浙江大学学报(农业与生命科学版)  2016, Vol. 42 Issue (6): 671-678
文章快速检索     高级检索
浙江棉花黄萎病菌致病型菌株的鉴定及高温抑制病害的表征分析[PDF全文]
孙晓婷1, 鹿秀云2, 张敬泽1 , 祝水金3    
1. 浙江大学农业与生物技术学院生物技术研究所,杭州 310058;
2. 河北省农林科学院植物保护研究所,河北 保定 071000;
3. 浙江大学农业与生物技术学院作物科学研究所,杭州 310058
摘要: 用大丽轮枝菌(Verticillium dahliae)落叶和非落叶致病型菌株特异性引物扩增并结合微菌核特征观察,鉴定了浙江地区棉花黄萎病菌菌株的致病型,测定了温度对病原菌生长发育的影响,分析了浙江地区夏季高温对棉花黄萎病抑制现象的原因。特异性引物的聚合酶链式反应扩增结果表明,来自于浙江的5个代表性分离菌株(VD-h1、VD-h2、VD-h6、VD-h3和VD-h5)均属于落叶型菌株。对不同类型菌株产生微菌核的观察结果证实,落叶型和非落叶型的微菌核间形态及其长宽比存在差异。温度对病原菌发育的影响结果显示,来自浙江的2个菌株(VD-h1和VD-h6)和来自新疆的2个菌株(VD-101和VD-086)的最适生长温度分别在22~28 ℃和22~26 ℃之间;32 ℃高温显著抑制了菌丝生长和分生孢子产生,并延迟了分生孢子萌发的时间。不同温度试验的结果间接证实了,棉花黄萎病在浙江夏季高温条件下表现的隐退症状是因为高温抑制了病原菌的生长和繁殖,这为病害发生规律研究提供了重要的科学数据。
关键词: 棉花黄萎病菌    致病型    夏季高温    病害抑制    
Identification of pathotype of Verticillium dahliae isolates on cotton in Zhejiang Province and phenotypic analysis on inhibitory effect by high temperature
SUN Xiaoting1, LU Xiuyun2, ZHANG Jingze1 , ZHU Shuijin3    
1. Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
2. Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Baoding 071000, Hebei, China;
3. Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
Summary: China is the largest cotton producing country in the world. Zhejiang Province owned cotton growing area of about 17 264 hectares in 2013, was not major cotton producing area in China. Verticillium wilt, caused by Verticillium dahliae, is one of the most important disease of cotton and causes great economic losses in almost all cotton producing areas, but has not been found in fields in Zhejiang region. However, in 2014, the serious verticillium wilt disease of cotton was observed in the experimental field of Zhejiang University. The disease began to appear in the early June and occurred seriously in the early July. The disease caused the serious defoliation on the middle and lower parts of plants and the diseased plants were significantly dwarf. However, the disease became to remit gradually in the early August during high temperature in summer and dwarf phenomenon of the diseased plants was not obvious with new leaf formation. Since then, the diseased plants were still able to bloom and produce bolls. The symptom of the disease was similar to that caused by the defoliating pathotype strains of V. dahliae but in the later period, not identical to that. Based on the importance of verifying pathotype of pathogen and understanding the phenomenon of high temperature inhibiting disease for disease control, we detected the isolates causing the verticillium wilt disease of cotton by using the specific primers of defoliation and nondefoliation pathotypes of V. dahliae and characteristics of microsclerotia. Meanwhile, the effect of temperature on growth and development of pathogen was determined and the reason for the phenomenon of high temperature inhibiting disease was analyzed as well. Results of polymerase chain reaction (PCR) amplification using the specific primers showed that the isolates (VD-h1, VD-h2, VD-h6, VD-h3 and VD-h5) obtained all belonged to the defoliating pathotype. The results of observation for characters of microsclerotia formation confirmed that the difference of microsclerotia length-to-width ratio between defoliating and nondefoliating pathotype isolates was remarkable. Temperature had a significant influence on Verticillium isolates. The optimal growth temperature of two isolates (VD-h1 and VD-h6) from Zhejiang was 22-28 ℃ and two (VD-101 and VD-086) from Xinjiang was 22-26 ℃, whereas at 32 ℃, fungal hyphal growth was all inhibited. At the same time, the numbers of produced conidial decreased and conidial germination was delayed. Combining biological properties of fungus and meteorological data, research results indirectly verified that the reason for disappearance of disease symptoms was that the growth and reproduction of pathogen were inhibited under the condition of high temperature in summer. In sum, this study provides important scientific data for studying the regulation of disease occurrence in future.
Key words: Verticillium dahliae    pathotype    high summer temperature    disease inhibition    

棉花黄萎病是在棉花生产上危害最为严重的世界性病害之一,在我国主要是由大丽轮枝菌(Verticillium dahliae Kleb.)引起的一种土传病害。病原菌危害的严重程度依赖于病原菌分离系的毒性[1]。SCHNATHORST等[2]首次报道了大丽轮枝菌株系间存在毒性水平差异,并依据病原菌引起棉花植株完全落叶或仅轻微枯萎但不落叶,把病原菌分为落叶(defoliating,D)和非落叶(nondefoliating,ND)致病型。D致病型株系引起的黄萎病症状出现较早,病害发生更迅速,导致棉花产量损失比ND致病型株系引起的更大[3-4];因此,明确病原菌的致病型有助于病害管理决策,如选择适合的品种和避免在D致病型株系侵染的土壤中种植[5]。同时,检测病原菌的致病型,可了解土壤中病原菌种群动态,在病害防治上也有着重要的应用价值。国外已发展了基于聚合酶链式反应(polymerase chain reaction,PCR)的特异性引物分子检测技术用于大丽轮枝菌致病型菌株的划分(D致病型和ND致病型)[6-8]。该检测技术也在我国广泛应用于棉花黄萎病病原菌致病型的研究中[9-11]。另外,一些研究显示大丽轮枝菌产生的微菌核形态差异也与菌株的不同毒性相关:棉花D致病型菌株在水琼脂培养基上产生长形和圆形混合的菌核;而ND致病型菌株在水琼脂培养基上或在改良的多聚半乳糖醛酸钠培养基上仅产生圆形菌核[1, 12]。LÓPEZ-ESCUDERO等[13]进一步证实不同致病型株系间微菌核的长宽比存在显著差异。这些研究为识别病原菌致病型株系提供了形态学上的性状特征。

浙江不是我国棉花主要生产区域,2013年棉花栽培面积为17 264 hm2(浙江省农业厅统计数据),一直没有观察到田间黄萎病的发生。但在2014年,棉花黄萎病首次在浙江大学试验田中严重发生。病害开始出现在6月上旬,严重发生在7月上旬。病害引起植株矮化,中下部叶片严重脱落(图 1A~B)。然而,随着气温升高,病害症状逐步缓解,新的病叶不再出现。到8月上旬,随着棉花植株的生长发育,新叶数量增加,病株矮化现象已不明显,虽然一些病株上还存在边缘坏死的病叶,但典型黄萎病症状已不显著(图 1C);其后,病株仍然开花结铃。前期田间病害症状与描述的病原菌D致病型株系引起的非常相似[8],但后期又不完全一致,仅凭症状难以判断病原菌的致病型。因此,本文主要通过基于PCR的分子检测技术和微菌核形态特征,研究了浙江棉花黄萎病菌的致病型,并通过病原菌生物学特性分析,探明高温抑制病害的成因,为进一步研究病害发生规律和病害防治策略提供科学数据。

A:植株矮化和落叶症状;B:田间病害严重发生的症状;C:病害症状隐退。 A: Symptoms of cotton dwarfing and defoliating; B: Serious disease symptoms in the field; C: Remission of disease symptoms. 图1 棉花黄萎病落叶症状 Fig. 1 Defoliating symptoms of cotton verticillium wilt
1 材料与方法 1.1 病原菌的分离和纯化

采用常规分离培养方法对种植在浙江大学华家池校区试验田中的棉花(中棉49和优质棉1号)病株样品进行病原菌分离[14],然后进行单孢分离。采用菌饼加20%甘油的保藏方法,将单孢菌株保藏在-70 ℃低温冰箱中。分离到的菌株通过形态学特征观察和微菌核的产生情况,并结合分子序列特征(数据未显示)被鉴定为大丽轮枝菌。本文选择5个代表性分离菌株(VD-h1、VD-h2、VD-h6、VD-h3和VD-h5)进行研究。

供试参考菌株:2株致病型未知的菌株VD-101(采集于新疆巴音郭楞州且末县琼库尔勒队)和VD-086(采集于新疆巴音郭楞州和硕县塔哈其向阳4队);2株非落叶型菌株BP2(江苏省农业科学院植物保护研究所,南京)和TX9(河南新乡);2株落叶型菌株VD-991(中国农业科学院植物保护研究所,来源于南京,强致病落叶型)和VD-084(河南新乡)。

1.2 病原菌培养和DNA提取

将保存的大丽轮枝菌株系接种在马铃薯葡萄糖琼脂(potato dextrose agar,PDA)培养基平板上进行活化,用打孔器(直径0.5 cm)打取菌饼,接种到含有100 mL马铃薯葡萄糖肉汤(potato dextrose both,PDB)液体培养基的250 mL三角瓶中,置于摇床上,在25 ℃、黑暗和120 r/min条件下振荡培养7 d。过滤收集菌体,用液氮冷冻干燥,然后研磨成粉,储存在-70 ℃冰箱中。采用XIAO等[14]和ZHANG等[15]描述的十六烷基三甲基溴化铵(hexadecyl trimethyl ammonium bromide,CTAB)法提取DNA。获得的基因组DNA溶解在50 mL超纯水或TE(Tris-EDTA)缓冲液中,用溴化乙锭染色后在1%琼脂糖凝胶上检查。

1.3 特异性引物的合成和扩增

根据致病型特异性引物的研究报道,引物对INTD2f(5′-ACTGGGTATGGATGGCTTTCAGG ACT-3′)和INTD2r(5′-TCTCGACTATTGGAAA ATCCAGCGAC-3′)是D致病型菌株的特异性引物,可扩增出462 bp片段[7];引物对INTND2f(5′-CTCTTCGTACATGGCCATAGATGTGC-3′)和INTND2r(5′-CAATGACAATGTCCTGGGTGT GCCA-3′)是ND致病型菌株的特异性引物,可扩增出824 bp片段[6-7];引物对DB19(5′-CGGTGACAT AATACTGAGAG-3′)和espdef01(5′-CACACCGT CGGCTCAGAGT-3′)可对D致病型菌株扩增出334 bp片段[16]。上述引物均由生工生物工程(上海)有限公司合成。

用合成的引物对11个菌株的基因组DNA进行PCR扩增。其中,PCR扩增反应体系为50 μL,包括10×缓冲液5 μL,Mg2+ 3 μL,2.5 mmol/L dNTP 1 μL,引物2 μL,Taq酶1 μL(1.25 U),模板1 μL,用双蒸水补足至50 μL。反应溶液在PCR仪(Eppendorf Mastercycler Pro S,德国)上进行扩增。扩增循环为:94 ℃预变性5 min;94 ℃变性45 s,60 ℃(INTD2f/INTD2r或INTND2f/INTND2r)或58 ℃(DB19/espdef01)退火1 min,72 ℃延伸1 min,30个循环;最后,72 ℃延伸10 min。PCR扩增产物经1.5%琼脂糖凝胶电泳检测。

1.4 菌核形成观察

将供试菌株在PDA上活化,转接到水琼脂(water agar,WA)培养基上,在24 ℃黑暗条件下培养。每个菌株3个重复。20 d后,取菌落中心含有微菌核的琼脂块,用蒸馏水制备玻片。每个处理测量100个微菌核,统计和计算微菌核的长宽比。测量和摄影在Zeiss Axiophot 2显微镜下进行。

1.5 温度对真菌生长影响试验

选取来自浙江的菌株VD-h6和VD-h1,以及来自新疆的菌株VD-101和VD-086在PDA上进行活化,然后从菌落边缘用打孔器(直径0.7 cm)切取菌饼,接种到PDA(200 g马铃薯,20 g葡萄糖,20 g琼脂,1 L水)上,分别放置在12、14、16、18、20、22、24、26、28、30和32 ℃黑暗条件下进行培养。每个处理3次重复。检查分生孢子产生情况,10 d后测量菌落生长半径。

分别将菌株VD-086和VD-h1的分生孢子悬浮液(1×106 mL-1)涂布于WA培养基上,置于32和34 ℃条件下培养,每个处理3次重复。于不同时间观察分生孢子萌发、分生孢子梗发育、新的分生孢子形成及菌核形成情况。

2 结果与分析 2.1 落叶型菌株的检测结果

用大丽轮枝菌落叶型特异性引物对INTD2f/INTD2r对11个棉花黄萎菌供试菌株进行PCR检测,除菌株TX9(泳道6)和BP2(泳道8)外,均扩增到大小约为460 bp 的特异性片段(图 2A)。发生在浙江杭州的5个菌株(VD-h1、VD-h2、VD-h6、VD-h3和VD-h5)均被鉴定为落叶型,与已知落叶型参考菌株VD-084和VD-991一致。另外,来自新疆的2个菌株(VD-086、VD-101)也被鉴定为落叶型。

A:落叶型特异性引物对INTD2f/INTD2r扩增的产物;B:落叶型特异性引物对DB19/espdef01扩增的产物;C:非落叶型特异性引物对INTND2f/INTND2r扩增的产物。M1:1 000 bp分子质量标志物;泳道(1~11):依次为菌株VD-h1、VD-h2、VD-h6、VD-h3、VD-h5、TX9、VD-084、BP2、VD-086、VD-101和VD-991;M2:500 bp分子质量标志物。 A: PCR products of defoliating pathotype isolates using specific primer pair INTD2f/INTD2r; B: PCR products of defoliating pathotype isolates using specific primer pair DB19/espdef01; C: PCR products of nondefoliating pathotype isolates using specific primer pair INTND2f/INTND2r. M1: 1 000 bp marker; Lanes (1-11): Isolates VD-h1,VD-h2,VD-h6,VD-h3,VD-h5,TX9,VD-084,BP2,VD-086,VD-101 and VD-991,respectively; M2: 500 bp marker. 图2 落叶型和非落叶型特异性引物PCR扩增产物的琼脂糖凝胶电泳图 Fig. 2 Agrose gel electrophoresis of PCR products of defoliating and nondefoliating pathotype isolates obtained with the specific primer pairs

同样,用大丽轮枝菌另外1对落叶型特异性引物对DB19/espdef01对11个棉花黄萎菌供试菌株进行PCR检测,除菌株TX9和BP2外,均扩增到大小约为330 bp的特异性片段(图 2B)。其鉴定结果完全一致于上述结果,即分离自浙江杭州的5个菌株(VD-h1、VD-h2、VD-h6、VD-h3和VD-h5)和来自新疆的2个菌株(VD-086、VD-101)均属于落叶型。这也与以往的研究结果一致[6-8]

2.2 非落叶型菌株的检测结果

用大丽轮枝菌非落叶型特异性引物对INTND2f/INTND2r对11个棉花黄萎菌供试菌株进行PCR检测,结果表明,仅菌株TX9和BP2扩增到一个大小约为820 bp的特异性片段(图 2C)。

2.3 微菌核形成的观察结果

对微菌核长宽比测定(表 1)和其形态特征观察结果(图 3)显示:落叶型菌株的微菌核平均长宽比为4.11,范围大约在3.16至5.79之间,大多数是长形的;而非落叶型菌株BP2的微菌核大多数近球形。供试菌株的微菌核长宽比测定结果与LÓPEZ-ESCUDERO等[13]的研究结果相似。

表1 落叶型及非落叶型菌株微菌核长宽比的测定结果 Table 1 Length-to-width ratio of microsclerotia from defoliating and nondefoliating pathotype isolates
点击放大

A:落叶型菌株VD-h1;B:落叶型菌株VD-084;C:非落叶型菌株BP2。 A: Defoliating pathotype isolate VD-h1; B: Defoliating pathotype isolate VD-084; C: Nondefoliating pathotype isolate BP2. 图3 在水琼脂上不同致病型微菌核的形态特征 Fig. 3 Morphological characters of microsclerotia for different pathotypes of Verticillium dahliae on water agar medium
2.4 温度对大丽轮枝菌的影响结果

在PDA平板上培养10 d后测量菌落半径,结果(图 4)表明,4个菌株(VD-h6、VD-h1、VD-101和VD-086)在12~32 ℃范围内具有相似的生长趋势,但不同菌株间存在差异。来自新疆的菌株VD-101和VD-086最适生长温度在22~26 ℃之间,而来自浙江的菌株VD-h6和VD-h1最适生长温度在22~28 ℃之间。相比较,在28 ℃条件下来自浙江的菌株(VD-h6和VD-h1)比来自新疆的菌株(VD-101和VD-086)菌落生长更快,显示出耐高温特性。4个菌株的菌落在30 ℃下生长缓慢,菌丝变薄,呈现不规则形,尤其是来自新疆的菌株VD-101对温度最敏感。在32 ℃条件下,菌株VD-101完全停止生长,而其余3个菌株在显微镜下可观察到在菌饼边缘产生了几个很短的菌丝体。

图4 温度对大丽轮枝菌菌丝生长的影响 Fig. 4 Effect of temperature on mycelial growth of V. dahliae isolates from cotton

温度对分生孢子产生影响的结果表明,在12~28 ℃条件下培养10 d后,4个菌株的分生孢子梗发育和形成的分生孢子球特征相似,但在30 ℃条件下,高温显著抑制了产孢。菌株VD-101菌丝发育形成不规则畸形,分生孢子梗和产孢体数量减少,个别分生孢子梗上产生几个孢子形成的孢子球。在其余3个菌株中分生孢子梗和产孢体数量也明显减少。在32 ℃培养10 d后,菌株VD-101菌丝停止生长,没有分生孢子梗产生;而菌株VD-086在菌饼周围形成稀疏的菌丝,产生的分生孢子梗数量很少,个别分生孢子梗具有一层轮枝,其余分生孢子梗不分枝,产孢体顶端产生一个孢子球。来自浙江的菌株VD-h1和VD-h6在菌饼周围也产生少量短而稀疏的菌丝,分生孢子梗和分生孢子的形成类似菌株VD-086,但产生的分生孢子梗和分生孢子数量相对较多。

孢子萌发试验表明,在32 ℃培养条件下,4个菌株的孢子虽然都萌发,但萌发时间延长。菌株VD-086在培养18 h后孢子开始萌发,VD-101在36 h后开始萌发,而VD-h1和VD-h6在3 d后开始萌发。不同时间观察结果显示,VD-101孢子萌发后不久就停止生长;其余3个菌株在10 d后都不能形成肉眼可见的菌落,仅在菌饼边缘产生稀疏的菌丝体,在菌丝体上虽然都产生分生孢子梗和形成孢子球,但不形成典型轮枝。菌株VD-086的分生孢子梗上产生很少产孢体,或无产孢体,仅顶端产生一个分生孢子球(图 5A);菌株VD-h1的分生孢子梗变短,其上产生少量的产孢体和分生孢子球(图 5B);而菌株VD-h6具有与VD-h1的相似特征(图片未显示)。在32 ℃条件下,3个菌株都能产生少量微菌核(图 5AB),但微菌核都不变黑(可能由于黑色素合成途径受阻)。在34 ℃培养条件下,4个菌株的孢子都不萌发。

A:菌株VD-086;B:菌株VD-h1。M:微菌核。 A: Isolate VD-086; B: Isolate VD-h1. M: Microsclerotia. 图5 32 ℃高温对分生孢子梗和产孢体的影响 Fig. 5 Effect of high temperature at 32 ℃ on conidiophores and conidiogenous cells
3 讨论

棉花栽培在浙江已有很长的历史,然而,并没有棉花黄萎病发生的报道,其原因尚不清楚。本研究首次报道了棉花黄萎病在浙江的发生,并测定了病原菌的致病型,为了解大丽轮枝菌的毒性变异和病害防治提供了重要信息。一些研究显示,落叶型特异性引物对INTD2f /INTD2r和DB19/espdef01对于个别菌株不能扩增出产物[10-11];因此,我们同时用这2对引物对病原菌菌株进行了PCR扩增,都获得了一致的结果。检测的5个来自浙江杭州的菌株均是落叶型,这不同于我国其他地区棉花黄萎病菌具有2种致病型的报道[9-11]

我们在WA平板上检查落叶型菌株和非落叶型菌株的微菌核形态学特征发现:9个落叶型菌株具有相似的形态学特征,在产生微菌核时,单个菌丝上可连续产生多个菌核;而非落叶型菌株BP2(TX9丧失了微菌核产生能力)大多数产生单个,偶尔连续产生2~3个微菌核,菌核间距较大。虽然本文观察的非落叶型菌株数量有限,需要进一步研究证实这个性状的普遍性,但提供了该微菌核特性的重要信息。结合微菌核长宽比,我们的结果为落叶型菌株和非落叶型菌株识别提供了形态学上的有用依据。

为了说明病原菌菌株的适应性和高温抑制病害的现象,我们测定了浙江2个菌株对温度的影响,并选择地理来源和气候差异较大的新疆2个菌株作为对照。来自浙江的2个菌株最适生长温度为22~28 ℃,而新疆的2个菌株为22~26 ℃,反映了不同来源真菌的适应性。温度对菌丝生长、分生孢子产生和萌发测定结果表明,高温抑制了菌丝生长,导致分生孢子梗和分生孢子数量急剧减少,延长了分生孢子萌发时间或完全抑制了分生孢子萌发。这些结果也与已有的报道[17-18]相似。一些研究认为棉花黄萎病菌在30 ℃通常不引起棉花病害[18]。依据天气网(www.tianqi.cn)中气象数据记录,杭州市2014年7月平均最高温度32.74 ℃,中、下旬持续高温(最高温度达到37 ℃),而8月月平均最高温度30.26 ℃(最高温度达到36 ℃)。比较病原菌生物学特性认为,田间持续高温可能抑制了病原菌在寄主内的扩展、分生孢子的产生和萌发。在此期间,一方面由于植物摆脱了病原菌进一步扩展和侵染,另一方面此温度范围的高温促进了植物的生长和发育[19-20];因此,植物新的叶片产生并迅速生长,矮化现象逐步消失,棉花黄萎病症状出现隐退现象。另外,一些研究显示,水势减少有利于病原菌耐热性稍微增强,反之降低(如低水势时,真菌可在35 ℃生长,高水势时,真菌不能在33 ℃生长)[18]。杭州市2014年7月份雨日数17 d,8月份雨日数22 d,降雨增加了田间的水势,也可能是影响棉花黄萎病隐退的另外因素。总之,本文结果为病害防治决策制定和棉花黄萎病发生规律的深入研究积累了重要的科学数据。

参考文献
[1] LÓPEZ-ESCUDERO F J, BLANCO-LÓPEZ M A. Isolation and morphologic characterization of microsclerotia of Verticillium dahliae isolate from soil. Biotechnology, 2005,4 (4):296–304. DOI: 10.3923/biotech.2005.296.304.
[2] SCHNATHORST W C, MATHRE D E. Host range and differentiation of a severe form of Verticillium alboatrum in cotton. Phytopathology, 1966,56 (10):1155–1161.
[3] BEJARANO-ALCÁZAR J, MELERO-VARA J M, BLANCO-LÓPEZ M A, et al. Influence of inoculum density of defoliating and nondefoliating pathotypes of Verticillium dahliae on epidemics of verticillium wilt of cotton in southern Spain. Phytopathology, 1995,85 (12):1474–1481. DOI: 10.1094/Phyto-85-1474.
[4] BEJARANO-ALCÁZAR J, BLANCO-LÓPEZ M A, MELERO-VARA J M, et al. The influence of verticillium wilt epidemics on cotton yield in southern Spain. Plant Pathology, 1997,46 (2):168–178. DOI: 10.1046/j.1365-3059.1997.d01-221.x.
[5] TJAMOS E C. Prospects and strategies in controlling verticillium wilt of olivel. EPPO Bulletin, 1993,23 (3):505–512. DOI: 10.1111/j.1365-2338.1993.tb01361.x.
[6] MERCADO-BLANCO J, RODRÍGUEZ-JURADO D, PÉREZ-ARTÉS E, et al. Detection of the nondefoliating pathotype of Verticillium dahliae in infected olive plants by nested PCR. Plant Pathology, 2001,50 (5):609–619. DOI: 10.1046/j.1365-3059.2001.00601.x.
[7] MERCADO-BLANCO J, RODRÍGUEZ-JURADO D, PÉREZ-ARTÉS E, et al. Detection of the defoliating pathotype of Verticillium dahliae in infected olive plants by nested PCR. European Journal of Plant Pathology, 2002,108 (1):1–13. DOI: 10.1023/A:1013994827836.
[8] PÉREZ-ARTÉS E, GARCÍA-PEDRAJAS M D, BEJARANO-ALCÁZAR J, et al. Differentiation of cotton-defoliating and nondefoliating pathotypes of Verticillium dahliae by RAPD and specific PCR analyses. European Journal of Plant Pathology, 2000,106 (6):507–517. DOI: 10.1023/A:1008756307969.
[9] 王莉梅, 石磊岩.北方棉区棉花黄萎病菌落叶型菌系鉴定. 植物病理学报,1999,29 (2):181–189.
WANG L M, SHI L Y. Identification of defoliating strains of Verticillium dahlia from cotton in North China. Acta Phytopathologica Sinica, 1999,29 (2):181–189. (in Chinese with English abstract)
[10] 王彦, 鹿秀云, 郭庆港, 等.河北省棉花黄萎菌落叶型和非落叶型菌系初步鉴定. 华北农学报,2010,25 (4):196–200.
WANG Y, LU X Y, GUO Q G, et al. Molecular identification of defoliating pathotype and non-defoliating pathotype of Verticillium dahliae from cotton in Hebei Province. Acta Agriculture Boreali-Sinica, 2010,25 (4):196–200. (in Chinese with English abstract)
[11] 朱阳阳, 徐齐君, 雷娟, 等.陕西棉黄萎菌落叶型及非落叶型的鉴定. 西北农业学报,2012,21 (9):166–173.
ZHU Y Y, XU Q J, LEI J, et al. Identification of defoliating and non-defoliating pathotype of Verticillium dahliae isolated from Shaanxi. Acta Agriculturae Boreali-Occidentalis Sinica, 2012,21 (9):166–173. (in Chinese with English abstract)
[12] BEJARANO-ALCÁZAR J. The virulence and inoculum density of Verticillium dahliae Kleb. in soil related to the epidemiology of verticillium wilt of cotton in The Guadalquivir Valley. Córdoba, Spain: University of Córdoba, 1990:382.
[13] LÓPEZ-ESCUDERO F J, ROCA J M, VALVERDE-CORREDOR A, et al. Correlation between virulence and morphological characteristics of microsclerotia of Verticillium dahliae isolates infecting olive. Journal of Phytopathology, 2012,160 (7/8):431–433.
[14] XIAO Z L, KEVIN D H, ZHANG J Z. Synonymy of two species of Bipolaris from aquatic crops of Poaceae. Mycotaxon, 2015,130 (1):131–143. DOI: 10.5248/130.131.
[15] ZHANG J Z, GUAN P G, TAO G, et al. Ultrastructure and phylogeny of Ustilago coicis. Journal of Zhejiang University Science B, 2013,14 (4):336–345. DOI: 10.1631/jzus.B1200239.
[16] MERCADO-BLANCO J, RODRIGUEZ-JURADO D, PARRILLA-ARAUJO S, et al. Simultaneous detection of the defoliating and nondefoliating Verticillium dahliae pathotypes in infected olive plants by duplex, nested polymerase chain reaction. Plant Disease, 2003,87 (12):1487–1494. DOI: 10.1094/PDIS.2003.87.12.1487.
[17] DE VAY J E, PULLMAN G S. Epidemiology and ecology of diseases caused by Verticillium species, with emphasis on verticillium wilt of cotton. Phytopathologia Mediterranea, 1984,23 (2/3):95–108.
[18] HILLOCKS R J. Cotton Diseases. Wallingford, UK: CAB International, 1992 :82–126.
[19] ROUSSOPOULOS D, LIAKATAS A, WHITTINGTON W J. Controlled-temperature effects on cotton growth and development. The Journal of Agricultural Science, 1998,130 (4):451–462. DOI: 10.1017/S0021859698005401.
[20] ROSOLEM C A, OOSTERHUIS D M, DE SOUZA F S. Cotton response to mepiquat chloride and temperature. Scientia Agricola, 2013,70 (2):82–87. DOI: 10.1590/S0103-90162013000200004.