Cd处理下的26倍和22倍;加Se能够降低植株地上部对Cd的吸收,且在高Cd浓度下作用更显著;在1 mmol/L Cd处理下,加Se使宜香2115和川谷优2348地上部Cd含量比不加Se处理分别下降了40.0%和17.3%。加Se处理的水稻根部Cd含量也低于不加Se处理,但降幅不同;宜香2115和川谷优2348在0.1和1 mmol/L Cd胁迫下,加Se比不加Se处理的Cd含量分别低7.8%、41.7%和28.8%、25.3%(图 2)。

各处理符号表示的含义详见图 1注。短栅上的不同小写字母表示同一品种的不同处理间在P<0.05水平差异有统计学意义。 Please see the footnote of Fig. 1 for details of each treatment. Different lowercase letters above bars represent statistically significant differences among different treatments for the same variety at the 0.05 probability level. 图2 不同处理下水稻地上部和根部Cd含量 Fig. 2 Cd contents in rice shoots and roots under different treatments
2.6 Se对水稻植株矿质元素含量的影响

表 4可以看出:宜香2115地上部矿质元素只有Cu含量显著高于川谷优2348;随着Cd处理浓度的增加,2个品种地上部Ca含量显著增加,且都在1 mmol/L Cd处理下最高,加Se处理降低了宜香2115和川谷优2348在0、0.1和1 mmol/L 3种Cd胁迫下地上部Ca含量,分别比不加Se处理低13.8%、7.0%、5.6%和11.0%、6.4%、10.0%;加Se在0.1 mmol/L Cd处理下能显著增加宜香2115地上部Cu含量,却导致川谷优2348比不加Se处理降低46.7%;2个品种地上部Mn含量随着Cd处理浓度升高而显著下降,在0.1和1 mmol/L Cd处理下,宜香2115地上部Mn含量在加Se与未加Se处理间在统计学上差异不显著,但加Se使未添加Cd处理的地上部Mn含量下降37.2%,而川谷优2348在0、0.1和1 mmol/L Cd处理下,加Se处理比各自不加Se处理的Mn含量分别下降38.0%、21.0%和42.8%,在统计学上差异显著;随着Cd胁迫浓度增加,2个品种地上部Zn含量显著升高,加Se与不加Se处理使宜香2115和川谷优2348地上部Zn含量在0、0.1和1 mmol/L 3种Cd浓度胁迫下分别下降8.3%、15.5%、28.2%和22.9%、9.1%、14.5%。

表4 Se对不同浓度Cd胁迫下水稻幼苗地上部及根部Ca、Cu、Mn和Zn含量的影响 Table 4 Effects of Se on Ca,Cu,Mn and Zn contents in rice shoot and root under different Cd concentrations μg/g
点击放大

表 4还可以看出:0.1 mmol/L Cd处理显著提高了宜香2115根部Ca含量,而1 mmol/L Cd处理却显著降低了其根部Ca含量,加Se处理比不加Se处理显著增加了3个Cd浓度胁迫下宜香2115根部Ca含量,增幅分别为7.2%、4.9%和6.3%,而加Se处理比不加Se处理仅显著提高了川谷优2348在0.1和1 mmol/L Cd胁迫下根部Ca含量,增幅分别为6.6%和29.1%,但显著降低了不添加Cd处理的根部中的Ca含量;0.1 mmol/L Cd处理能显著提高2个品种根部中的Cu含量,加Se处理较不加Se处理提高了2个品种根部Cu含量,在0、0.1和1 mmol/L Cd胁迫下,加Se使宜香2115根部Cu含量分别增加了5.6%、26.5%和40.7%,而川谷优2348在不加Cd处理下,加Se未改变其根部Cu含量,而在其余2个Cd浓度处理下分别增加33.6%和19.5%;2个品种根部Mn含量都随着Cd胁迫浓度的增加而显著下降,在1 mmol/L Cd胁迫下Mn含量最低,加Se能进一步减少2个品种根部中的Mn含量,其中,加Se使宜香2115在0、0.1和1 mmol/L Cd胁迫下较不加Se处理下降36.1%、40.9%和48.6%,川谷优2348相应的降幅分别为32.8%、9.4%和13.8%;在1 mmol/L Cd胁迫下,2个品种根部Zn含量最低,与不加Se处理相比,加Se处理显著降低了宜香2115和川谷优2348在不添加Cd处理下的根部Zn含量,降幅分别为17.6%和34.3%。

3 讨论 3.1 Se对Cd胁迫下水稻幼苗生物量的影响作用

Cd是植物非必需元素,过量的Cd添加会导致植株生物量下降[14-15]。Se是否为植物的必需元素还存在争论,但Se对植物抵抗Cd胁迫的有益作用已有相关证据[4, 16-17]。本研究在相同Cd胁迫条件下,籽粒高Cd积累品种川谷优2348生物量小于籽粒低Cd积累品种宜香2115,这可能与2个水稻品种对Cd的敏感性和耐受性差异有关[13, 18]。Se的加入能够有效缓解Cd胁迫造成的生物量下降,可能是因为Se提高了水稻体内抗氧化系统活性,减少了Cd胁迫诱导产生的过量活性氧对水稻幼苗的伤害,维持了水稻正常的光合生产[19]。在本试验中,加Se使2个水稻品种幼苗抗氧化物质AsA和GSH含量升高,使水稻体内活性氧能迅速清除,从而使叶绿素、细胞质膜等物质降解减慢,维持了水稻光合生产的正常进行。此外,在未加Cd处理下,川谷优2348根干物质量在加Se处理下显著低于未加Se处理。这与FENG等[20]的研究结果一致,即高浓度Se会抑制水稻根部的生长。

3.2 Se缓解水稻幼苗Cd胁迫的机制

在本研究中,加Se可以促进3种Cd胁迫下2个水稻品种叶绿素a的合成。这与前人的研究结果一致[6, 21]。吴之琳等[22]指出,Se能通过重建叶绿体并增加叶绿素含量以缓解重金属胁迫。本研究结果表明,加Se处理能显著降低川谷优2348叶绿素b含量。这与前人的研究结果[6]相反,可能与Se的使用浓度有关。根部作为水稻首先遭受Cd胁迫的部位,其活力大小能够在一定程度上反映植物对Cd胁迫的耐受能力。张娜等[23]研究表明,低浓度Se可促进紫云英的生长,但高浓度Se对紫云英生长有抑制作用。本研究结果表明,加Se对水稻幼苗根部活力在Cd胁迫下有显著的促进作用。这可能是因为Se可以恢复Cd胁迫下根部生长,维持根部构型,保持细胞器功能的完整性[24]

AsA和GSH是植物体内重要的抗氧化物质,对Cd胁迫下产生的活性氧的清除具有重要作用[25]。本研究结果表明,加Se能促进2个品种地上部和根部AsA及GSH含量的增加,在S1C2(3 μmol/L Na2SeO3+1 mmol/L Cd)处理下,川谷优2348地上部AsA和GSH含量以及根部中的AsA含量都显著高于Se单独处理(S1C0),而宜香2115在S1C2处理下没有这种变化:表明在高Cd胁迫下,川谷优2348比宜香2115能更高效地合成AsA和GSH,以减少其受到的氧化胁迫。何俊瑜[26]指出,在Cd胁迫下植物体内的NPT含量主要代表植物螯合肽(phytochelatins,PCs)和GSH之和。本研究结果表明,施Se处理使2个水稻品种在Cd胁迫下NPT含量增加,但宜香2115根部NPT含量在S1C2处理下最大,而川谷优2348在S1C2处理下却比S1C1(3 μmol/L Na2SeO3 +0.1 mmol/L Cd)处理下其含量显著下降:表明Se可以促进宜香2115根部合成更多的PCs,以缓解Cd的毒害。

本研究结果表明,施Se能够直接抑制水稻对Cd的吸收。其原因是Se和Cd互相竞争根部中的相关蛋白质结合位点,导致Cd与根部中的蛋白质结合概率下降所致[27]。在1 mmol/L Cd胁迫下,施Se使宜香2115地上部和根部Cd含量较川谷优2348相应部位Cd含量大幅降低:表明宜香2115能更高效利用Se来拮抗Cd的吸收。这些结果说明,Se对不同籽粒Cd积累能力的水稻幼苗吸收Cd的抑制作用与品种及Cd的处理浓度密切相关。

3.3 Se对Cd胁迫下水稻矿质营养的影响作用

Cd胁迫除了因其造成植株活性氧伤害从而导致植物代谢紊乱外,Cd胁迫还导致了参与多种生理代谢过程的矿质元素含量变化,从而使相关代谢过程受到影响[28-29]。本研究结果表明,施Se降低了2个水稻品种地上部Ca、Zn含量,但宜香2115和川谷优2348地上部Cu、Mn含量在Se、Cd处理下的变化趋势却存在差异;对根部而言,Se处理能增加2个品种在Cd胁迫下的Ca、Cu含量,降低2个品种在Cd胁迫下的Mn、Zn含量。URAGUCHI等[3]指出,水稻体内负责Fe运输的转运蛋白OsIRT1、与Mn运输密切相关的转运蛋白OsNramp5等不仅可以转运Fe、Mn等金属离子,对Cd的吸收也有作用。Se可能影响此类转运蛋白的表达,造成水稻对矿质元素吸收量的变化。

4 结论

0.1和1 mmol/L Cd胁迫均导致籽粒Cd积累能力不同的水稻品种幼苗生物量的下降,施Se可以降低Cd胁迫对幼苗生物量的影响,保持在Cd胁迫下根部活力处于较高水平,促进Cd胁迫下2个水稻品种叶绿素a的合成,但施Se加速了川谷优2348叶绿素b的降解。在1 mmol/L Cd胁迫下,Se能促进川谷优2348合成更多的AsA和GSH以应对Cd胁迫;宜香2115主要利用NPT中的PCs来降低Cd的伤害。Se能直接降低水稻对Cd的吸收,且Se主要对地上部Cu、Mn含量存在影响,并具有品种间差异。

参考文献
[1] 翁伯琦, 刘朋虎, 张伟利, 等.农田重金属污染防控思路与技术对策研究. 生态环境学报,2015,24 (7):1253–1258.
WENG B Q, LIU P H, ZHANG W L, et al. Ideas and countermeasures research on heavy metal pollution prevention and control for farmland. Ecology and Environmental Sciences, 2015,24 (7):1253–1258. (in Chinese with English abstract)
[2] LICHTFOUSE E, WAHID A, ARSHAD M, et al. Cadmium phytotoxicity: Responses, mechanisms and mitigation strategies: A review//LICHTFOUSE E. Organic Farming, Pest Control and Remediation of Soil Pollutants. Netherlands: Springer, 2009:371-403.
[3] URAGUCHI S, FUJIWARA T. Rice breaks ground for cadmium-free cereals. Current Opinion in Plant Biology, 2013,16 (3):328–334. DOI: 10.1016/j.pbi.2013.03.012.
[4] 李彦.硒对小白菜盐胁迫的缓解效应及其机理研究. 山东,泰安:山东农业大学,2008 :44–46.
LI Y. Alleviate effect of selenium on pakchoi cabbage under salt stress and its mechanism. Tai’an, Shandong: Shandong Agricultural University, 2008 :44–46. (in Chinese with English abstract)
[5] 宋亚蕊.富硒茶油的品质特性及抗氧化功能特性研究. 长沙:中南林业科技大学,2014 :1–4.
SONG Y R. Study on the quality characteristics and antioxidant functions of selenium-riched Camellia oleifera oil. Changsha: Central South University of Forestry and Technology, 2014 :1–4. (in Chinese with English abstract)
[6] MOZAFARIYAN M, SHEKARI L, HAWRYLAK-NOWAK B, et al. Protective role of selenium on pepper exposed to cadmium stress during reproductive stage. Biological Trace Element Research, 2014,160 (1):97–107. DOI: 10.1007/s12011-014-0028-2.
[7] GUERRERO B, LLUGANY M, PALACIOS O, et al. Dual effects of different selenium species on wheat. Plant Physiology and Biochemistry, 2014,83 :300–307. DOI: 10.1016/j.plaphy.2014.08.009.
[8] 谭周磁, 陈嘉勤, 薛海霞.硒(Se)对降低水稻重金属Pb,Cd,Cr污染的研究. 湖南师范大学自然科学学报,2000,23 (3):80–83.
TAN Z C, CHEN J Q, XUE H X. Studies on the pole of selenium (Se) in decreasing Pb, Cd, and Cr pollution to rice. Journal of Natural Science of Hunan Normal University, 2000,23 (3):80–83. (in Chinese with English abstract)
[9] 刘华琳.玉米对砷污染的生理生态响应. 山东,泰安:山东农业大学,2008 :96.
LIU H L. Physiological and ecological responses of maize to arsenic pollution. Tai’an, Shandong: Shandong Agricultural University, 2008 :96. (in Chinese with English abstract)
[10] 赵春江. 数字农业信息标准研究:作物卷. 北京: 中国农业出版社 , 2004 : 410 -411.
ZHAO C J. Research on Information Standards for Digital Agriculture: Crops. Beijing: China Agriculture Press , 2004 : 410 -411. (in Chinese with English abstract)
[11] 熊庆娥. 植物生理学实验教程. 成都: 四川科学技术出版社 , 2003 : 30 -31.
XIONG Q E. Experimental Course of Plant Physiology. Chengdu: Sichuan Science and Technology Press , 2003 : 30 -31. (in Chinese with English abstract)
[12] 王芳, 丁杉, 张春华, 等.不同镉耐性水稻非蛋白巯基及镉的亚细胞和分子分布. 农业环境科学学报,2010,29 (4):625–629.
WANG F, DING S, ZHANG C H, et al. Non-protein thiols, subcellular and molecular distribution of cadmium in two rice cultivars with difference tolerance. Journal of Agro-Environment Science, 2010,29 (4):625–629. (in Chinese with English abstract)
[13] 陈京都.水稻镉胁迫响应差异机理和调控效应的研究. 江苏,扬州:扬州大学,2013 :48–49.
CHEN J D. Research on difference and mechanism of rice response under cadmium stress and regulation. Yangzhou, Jiangsu: Yangzhou University, 2013 :48–49. (in Chinese with English abstract)
[14] DAS P, SAMANTARAY S, ROUT G R. Studies on cadmium toxicity in plants: A review. Environmental Pollution, 1997,98 (1):29–36. DOI: 10.1016/S0269-7491(97)00110-3.
[15] JIANG X J, LUO Y M, LIU Q, et al. Effects of cadmium on nutrient uptake and translocation by Indian mustard. Environmental Geochemistry and Health, 2004,26 (2):319–324. DOI: 10.1023/B:EGAH.0000039596.15586.b3.
[16] 袁思莉, 余垚, 万亚男, 等.硒缓解植物重金属胁迫和累积的机制. 农业资源与环境学报,2014,31 (6):545–550.
YUAN S L, YU Y, WAN Y N, et al. Mechanism of selenium mitigating stress and accumulation of heavy metals in plants. Journal of Agricultural Resources and Environment, 2014,31 (6):545–550. (in Chinese with English abstract)
[17] 刘春梅, 罗盛国, 王孟雪, 等.硒对镉胁迫下寒地水稻Cd、Zn、Fe、Cu、Mn含量的影响. 水土保持学报,2014,28 (6):136–142.
LIU C M, LUO S G, WANG M X, et al. Effects of selenium on cadmium, zinc, iron, copper, manganese content in rice under cadmium stress in cold climate. Journal of Soil and Water Conservation, 2014,28 (6):136–142. (in Chinese with English abstract)
[18] 曾翔.水稻镉积累和耐性机理及其品种间差异研究. 长沙:湖南农业大学,2006 :67–80.
ZENG X. Studies on physiological mechanism in cadmium accumulation and tolerance and its difference among genotypes of rice. Changsha: Hunan Agricultural University, 2006 :67–80. (in Chinese with English abstract)
[19] 郭锋, 樊文华, 冯两蕊, 等.硒对镉胁迫下菠菜生理特性、元素含量及镉吸收转运的影响. 环境科学学报,2014,34 (2):524–531.
GUO F, FAN W H, FENG L R, et al. Effects of selenium(Se) on the physiological characteristics, element contents, uptake and transportation of Cd in spinach under Cd stress. Acta Scientiae Circumstantiae, 2014,34 (2):524–531. (in Chinese with English abstract)
[20] FENG R W, LIAO G J, GUO J K, et al. Responses of root growth and antioxidative systems of paddy rice exposed to antimony and selenium. Environmental and Experimental Botany, 2016,122 :29–38. DOI: 10.1016/j.envexpbot.2015.08.007.
[21] 周健.硫和硒对镉胁迫下水稻幼苗生理生化特性及镉的吸收分配影响研究. 上海:华东理工大学,2013 :40–48.
ZHOU J. Effects of sulfur and selenium on the physiological and biochemical characteristics and cadmium absorption and distribution in rice seedling under cadmium stress. Shanghai: East China University of Science and Technology, 2013 :40–48. (in Chinese with English abstract)
[22] 吴之琳, 童心昭, 尹雪斌, 等.硒提高植物拮抗重金属毒性的研究进展. 粮食科技与经济,2014,39 (2):22–27.
WU Z L, TONG X Z, YIN X B, et al. Research progress of selenium in improving plant antagonistic metal toxicity. Grain Science and Technology and Economy, 2014,39 (2):22–27. (in Chinese with English abstract)
[23] 张娜, 袁菊红, 胡绵好.硒对紫云英的Hormesis效应及其生理响应研究. 生物学杂志,2015,32 (2):42–47.
ZHANG N, YUAN J H, HU M H. Study of selenium on Hormesis effect and physiological response of Astragalus sinicus. Journal of Biology, 2015,32 (2):42–47. (in Chinese with English abstract)
[24] 彭玲, 贾芬, 田小平, 等.硒对油菜根尖镉胁迫的缓解作用. 环境科学学报,2015,35 (8):2597–2604.
PENG L, JIA F, TIAN X P, et al. Alleviation of cadmium stress on root tip of rape seedlings by selenium. Acta Scientiae Circumstantiae, 2015,35 (8):2597–2604. (in Chinese with English abstract)
[25] 孙惠莉, 吕金印, 贾少磊.硫对镉胁迫下小白菜叶片AsA-GSH循环和植物络合素含量的影响. 农业环境科学学报,2013,32 (7):1294–1301.
SUN H L, LV J Y, JIA S L. Effects of sulfur on ascorbate-glutathione cycle and the content of phytochelatins in the leaves of pakchoi (Brassica chinensis L. Journal of Agro-Environment Science, 2013,32 (7):1294–1301. (in Chinese with English abstract)
[26] 何俊瑜.水稻突变体对镉敏感的生理生化及籽粒中镉积累的基因型差异. 杭州:浙江大学,2006 :87–88.
HE J Y. The physiology and biochemistry of rice mutant to cadmium sensitivity and genotypic difference in cadmium accumulation in brown rice. Hangzhou: Zhejiang University, 2006 :87–88. (in Chinese with English abstract)
[27] LIN L, ZHOU W H, DAI H X, et al. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Journal of Hazardous Materials, 2012,,235/236 :3416–351.
[28] 陈京都, 何理, 许轲, 等.镉胁迫对不同基因型水稻生长及矿质营养元素吸收的影响. 生态学杂志,2013,32 (12):3219–3225.
CHEN J D, HE L, XU K, et al. Growth and nutritional element absorption of different rice genotypes under cadmium stress. Chinese Journal of Ecology, 2013,32 (12):3219–3225. (in Chinese with English abstract)
[29] SAFARZADEH S, RONAGHI A, KARIMIAN N. Effect of cadmium toxicity on micronutrient concentration, uptake and partitioning in seven rice cultivars. Archives of Agronomy and Soil Science, 2013,59 (2):231–245. DOI: 10.1080/03650340.2011.622752.