浙江大学学报(农业与生命科学版)  2016, Vol. 42 Issue (6): 703-712
文章快速检索     高级检索
不同供氮水平下雾培与水培生菜生长和营养品质差异的比较[PDF全文]
丁文雅1,2, 林若筠3, 周伟伟4, 周恺4, 林咸永1,4    
1. 浙江大学农业试验站,杭州 310058;
2. 浙江大学环境与资源学院,浙江省亚热带土壤与植物营养重点研究实验室,杭州310058;
3. 浙江大学附属中学,杭州 310007;
4. 浙江大学环境与资源学院,教育部环境修复与生态健康重点实验室,杭州 310058)
摘要: 通过培养试验综合比较了不同供氮水平(2、8和20 mmol/L NO-3-N)下水培与雾培生菜的产量、品质和抗氧化活性差异。结果表明:在相同供氮水平下,雾培系统中生菜的生物量、根系生长、相对生长速率、光合作用强度均显著高于水培,而硝酸盐含量显著低于水培;雾培生菜叶片和茎的铁离子还原/抗氧化能力(ferric reducing/antioxidant power,FRAP)值和二苯代苦味酰基(1,1-diphenyl-2-picrydrazyl,DPPH)自由基清除率与水培相当或高于水培;虽然可溶性蛋白质、可溶性糖、还原型抗坏血酸含量在雾培与水培生菜中的差异无统计学意义(P>0.05),谷胱甘肽在水培生菜体内含量较高,但雾培生菜体内这4种营养物质的积累量均显著高于水培;随着供氮水平的提高,在这2种栽培方式下生菜体内的硝酸盐与可溶性蛋白质含量均显著增加,而可溶性糖、还原型抗坏血酸和谷胱甘肽含量,以及FRAP值和DPPH自由基清除率均逐渐降低,但在8 mmol/L供氮水平处理下,生菜生物量、根系形态指标、光合作用强度,以及可溶性蛋白质、可溶性糖、还原型抗坏血酸及谷胱甘肽积累量均达到较高水平。说明雾培较水培有利于生菜生物量和抗氧化物质的积累以及抗氧化活性的提高,且在适宜的氮素供应水平(8 mmol/L)下表现得尤其明显。可见,雾培比水培更具产量和品质优势,是适宜蔬菜生产的无土栽培模式。
关键词: 雾培    水培    生菜    生物量    抗氧化活性    营养品质    
Comparison on the difference of growth and nutritional quality for lettuce (Lactuca sativa L.) between aeroponic and hydroponic cultivation systems under different nitrogen levels.
DING Wenya1,2, LIN Ruoyun3, ZHOU Weiwei4, ZHOU Kai4, LIN Xianyong1,4    
1. Agricultural Experimental Station, Zhejiang University, Hangzhou 310058, China;
2. Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China;
3. The High School Attached to Zhejiang University, Hangzhou 310007, China;
4. Key Laboratory of Environment Remediation and Ecosystem Health of the Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)
Summary: Soilless culture is considered to be an alternative to soil-based cultivation. It has been developed quickly because of rapid growth on biomass and high quality of crops. Hydroponics and aeroponics are both soilless culture, but with different techniques. Aeroponics is a newly soilless culture technique, in which the roots are suspended mid-air inside a chamber and are intermittently sprayed with a nutrient solution to supply the plants with mineral and water. Unlike hydroponics using water as a growing medium and relying on essential mineral to sustain plant growth, aeroponics is conducted without a growing medium. Thus, there are significant differences of root zone between aeroponic and hydroponic cultivation systems. However, little effort has been found in the literature evaluating the effect of the two soilless techniques on yield and quality of growing vegetable. In this study, experiments were carried out to compare the biomass production and nutritional quality of lettuce between hydroponic and aeroponic cultivation systems under different nitrogen levels (2, 8 and 20 mmol/L NO3--N). Results showed that under the same nitrogen level, higher biomass, root growth, relative growth rate and photosynthetic rate were observed for lettuces grown in aeroponics than in hydroponics. Nitrate and glutathione contents were lower in aeroponics, while the ferric reducing/antioxidant power (FRAP) value and 1, 1-diphenyl-2-picrydrazyl (DPPH) radical scavenging rate were comparable to those in hydroponics. There were no differences in contents of soluble protein, soluble sugar and ascorbic acid, but the accumulations of soluble protein, soluble sugar, ascorbic acid and glutathione in aeroponics were markedly higher than those in hydroponics. Furthermore, the contents of nitrate and soluble protein of lettuces increased both in hydroponics and aeroponics, while the concentrations of soluble sugar, ascorbic acid and glutathione, FRAP value and DPPH radical scavenging rate decreased with increasing nitrogen level. Highest biomass, root morphological index, photosynthetic index, accumulations of soluble protein, soluble sugar, ascorbic acid and glutathione were observed under the nitrogen level of 8 mmol/L. In sum, aeroponics is beneficial for higher biomass, antioxidant accumulation and antioxidative activity, especially under the nitrogen level of 8 mmol/L.
Key words: aeroponics    hydroponics    lettuce (Lactuca sativa L.)    biomass    antioxidative activity    nutritional quality    

蔬菜是人类生活中必不可少的植物性食品。当前,我国蔬菜生产仍以土壤栽培为主,但我国人多地少,耕地面积逐年下降,人均耕地面积仅有0.10 hm2,不足世界平均水平的40%[1],又加上因环境污染、沙漠化、盐渍化等引起耕地质量退化而导致土壤生产力下降[2];因此,传统的土壤种植方式越来越难以满足人口增长对蔬菜数量和质量的需求。无土栽培技术以人工配置的营养液满足作物生长对矿质营养、水分的需要[3-4],摆脱了传统蔬菜生产对土壤、空间和气候条件的依赖,不仅能利用低质耕地和非耕地空间如楼顶阳台、荒山、沙漠等生产优质蔬菜,而且可有效避免传统蔬菜生产中养分失衡和土壤污染问题的发生[4-5],有望成为解决由于人口增长、土地面积减少和耕地质量退化与蔬菜产量和质量之间矛盾的有效途径[5]

充足的养料、水分和空气是无土栽培蔬菜作物正常生长发育的必要条件。常用的普通水培系统把作物栽培于水中,通过营养液提供养分和水分,氧气则通过通气提供,时常因营养液中溶解氧浓度较低而导致作物缺氧烂根,抑制了蔬菜生长,限制了产量和品质的提高[6-8]。气雾栽培(雾培)则是把根系悬挂在空气中,通过喷雾装置间歇性地喷射雾化的营养液以满足作物对养分和水分的需求[9-10],是一种新颖的同步供应水、肥、气的作物种植方式[6-7]。研究表明,气雾栽培能有效解决普通水培中供氧、供肥的矛盾,具有养分和水分利用率高、养分供应速率快等特点[10-12],已成功应用于蔬菜作物如生菜、番茄和马铃薯以及中药材生产上[11-13]。由于水培和雾培栽培系统中养分供应和作物根系所处的环境条件截然不同,必然会对蔬菜作物产生不同的影响,但两者究竟孰优孰劣尚不完全清楚。虽然关于水培与雾培系统对马铃薯脱毒小薯[14-16]、黄瓜[17-18]、番茄[19]、藏红花[20]等作物的影响已有研究报道,但是大多只是简单比较了在相同养分供应条件下作物生长和产量的差异,关于在不同供氮水平下雾培与水培系统对蔬菜作物生长速率和营养品质影响的差异研究尚少见报道。为此,本文以生菜为材料,综合比较了雾培与水培生菜的生长、产量、抗氧化营养和安全品质的差异,旨在为蔬菜生产中栽培模式的选择提供理论依据。

1 材料与方法 1.1 供试材料与试验设计

以改良的意大利生菜(Lactuca sativa L.)品种为供试材料,以华南农大叶菜B配方[6]为基础,设置低氮(2 mmol/L,N2)、中氮(8 mmol/L,N8)和高氮(20 mmol/L,N20)3个处理,氮以硝态氮形式供应。重复4次。种子经消毒、催芽后,播于V(蛭石)∶ V(珍珠岩)=1∶2的基质中,清水浇灌,待幼苗培养3周后,移栽于水培和雾培定植板上。水培通过气泵进行连续通气;雾培通过营养液泵把营养液从贮液池底部的进水管输送给喷雾装置,在本试验中通过定时器控制,每隔4 min喷雾营养液6 s。2个栽培系统均每周更换营养液1次,每隔3 d调节营养液pH至6.0~6.5,每隔7 d取样测定生物量与根系形态指标,试验结束后测定样品生理和品质指标。试验在浙江大学国家级农业高科技园区(浙江省长兴县泗安镇)的温室内进行。

1.2 测定方法

供试植株用蒸馏水冲洗,擦干,分地上部和根系取样,测定鲜质量,然后分别在105 ℃下杀青0.5 h,80 ℃烘干至恒量,测定干物质量。根系形态指标采用WIN Rhizo2002c 根系扫描仪测定;光合作用参数使用LI-6400便携式光合系统测定仪测定;叶绿素计读数用SPAD-502叶绿素计测定。根系活力测定采用氯化三苯基四氮唑法;硝酸盐测定采用水杨酸比色法;可溶性蛋白质测定采用考马斯亮蓝G-250染色法;可溶性糖测定采用蒽酮比色法[21]。还原型抗坏血酸测定参照孙园园等[22]的方法;谷胱甘肽测定参照朱伟锋等[23]的方法;铁离子还原/抗氧化能力(ferric reducing/antioxidant power,FRAP)值和二苯代苦味酰基(1,1-diphenyl-2-picrydrazyl,DPPH)自由基清除能力的测定参照凌关庭[24]的方法。生菜相对生长速率(R)按照以下公式计算:

R=(ln Q2-ln Q1)/(t2t1)。

式中:Q1为第1次取样时(t1)的植物干质量;Q2为第2次取样时(t2)的植物干质量。

1.3 数据统计与分析

采用DPS 7.05软件进行数据统计分析,用邓肯新复极差法检验平均值间的差异显著性(P<0.05);用Origin 8.5软件绘制图表。

2 结果与分析 2.1 不同供氮水平下雾培与水培生菜生长和产量的差异 2.1.1 叶片SPAD值和光合作用

表 1可见:在相同供氮水平下,在整个培养期内雾培生菜叶片的SPAD值、净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)均显著高于水培;在2种栽培方式下,生菜叶片的SPAD值均在高氮(20 mmol/L)处理下最高,而4个光合作用参数均在8 mmol/L供氮水平时最高。

表1 不同供氮水平下雾培与水培生菜叶片SPAD值和光合作用的差异 Table 1 Differences of SPAD value and photosynthesis of lettuce by aeroponics and hydroponics under different nitrogen levels
点击放大
2.1.2 根系形态和根系活力

图 1可见,随着培养时间的延长,雾培和水培方式下生菜根总长、根总表面积、根直径和根体积等根系形态指标逐渐升高,在8 mmol/L供氮水平下,雾培与水培生菜生长显著优于低氮和高氮处理。在培养结束时(移栽后28 d),雾培生菜根系的生长状况(图 2A)、形态指标(图 1)、根系活力(图 2B)在3个氮水平处理下均显著高于水培;在8 mmol/L供氮处理下雾培生菜的根总长、根直径、根总表面积和根体积分别是水培的2.25、1.19、4.35和5.03倍。

各处理符号表示的含义详见表 1注。 Please see the footnote of Table 1 for details of each treatment. 图1 不同供氮水平下雾培与水培生菜根系形态特征的差异 Fig. 1 Difference of root morphological characteristics of lettuce by aeroponics and hydroponics under different nitrogen levels

各处理符号表示的含义详见表 1注。短栅上的不同小写字母表示各处理间在P<0.05水平差异有统计学意义。 Please see the footnote of Table 1 for details of each treatment. Different lowercase letters above bars represent statistically significant differences at the 0.05 probability level. 图2 不同供氮水平下雾培与水培生菜根系形态(A)和根系活力(B)的差异 Fig. 2 Differences of root morphology and activity of lettuce by aeroponics and hydroponics under different nitrogen levels
2.1.3 生物量和相对生长速率

表 2可知:在同一生长期内,雾培生菜地上部和根系生物量均显著高于水培;在培养7~14 d期间,2种栽培方式下8和20 mmol/L供氮水平处理的生菜地上部和根系鲜质量间差异均无统计学意义(P>0.05);在培养21~28 d期间,8 mmol/L供氮水平处理下的水培和雾培生菜地上部和根系鲜质量最高。

表2 不同供氮水平下雾培与水培生菜地上部和根部鲜质量的差异 Table 2 Differences of shoot and root fresh mass of lettuce by aeroponics and hydroponics under different nitrogen levels
点击放大

表 3可见:在培养7~21 d期间,在同一供氮水平下,雾培系统中生菜相对生长速率显著高于水培,如在14~21 d期间,在2、8和20 mmol/L供氮水平下,雾培生菜的相对生长速率分别是水培的1.5、1.35和1.5倍;在培养21~28 d期间,雾培略低于水培。

表3 不同供氮水平下雾培与水培生菜相对生长速率的差异 Table 3 Difference of relative growth rate of lettuce by aeroponics and hydroponics under different nitrogen levels
点击放大
2.2 不同供氮水平下雾培与水培生菜营养品质的差异 2.2.1 硝酸盐积累量

图 3可见:随着供氮水平的提高,雾培和水培生菜的硝酸盐积累量显著增加;而在同一供氮水平下,雾培生菜叶片和茎中硝酸盐含量均显著低于水培,但硝酸盐积累量显著高于水培。

N2:2 mmol/L NO3--N;N8:8 mmol/L NO3--N;N20:20 mmol/L NO3--N。AL:雾培生菜叶片;HL:水培生菜叶片;AS:雾培生菜茎;HS:水培生菜茎。短栅上的不同小写字母表示在P<0.05水平差异有统计学意义。 N2: 2 mmol/L NO3--N; N8: 8 mmol/L NO3--N; N20: 20 mmol/L NO3--N. AL: Leaf of lettuce grown in the aeroponics; HL: Leaf of lettuce grown in the hydroponics; AS: Stem of lettuce grown in the aeroponics; HS: Stem of lettuce grown in the hydroponics. Different lowercase letters above bars represent statistically significant differences at the 0.05 probability level. 图3 不同供氮水平下雾培与水培生菜体内硝酸盐含量和积累量的差异 Fig. 3 Differences of nitrate contents and accumulation amounts of lettuce by aeroponics and hydroponics under different nitrogen levels
2.2.2 可溶性蛋白质与可溶性糖积累量

随着供氮水平的提高,雾培和水培生菜叶片和茎中的可溶性蛋白质含量均显著升高(图 4A),可溶性糖含量呈逐渐降低趋势(图 4C)。在同一供氮水平下,雾培与水培生菜叶片和茎中的可溶性蛋白质、可溶性糖含量差异无统计学意义(P>0.05),但雾培生菜体内的可溶性蛋白质和可溶性糖积累量(图 4B,D)均显著高于水培,且以供氮水平为8 mmol/L 时最高。

各处理符号表示的含义详见图 3注。短栅上的不同小写字母表示在P<0.05水平差异有统计学意义。 Please see the footnote of Fig. 3 for details of each treatment. Different lowercase letters above bars represent statistically significant differences at the 0.05 probability level. 图4 不同供氮水平下雾培与水培生菜体内可溶性蛋白质和可溶性糖含量和积累量的差异 Fig. 4 Differences of soluble protein and soluble sugar contents and accumulation amounts of lettuce by aeroponics and hydroponics under different nitrogen levels
2.2.3 抗氧化物质含量、积累量与抗氧化活性

图 5AC可见,随着供氮水平的提高,还原型抗坏血酸和谷胱甘肽含量显著降低;但在同一供氮水平下,还原型抗坏血酸在雾培和水培生菜体内的含量差异无统计学意义(P>0.05)(图 5A),谷胱甘肽在水培生菜叶片和茎中的含量高于雾培(图 5C)。在同一供氮水平下,雾培生菜叶片和茎中的还原型抗坏血酸与谷胱甘肽积累量显著高于水培,且在供氮水平为8 mmol/L时积累量最高(图 5B,D)。

各处理符号表示的含义详见图 3注。短栅上的不同小写字母表示在P<0.05水平差异有统计学意义。 Please see the footnote of Fig. 3 for details of each treatment. Different lowercase letters above bars represent statistically significant differences at the 0.05 probability level. 图5 不同供氮水平下雾培与水培生菜体内还原型抗坏血酸和谷胱甘肽含量和积累量的差异 Fig. 5 Differences of ascorbic acid and glutathione contents and accumulation amounts of lettuce by aeroponics and hydroponics under different nitrogen levels

图 6可见:随着供氮水平的提高,雾培和水培生菜叶片和茎的总抗氧化活性(FRAP值)和总自由基清除率(DPPH值)呈逐渐下降趋势;在相同供氮水平下,雾培生菜叶片和茎的FRAP值均显著高于水培;雾培生菜茎的DPPH自由基清除率显著高于水培,但叶片的DPPH自由基清除率在2种栽培方式下差异无统计学意义(P>0.05)。

各处理符号表示的含义详见图 3注。短栅上的不同小写字母表示在P<0.05水平差异有统计学意义。 Please see the footnote of Fig. 3 for details of each treatment. Different lowercase letters above bars represent statistically significant differences at the 0.05 probability level. 图6 不同供氮水平下雾培与水培生菜总抗氧化活性和自由基清除率的差异 Fig. 6 Differences of FRAP value and DPPH radical scavenging rate of lettuce by aeroponics and hydroponics under different nitrogen levels
3 讨论

雾培是将营养液雾化后直接喷施于作物根系的一种新型无土栽培方法[9-10],它可协调供应水、肥、气,有效克服普通水培中由于缺氧造成的烂根问题[11-12]。研究表明,在雾培系统中北美短叶松[25]、黄瓜[18]、马铃薯[16]、中草药[11]、甜椒[4]、藏红花[20]等作物的根系生长和生物量积累等显著优于普通水培系统;但是关于不同供氮水平下雾培与水培蔬菜的生长速率、产量和营养品质的差异及其优劣尚不清楚。本试验结果显示,在同一供氮水平下,雾培生菜的根总长、根总表面积、根直径、根体积和根系活力均显著高于水培;雾培生菜的鲜质量、相对生长速率、叶片SPAD值、净光合速率、气孔导度、胞间CO2浓度以及蒸腾速率也显著高于水培。可见,与水培相比,雾培在作物根系生长、生物量积累和光合作用强度等方面具有明显优势。这是由于水分和养分雾化、间歇供应,改善了作物根际的氧气与营养液供应条件,促进了植株根系生长,进而提高了地上部生物量[14]。本试验在2种栽培方式下的生菜根系形态指标、地上部和根系鲜质量均在8 mmol/L供氮水平时最高。可见,8 mmol/L NO3--N为无土栽培生菜根系生长、生物量积累的适宜供氮水平。

蔬菜硝酸盐含量的高低是衡量其安全品质的重要指标。据报道,人体摄入的硝酸盐80%左右来自于蔬菜[26-27],人体摄入过量的硝酸盐后可还原成亚硝酸盐,进入血液将血红蛋白中的低铁氧化成高铁,造成人体缺氧和患高铁血红蛋白症;且硝酸盐可与胺类反应,形成强致癌物亚硝胺,诱发人体消化系统癌变,严重危害人体健康[27-28]。关于雾培或普通水培系统中供氮水平对蔬菜硝酸盐含量的影响已有不少研究报道[29-31],但是不同无土栽培方式对蔬菜硝酸盐积累的影响尚少见比较研究。本试验结果表明:随着供氮水平的提高,雾培和水培生菜的硝酸盐含量逐渐增加;虽然雾培生菜体内硝酸盐积累量由于生物量大而显著高于水培,但叶片和茎中的硝酸盐含量均显著低于水培。在2种栽培方式下生菜体内的可溶性蛋白质、可溶性糖含量虽无显著差异,但两者的积累量在雾培系统中显著高于水培,且在8 mmol/L供氮水平时最高。可见,采用8 mmol/L的供氮水平有利于雾培生菜体内营养物质的积累,并可维持较低的硝酸盐含量。

流行病学研究表明,提高膳食中蔬菜摄入量可有效降低人体患心血管病和癌症等疾病的风险[23-24, 32-34]。蔬菜有益于人体健康主要归功于其体内含有抗坏血酸和谷胱甘肽等具有抗氧化效应的生物活性物质[23, 32-33],这些物质具有协同效应,对活性氧清除率远高于单一的抗氧化物质。研究表明,营养液供氮水平对蔬菜体内抗氧化物质含量有显著影响,且常随供氮水平的提高而降低[23, 35-36];但是关于雾培与水培蔬菜体内抗氧化物质积累及抗氧化活性的差异尚不清楚。本试验结果表明,还原型抗坏血酸和谷胱甘肽含量随着供氮水平的提高而显著降低;在同一供氮水平下,还原型抗坏血酸含量在雾培与水培生菜的叶片和茎中差异无统计学意义,而谷胱甘肽在水培生菜体内的含量高于雾培,但两者的积累量在雾培生菜体内均显著高于水培,且在供氮水平为8 mmol/L时达到最高。FRAP值和DPPH自由基清除率是表征蔬菜作物抗氧化活性的2个常用的重要指标,但是其在雾培与水培蔬菜中的差异尚未见研究报道。本试验结果表明,随着供氮水平的提高,生菜叶片和茎的FRAP值和DPPH自由基清除率均逐渐下降,但是雾培生菜显著高于水培,且在8 mmol/L供氮处理时可维持较高的水平。可见,雾培生菜比水培具有更高的抗氧化物质积累量和抗氧化活性。

4 结论

与水培相比,雾培生菜具有生物量和营养物质含量高、抗氧化活性强以及硝酸盐含量低的优点,且在适宜的供氮水平(8 mmol/L)下表现得尤为明显;因此,雾培比水培更具产量和营养品质优势,是适宜培育高产优质蔬菜的无土栽培模式。

参考文献
[1] 中华人民共和国国家统计局. 中国统计年鉴. 北京:中国统计出版社. , 2015 .
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Statistics Press. , 2015 . (in Chinese with English abstract)
[2] ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China: Current status and mitigation strategies. Environmental Science& Technology, 2015,49 (2):750–759.
[3] DE HAAN J J, SPUIJT J, VERMEULEN T. Farm management and economic drivers for implementation of soilless cultivation of field vegetables in the Netherlands. Acta Horticulturae, 2014,1034 :177–183.
[4] ALBAHO M, THOMAS B, CHRISTOPHER A. Evaluation of hydroponic techniques on growth and productivity of greenhouse grown bell pepper and strawberry. International Journal of Vegetable Science, 2008,14 (1):23–40. DOI: 10.1080/19315260801890492.
[5] GORBE E, CALATAYUD Á. Optimization of nutrition in soilless systems: A review. Advances in Botanical Research, 2010,53 (10):193–245.
[6] 丁文雅, 邬小撑, 刘敏娜, 等.不同营养液配方对雾培生菜生物量和营养品质的影响. 浙江大学学报(农业与生命科学版),2012,38 (2):175–184.
DING W Y, WU X C, LIU M N, et al. Effect of different nutrient solutions on biomass production and nutritional quality of aeroponically grown lettuce. Journal of Zhejiang University (Agriculture and Life Sciences), 2012,38 (2):175–184. (in Chinese with English abstract)
[7] 王军君, 邬小撑, 丁文雅, 等.雾培营养液氮钾水平对不同番茄品种果实产量和营养品质的影响. 浙江大学学报(农业与生命科学版),2013,39 (5):489–496.
WANG J J, WU X C, DING W Y, et al. Effect of nitrogen and potassium supply on fruit yield and nutritional quality of aeroponically grown tomato cultivars. Journal of Zhejiang University (Agriculture and Life Sciences), 2013,39 (5):489–496. (in Chinese with English abstract)
[8] URRESTARAZU M, MAZUELA P C. Effect of slow-release oxygen supply by fertigation on horticultural crops under soilless culture. Scientia Horticulturae, 2005,106 (4):484–490. DOI: 10.1016/j.scienta.2005.05.010.
[9] CHRISTIE C B, NICHOLS M A. Aeroponics: A production system and research tool. Acta Horticulturae, 2004,648 :185–190.
[10] LAKKIREDDY K K R, KASTURI K, SAMBASIVA R K R S. Role of hydroponics and aeroponics in soilless culture in commercial food production. Journal of Agricultural Science& Technology, 2012,1 (1):26–35.
[11] HAYDEN A L. Aeroponic and hydroponic system for medicinal herb, rhizome, and root crops. Horticulturae Science, 2006,41 (3):536–538.
[12] FARRAN I, MINGO-CASTEL A M. Potato minituber production using aeroponics: Effects of plant density and harvesting intervals. American Journal of Potato Research, 2006,83 (1):47–53. DOI: 10.1007/BF02869609.
[13] CHIIPANTHENGA M, MALIRO M, DEMO P, et al. Potential of aeroponics system in the production of quality potato (Solanum tuberosum L.) seed in developing countries. African Journal of Biotechnology, 2012,11 (17):3993–3999.
[14] TIERNO R, CARRASCO A, RITTER E, et al. Differential growth response and minituber production of three potato cultivars under aeroponics and greenhouse bed culture. American Journal of Potato Research, 2014,91 (4):346–353. DOI: 10.1007/s12230-013-9354-8.
[15] RITTER E, ANGULO B, RIGA P, et al. Comparison of hydroponic and aeroponic cultivation systems for the production of potato minitubers. Potato Research, 2001,44 (2):127–135. DOI: 10.1007/BF02410099.
[16] 修英涛, 曹嘉颖, 孙周平, 等.不同无土栽培方式对马铃薯脱毒小薯繁育的影响. 辽宁农业科学,2003 (2):1–3.
XIU Y T, CAO J Y, SUN Z P, et al. Effects of different soilless culture methods on mini-tuber formation of potato plant. Liaoning Agricultural Sciences, 2003 (2):1–3. (in Chinese with English abstract)
[17] 刘广晶, 孙周平, 包美丽, 等.雾培与液培对黄瓜根系氮代谢相关酶活性的影响. 西北农业学报,2011,20 (3):132–137.
LIU G J, SUN Z P, BAO M L, et al. Effect of aeroponical culture and solution culture on the root nitrogen metabolism relevant enzymes of cucumber. Acta Agriculturae Boreali-Occidentalis Sinica, 2011,20 (3):132–137. (in Chinese with English abstract)
[18] 王珺玲, 孙周平, 陈红波, 等.雾培对黄瓜植株生长的影响. 西北农业学报,2009,18 (2):184–187.
WANG J L, SUN Z P, CHEN H B, et al. Effects of areoponic culture on the growth of cucumber plant. Acta Agriculturae Boreali-Occidentalis Sinica, 2009,18 (2):184–187. (in Chinese with English abstract)
[19] 孙周平, 刘涛, 蔺姗姗, 等.雾培对番茄植株生长、产量和品质的影响. 沈阳农业大学学报,2006,37 (3):488–490.
SUN Z P, LIU T, LIN S S, et al. Effect of aeroponics on the growth, yield and quality of tomato plant. Journal of Shenyang Agricultural University, 2006,37 (3):488–490. (in Chinese with English abstract)
[20] SOURET F F, WEATHERS P J. he growth of saffron (Crocus sativus L.) in aeroponics and hydroponics. Journal of Herbs, Spices& Medicinal Plants, 2007,7 (3):25–35.
[21] 李合生. 植物生理生化实验原理和技术. 北京:高等教育出版社. , 2000 : 119 -197.
LI H S. Principle and Technology of Plant Physiological and Biochemical Experiment. Beijing: Higher Education Press. , 2000 : 119 -197. (in Chinese with English abstract)
[22] 孙园园, 林咸永, 金崇伟, 等.氮素形态对菠菜体内抗坏血酸含量及其代谢的影响. 浙江大学学报(农业与生命科学版),2009,35 (3):292–298.
SUN Y Y, LIN X Y, JIN C W, et al. Effects of nitrogen forms on ascorbate contents and metabolism in spinach (Spinacia oleracea L.). Journal of Zhejiang University (Agriculture and Life Sciences), 2009,35 (3):292–298. (in Chinese with English abstract)
[23] 朱伟锋, 林咸永, 金崇伟, 等.氮肥对不同白菜品种抗氧化物质含量和抗氧化活性的影响. 浙江大学学报(农业与生命科学版),2009,35 (3):299–306.
ZHU W F, LIN X Y, JIN C W, et al. Effects of nitrogen application rates on antioxidant contents and antioxidative activities in Chinese cabbage (Brassica chinensis L. Journal of Zhejiang University (Agriculture and Life Sciences, 2009,35 (3):299–306. (in Chinese with English abstract)
[24] 凌关庭. 抗氧化食品与健康. 北京:化学工业出版社. , 2004 : 334 -345.
LING G T. Antioxidant Food and Health. Beijing: Chemical Industry Press. , 2004 : 334 -345. (in Chinese with English abstract)
[25] RIETVELD W J. Evaluation of three root growth potential techniques with tree seedlings. New Forests, 1989,3 (2):181–189. DOI: 10.1007/BF00021581.
[26] ANJANA S U, IQBAL M. Nitrate accumulation in plants, factors affecting the process, and human health implications and human health implications. A review. Agronomy for Sustainable Development, 2007,27 (1):45–57. DOI: 10.1051/agro:2006021.
[27] 都韶婷, 章永松, 林咸永, 等.蔬菜积累的硝酸盐及其对人体健康的影响. 中国农业科学,2007,40 (9):2007–2014.
DU S T, ZHANG Y S, LIN X Y, et al. Accumulation of nitrate in vegetables and its possible implications to human health. Scientia Agricultura Sinica, 2007,40 (9):2007–2014. (in Chinese with English abstract)
[28] 张英鹏, 林咸永, 章永松.供氮水平对菠菜营养品质和体内抗氧化酶活性的影响. 应用生态学报,2005,16 (3):519–523.
ZHANG Y P, LIN X Y, ZHANG Y S. Effects of nitrogen supply on nutritional quality and antioxidative enzyme activities of spinach. Chinese Journal of Applied Ecology, 2005,16 (3):519–523. (in Chinese with English abstract)
[29] CROITORU M D, MUNTEAN D L, FVLP I, et al. Growing patterns to produce ‘nitrate-free’ lettuce (Lactuca sativa L. Food Additives& Contaminants: Part A, 2015,32 (1):80–86.
[30] BRITO D M C, BARRETO S C R, GONCALVES F V, et al. Productivity, fatty acid profiles and nitrogen metabolism of crambe under varied nitrate levels. Agricultural Journal, 2014,9 (1):38–44.
[31] KACJAN-MARŠIĆ N, OSVALD J. Nitrate content in lettuce (Lactuca sativa L.) grown on aeroponics with different quantities of nitrogen in the nutrient solution. Acta Agronomica Hungarica, 2000,50 (4):389–397.
[32] CHANDRA S, KHAN S, AVULA B, et al. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evidence-Based Complementary and Alternative Medicine, 2014 :253875.
[33] MARÍN A, RUBIO J S, MARTÍNEZ V, et al. Antioxidant compounds in green and red peppers as affected by irrigation frequency, salinity and nutrient solution composition. Journal of the Science of Food and Agriculture, 2009,89 (8):1352–1359. DOI: 10.1002/jsfa.v89:8.
[34] PODS DEK A. Natural antioxidants and antioxidant capacity ofBrassica vegetables: A review. LWT-Food Science and Technology, 2007,40 (1):1–11. DOI: 10.1016/j.lwt.2005.07.023.
[35] JONES R B, IMSIC A M, FRANZ A P, et al. High nitrogen during growth reduced glucoraphanin and flavonol content in broccoli (Brassica oleracea var.italica) heads. Australian Journal of Experimental Agriculture, 2007,47 (12):1498–1505. DOI: 10.1071/EA06205.
[36] MITTELSTRAB K, TREUTTER D, PLEΒL M, et al. Modification of primary and secondary metabolism of potato plants by nitrogen application differentially affects resistance to Phytophthora infestans and Alternaria solani. Plant Biology, 2006,8 (5):653–661. DOI: 10.1055/s-2006-924085.