浙江大学学报 (农业与生命科学版)  2016, Vol. 43 Issue (1): 65-72
文章快速检索     高级检索
聚乙二醇渗透胁迫对苜蓿幼苗营养器官离子含量的影响[PDF全文]
李波, 徐婉玉, 石善亮    
齐齐哈尔大学生命科学与农林学院, 黑龙江 齐齐哈尔161006
摘要: 以草原1号 (抗旱型) 和龙牧81(旱敏感型) 这2种苜蓿为材料, 采用水培方法, 研究聚乙二醇 (polyethylene glycol, PEG) 胁迫下苜蓿幼苗不同器官中Na+、K+、Ca2+、Mg2+含量的变化。对2种苜蓿幼苗在不同PEG胁迫下离子含量变化进行分析, 探讨干旱环境对苜蓿营养器官离子含量的影响。结果表明:2种苜蓿幼苗随着PEG质量分数的增加, 根、茎、叶中Na+含量增加, K+、Ca2+、Mg2+含量减少, K+/Na+、Ca2+/Na+、Mg2+/Na+比值出现下降或先下降后升高的变化趋势。除草原1号在低质量分数处理时根中和高质量分数处理时叶中Na+含量增加幅度大于龙牧81外, 其他各器官在PEG处理下的Na+含量增加幅度均小于龙牧81;在高质量分数PEG处理下, 耐旱性强的草原1号的根、叶中的K+和Mg2+含量大于龙牧81, 茎中K+和Mg2+含量小于龙牧81;在相同质量分数PEG处理下, 耐旱性强的草原1号根、茎和叶中Ca2+含量明显高于耐旱性弱的龙牧81;在高质量分数PEG胁迫下, 草原1号叶片中Ca2+含量明显高于龙牧81, 根和叶中3种离子的比值和茎的Ca2+/Na+均为草原1号高于龙牧81。干旱胁迫影响苜蓿幼苗对上述矿质元素在根、茎、叶营养器官的分布, 与苜蓿幼苗的抗旱性有一定的相关性。
关键词: 苜蓿    聚乙二醇胁迫    营养器官    离子含量    
Effects of polyethylene glycol stress on ion contents in nutritive organs of alfalfa seedlings
LI Bo, XU Wanyu, SHI Shanliang    
College of Agriculture, Forestry and Life Sciences, Qiqihar University, Qiqihar 161006, Heilongjiang, China
Abstract: The ions distribution in plants was changed under drought and other stresses. Plants could alleviate the damages caused by drought and enhance the adaptability to drought by re-constructing a new balance of sodium (Na+), potassium (K+), calcium (Ca2+) and magnesium (Mg2+) ions. Alfalfa, a kind of perennial leguminous plant, is the best and most important leguminous grass in the world. It plays important roles in the development of animal husbandry and the improvement of agricultural ecological environment. However, the development of alfalfa industry is limited because of the drought in the main planting area for alfalfa in North China. Monitoring the distribution changes of the four ions in drought-resistant and drought-sensitive alfalfa under drought stress would help to understand the mechanism by which alfalfa resists drought stress. Water culture method was used to examine the contents changes of Na+, K+, Ca2+, Mg2+ in different organs of alfalfa cultivars Grassland 1 (drought-resistant) and Longmu 81 (drought-sensitive) under different concentrations 10%, 15%, 20%, 25% of polyethylene glycol (PEG) stress (simulating drought stress), to investigate the responses of alfalfa to drought stress regarding to ions balance. The results showed that in both drought-resistant and drought-sensitive alfalfa seedlings, the content of Na+ increased whereas the contents of K+, Ca2+ and Mg2+ decreased in the roots, stems and leaves with the increase of PEG concentration. In the same condition, the ratios of K+ to Na+ (K+/Na+), Ca2+ to Na+ (Ca2+/Na+) and Mg2+ to Na+ (Mg2+/Na+) were decreased or decreased at first and then increased. The increment of Na+ content in the roots of Grassland 1 was more than that of Longmu 81 under low concentration of PEG stress, and the same phenomenon was observed in leaves under high concentration of PEG. Besides, it was opposite in other organs under different concentrations of PEG stress. Under high concentration of PEG, the increments of K+ and Mg2+ contents in the roots and leaves of the Grassland 1 were more than those of Longmu 81, whereas they were less in the stems. The increment of Ca2+ content in roots, stems and leaves of the Grassland 1 were all significantly more than those of Longmu 81 under different concentrations of PEG, respectively. Compared with Longmu 81, the ratios of K+/Na+, Ca2+/Na+, Mg2+/Na+ in roots and leaves, and the ratio of Ca2+/Na+ in Grassland 1 were all increased under high concentration of PEG. With the increase of PEG concentration, in the roots, stems and leaves of alfalfa seedlings, Na+ content increased whereas K+, Ca2+, Mg2+ contents decreased, and the ratios of K+/Na+, Ca2+/Na+, Mg2+/Na+ decreased too. When the concentration of PEG was 25%, the contents of K+, Ca2+, Mg2+ and the ratios of K+/Na+, Ca2+/Na+, Mg2+/Na+ in the roots and leaves of drought-resistant alfalfa (Grassland 1) were more than those of drought-sensitive one (Longmu 81), but it was not the case in stems. These suggested that the changes of ion content may be involved in the drought resistance of alfalfa.
Key words: alfalfa    polyethylene glycol stress    nutritive organ    ion content    

干旱胁迫直接影响植物对必需矿质元素的吸收和利用, 当植物受到干旱等逆境胁迫后, 使其对干旱等逆境的适应性增强, 体内的离子分布发生了变化, 通过改变Na+、K+等离子含量来降低逆境胁迫对植物造成的伤害[1-2]。在水分胁迫下植物通过积累大量的钠离子来降低细胞内的水势, 对植物保卫细胞的影响使钾离子和氯离子大量流失而钙离子吸收增加。由于水分匮乏而引起的干旱, 钾、钙离子的吸收对植物的生长是至关重要的, 重建体内离子平衡来抵御水分胁迫伤害是植物抗旱性的一大特征[3-4]

苜蓿 (Medicago sativa L.) 是一种全球性栽培、适应性广泛、品质优良的豆科饲料作物, 在干旱和盐碱环境下生长良好, 还可以作为绿肥改良土壤, 有利于农业生态环境的改善[5-6]。本文选取了2种抗旱性不同的苜蓿, 用不同质量分数聚乙二醇 (polyethylene glycol, PEG) 进行模拟干旱胁迫, 着重比较了两者对Na+、K+、Ca2+、Mg2+的吸收和这些离子在各器官的分布变化趋势, 从离子平衡方面探讨2种苜蓿耐干旱的差异, 以期对苜蓿在PEG渗透胁迫下的抗性机制有更深入的认识。

1 材料与方法 1.1 材料

以2种抗旱性不同的苜蓿品种为试验材料, 分别为草原1号 (抗旱型) 和龙牧81(旱敏感型), 均由黑龙江省畜牧研究所提供。草原1号苜蓿具有抗旱、耐风沙, 对土壤要求不严格, 适合干旱地区栽培。龙牧81苜蓿抗旱性较差, 适合在半干旱地区栽培。

1.2 试验方法 1.2.1 苜蓿幼苗的培养和胁迫处理

取2个抗旱性不同的苜蓿种子, 利用土培的方法将其种植在营养钵中, 定期浇水, 待幼苗长至三叶一心期后, 将苜蓿幼苗取出, 用清水洗净根部, 转移至1/2 Hoagland营养液中[5-7], 进行预培养 (3~5 d)。将放在1/2 Hoagland营养液培养 (3~5 d) 后的苜蓿幼苗取出, 放在5个梯度不同的胁迫液中进行处理48 h。植物生长期间, 用气泵不断向培养液中通气。

处理液成分:CK为1/2 Hoagland营养液即对照;A为1/2 Hoagland营养液+PEG 10%;B为1/2 Hoagland营养液+PEG 15%;C为1/2 Hoagland营养液+PEG 20%;D为1/2 Hoagland营养液+PEG 25%。

1.2.2 离子含量的测定

每个处理取15个单株, 每3个单株为1组, 分成根、茎和叶3部分。分离后的根、茎和叶用于其他参数的测定。取各处理的苜蓿根、茎、叶片0.1 g, 用去离子水冲洗2~3次, 用滤纸吸干表面的水分, 600 ℃煅烧30 min, 加1 mL硝酸 (3 mol/L) 溶解, 用二次去离子水定容至50 mL, 原子吸收光谱仪测定Na+、K+、Ca2+、Mg2+含量, 每项指标测定为3次重复。

$ 离子含量/\left( {{\text{mg}}/{\text{g}}} \right) = \frac{{C \times V}}{{W \times 1000}}。$

式中:C为利用标准曲线求的值,mg/L;V为定容体积,mL;W为样品质量,g。

1.3 数据的处理与分析

以上测定均设3次重复, 结果以“平均数±标准差”计, 利用Excel 2003作图、SPSS 17.0进行统计分析。

2 结果与分析 2.1 PEG胁迫对苜蓿幼苗不同器官Na+含量的影响

干旱胁迫下, 植物体内Na+含量会明显升高, 2种苜蓿表现出相同的变化规律。如图 1所示, PEG胁迫处理中, 苜蓿各器官中的Na+含量随PEG质量分数的升高有增加的变化趋势。根和茎的Na+含量均在PEG为25%时达到最大值, 叶的Na+含量在PEG为20%时达到最大值, 各器官中Na+含量从高到低的分布次序为叶>茎>根。

柱状图上不同小写字母表示在同一苜蓿营养器官不同PEG质量分数间在P < 0.05水平差异有统计学意义。 Different lowercase letters above the columns indicate statistically significant differences in the same vegetative organs of alfalfa under different PEG concentrations at the 0.05 probability level. 图1 营养器官中Na+含量的变化 Fig. 1 Changes of Na+ content in nutritional organs

在相同质量分数PEG处理下, 除25% PEG胁迫下的根外, 耐旱性较强的草原1号根、茎和叶中Na+含量明显高于耐旱性弱的龙牧81;草原1号和龙牧81根中最高Na+含量分别比对照增加了241.61%和159.16%, 茎中最高Na+含量分别比对照增加了104.85%和165.99%, 叶中最高Na+含量分别比对照增加了126.10%和181.78%。各器官相比, 草原1号根中增加幅度最大, 叶次之, 茎增加幅度最小; 龙牧81则在叶中增加幅度最大, 其次为根和茎。草原1号根中除Na+含量增加幅度大于龙牧81外, 茎和叶的Na+含量增加幅度均小于龙牧81。

2.2 PEG胁迫对苜蓿幼苗不同器官内K+含量的影响

与相应的对照相比 (图 2), 各质量分数PEG处理的2种苜蓿幼苗各器官K+含量均下降, 且下降幅度表现出不同的变化规律, 草原1号和龙牧81苜蓿根的K+含量分别在PEG为15%、20%时达到最小值, 茎和叶的K+含量分别在PEG为25%或20%时达到最小值。除25% PEG胁迫下的茎外, 各器官K+含量从高到低的分布次序均为叶>茎>根, 并且随PEG质量分数增加, 叶片中K+含量下降幅度明显高于根和茎。在高质量分数PEG处理下, 耐旱性强的草原1号根、叶中K+含量大于龙牧81。在高质量分数下处理, 茎中K+含量小于龙牧81。草原1号和龙牧81根中最低K+含量分别比相应的对照降低了11.03%和25.79%, 茎中最低K+含量分别比对照降低了12.36%和15.20%, 叶中最低K+含量分别比对照降低了24.61%和30.40%, 各器官相比, 草原1号和龙牧81在叶中降低幅度最大, 其次为根和茎。除了低质量分数处理时草原1号叶中K+含量低于龙牧81外, 其他各器官在PEG处理下的K+含量增幅均高于龙牧81。

柱状图上不同小写字母表示在同一苜蓿营养器官不同PEG质量分数间在P < 0.05水平差异有统计学意义。 Different lowercase letters above the columns indicate statistically significant differences in the same vegetative organs of alfalfa under different PEG concentrations at the 0.05 probability level. 图2 营养器官中K+含量的变化 Fig. 2 Changes of K+ content in nutritional organs
2.3 PEG胁迫对苜蓿幼苗不同器官Ca2+含量的影响

干旱胁迫下, 植物体内Ca2+含量会明显下降, 2种苜蓿表现出相同的变化规律。如图 3所示, 在PEG胁迫处理中, 苜蓿各器官中的Ca2+含量随PEG质量分数的升高而降低。根、茎和叶的Ca2+含量均在PEG为25%时达到最小值, 各器官中Ca2+含量从高到低的分布次序为茎>叶>根。在相同质量分数PEG处理下, 耐旱性较强的草原1号根、茎和叶中Ca2+含量明显高于耐旱性弱的龙牧81;在高质量分数处理下, 草原1号叶片中Ca2+含量明显高于龙牧81。草原1号和龙牧81根中最低Ca2+含量分别比对照降低了77.80%和84.67%, 茎中最低Ca2+含量分别比对照降低了60.48%和49.80%, 叶中最低Ca2+含量分别比对照降低了63.00%和78.41%。各器官相比, 草原1号和龙牧81根中降低幅度最大, 叶次之, 茎降低幅度最小。除低质量分数PEG胁迫下的叶外, 草原1号的根、茎中Ca2+含量均高于龙牧81。

柱状图上不同小写字母表示在同一苜蓿营养器官不同PEG质量分数间在P < 0.05水平差异有统计学意义。 Different lowercase letters above the columns indicate statistically significant differences in the same vegetative organs of alfalfa under different PEG concentrations at the 0.05 probability level. 图3 营养器官中Ca2+含量的变化 Fig. 3 Changes of Ca2+ content in nutritional organs
2.4 PEG胁迫对苜蓿幼苗不同器官Mg2+含量的影响

与相应的对照相比 (图 4), 各质量分数PEG处理的2种苜蓿幼苗各器官Mg2+含量均下降, 且下降幅度表现出相同的变化规律, 草原1号和龙牧81苜蓿根和叶的Mg2+含量均在PEG为25%时达到最小值, 茎的Mg2+含量分别在PEG为20%或25%时达到最小值。各器官Mg2+含量从高到低的分布次序草原1号为根>茎>叶, 龙牧81为茎>根>叶。并且随PEG质量分数增加, 叶片中Mg2+含量下降幅度明显高于根和茎。在高质量分数PEG处理下, 耐旱性强的草原1号的根、叶中Mg2+含量大于龙牧81, 茎中Mg2+含量小于龙牧81。草原1号和龙牧81根中最低Mg2+含量分别比相应的对照降低了38.77%和30.65%, 茎中最低Mg2+含量分别比对照降低了30.71%和25.45%, 叶中最低Mg2+含量分别比对照降低了41.96%和73.51%。各器官相比, 草原1号和龙牧81叶中Mg2+降低幅度最大, 根次之, 茎降低幅度最小。除茎外草原1号的根和叶中Mg2+含量均高于龙牧81。

柱状图上不同小写字母表示在同一苜蓿营养器官不同PEG质量分数间在P < 0.05水平差异有统计学意义。 Different lowercase letters above the columns indicate statistically significant differences in the same vegetative organs of alfalfa under different PEG concentrations at the 0.05 probability level. 图4 营养器官中Mg2+含量的变化 Fig. 4 Changes of Mg2+ content in nutritional organs
2.5 PEG胁迫对苜蓿幼苗不同器官K+/Na+、Ca2+/Na+和Mg2+/Na+比值的影响

在干旱胁迫下, 对2种苜蓿根、茎和叶中的Na+、K+、Ca2+和Mg2+含量的影响, 导致K+/Na+、Ca2+/Na+和Mg2+/Na+比值的不同变化。如图 5~7所示, 与相应的对照相比, 各质量分数PEG处理的2种苜蓿幼苗各器官K+/Na+、Ca2+/Na+和Mg2+/Na+比值均下降, 且下降幅度表现出基本相同的变化规律, 根、茎和叶的K+/Na+、Ca2+/Na+和Mg2+/Na+比值均在PEG为25%或20%时达到最小值。在高质量分数PEG胁迫下, 根和叶中3种离子的比值和茎的Ca2+/Na+均为草原1号高于龙牧81。

柱状图上不同小写字母表示在同一苜蓿营养器官不同PEG质量分数间在P < 0.05水平差异有统计学意义。 Different lowercase letters above the columns indicate statistically significant differences in the same vegetative organs of alfalfa under different PEG concentrations at the 0.05 probability level. 图5 营养器官中K+/Na+比值的变化 Fig. 5 Changes of K+/Na+ ratio in nutritional organs

柱状图上不同小写字母表示在同一苜蓿营养器官不同PEG质量分数间在P < 0.05水平差异有统计学意义。 Different lowercase letters above the columns indicate statistically significant differences in the same vegetative organs of alfalfa under different PEG concentrations at the 0.05 probability level. 图6 营养器官中Ca2+/Na+比值的变化 Fig. 6 Changes of Ca2+/Na+ ratio in nutritional organs

柱状图上不同小写字母表示在同一苜蓿营养器官不同PEG质量分数间在P < 0.05水平差异有统计学意义。 Different lowercase letters above the columns indicate statistically significant differences in the same vegetative organs of alfalfa under different PEG concentrations at the 0.05 probability level. 图7 营养器官中Mg2+/Na+比值的变化 Fig. 7 Changes of Mg2+/Na+ ratio in nutritional organs
3 讨论

植物必需矿质元素在植物的生长发育过程中起重要作用, 不同逆境胁迫会影响植物对矿质元素的吸收[7-8]。在干旱条件下, 由于土壤中水分减少, 土壤中Na+、Cl-相对含量会升高, 植物吸收过量Na+、Cl-等离子会使K+、Ca2+、Mg2+等其他元素的吸收受到抑制[9-12]。本试验研究发现, 随着PEG渗透胁迫的加深, 2种苜蓿根、茎、叶中Na+含量增加, K+、Ca2+、Mg2+含量减少, 2个品种中Na+含量在PEG 20%或PEG 25%(中度或重度干旱) 有最大的积累量, 其中Na+积累量为叶>茎>根, 草原1号 (抗旱型) Na+积累量高于龙牧81(干旱敏感型), 由于Na+积累, 导致植物体内K+、Ca2+、Mg2+含量降低, 以调节植物受到的干旱胁迫。2品种中K+、Ca2+、Mg2+含量在PEG 20%或PEG 25%(中度或重度干旱) 有最小的积累量, K+积累量为叶>茎>根, Ca2+积累量茎>叶>根, Mg2+积累量为根>茎>叶。王磊等[13]研究证明, 随水分胁迫的加剧菊芋体内钠离子含量增加而钾离子和钙离子含量降低, 致使其细胞矿质元素含量和渗透压失衡;王玉凤等[14]研究证明, 随着胁迫的加剧玉米体内钾离子、镁离子和钙离子的含量均降低;杨子等[15]研究证明,木薯在干旱胁迫后钾离子和钙离子的变化趋势从无到有, 从不相关转为负相关, 在吸收上表现为拮抗作用的结果一致。

通常植物受到逆境胁迫后会影响植物对基本养分离子的吸收, 从而破坏植物正常生长的养分离子平衡。一些研究已经证明在盐逆境胁迫条件下较高的K+/Na+对植物的抗盐能力是有益的, 叶中Mg2+/Na+比值通常是用来衡量植物受到Na+毒害程度的重要指标, 叶片的Ca2+/Na+值用来指示Ca2+被Na+的置换程度[16], 但有关干旱逆境对植物离子含量变化的研究报道甚少。本试验研究发现随着PEG质量分数的增加, 2个苜蓿品种的K+/Na+、Ca2+/Na+、Mg2+/Na+比值均有不同程度的减小, 均在PEG 20%或PEG 25%时值最小, 这是由于植物吸收了大量的Na+导致植物对K+、Ca2+、Mg2+的吸收受到抑制。较高的K+/Na+、Ca2+/Na+、Mg2+/Na+比值有利于植物维持正常代谢和提高抗逆性, 重要养分离子在2种苜蓿植株根、茎、叶中的含量存在差异, 但草原1号苜蓿的根、茎、叶仍能保持一个相对较好的Na+、K+、Ca2+、Mg2+养分离子比值状况, 可能与其抗旱性有关。

4 结语

随着PEG质量分数的增加, 苜蓿根、茎、叶中Na+含量增加, K+、Ca2+、Mg2+含量减少, K+/Na+比值、Ca2+/Na+比值、Mg2+/Na+比值均减小。PEG为25%时, 除Na+外其他离子含量和比值在根和叶中表现出规律性变化, 均为草原1号大于龙牧81, 而茎中变化规律不明显。干旱胁迫影响苜蓿幼苗对矿质元素在根、茎、叶营养器官的分布, 与苜蓿幼苗的抗旱性有一定的相关性。

参考文献
[1] 白艳波, 李娇, 张宝龙, 等. 干旱胁迫对植物矿质元素影响的研究进展. 生物技术通报, 2013(3): 15-18.
BAI Y B, LI J, ZHANG B L, et al. Research advance on effect of drought stress on mineral elements of plant. Biotechnology Bulletin, 2013(3): 15-18. (in Chinese with English abstract)
[2] 王冉, 陈贵林, 宋炜, 等. NaCl胁迫对2种南瓜幼苗离子含量的影响. 植物生理与分子生物学学报, 2006, 32(1): 94-98.
WANG R, CHEN G L, SONG W, et al. Effects of NaCl stress on cation contents in seedlings of two pumpkin varieties. Journal of Plant Physiology and Molecular Biology, 2006, 32(1): 94-98. (in Chinese with English abstract)
[3] 黄立华, 梁正伟. 直播羊草在不同pH土壤环境下的离子吸收特性. 中国草地学报, 2008, 30(1): 35-39.
HUANG L H, LIANG Z W. Ionic absorption characteristics of Leymus chinensis seeded in various pH soils. Chinese Journal of Grassland, 2008, 30(1): 35-39. (in Chinese with English abstract)
[4] 朱义, 谭贵娥, 何池全, 等. 盐胁迫对高羊茅 (Festuca arundinacea) 幼苗生长和离子分布的影响. 生态学报, 2007, 27(12): 5447-5454.
ZHU Y, TAN G E, HE C Q, et al. Effect of salinization on growth and ion homeostasis in seedlings of Festuca arundinacea. Acta Ecologica Sinica, 2007, 27(12): 5447-5454. (in Chinese with English abstract) DOI:10.3321/j.issn:1000-0933.2007.12.060
[5] 李崇巍, 贾志宽, 林岭, 等. 几个苜蓿新品种抗旱性的初步研究. 干旱地区农业研究, 2002, 20(4): 21-25.
LI C W, JIA Z K, LIN L, et al. Study on drought resistance of some new alfalfa varieties. Agricultural Research in the Arid Areas, 2002, 20(4): 21-25. (in Chinese with English abstract)
[6] 韩瑞宏, 高桂娟, 张亚光. 干旱胁迫下苜蓿适应性研究进展. 安徽农学通报, 2009, 15(18): 27-29.
HAN R H, GAO G J, ZHANG Y G. Research progress on Medicago adaptation under drought stress. Anhui Agricultural Science Bulletin, 2009, 15(18): 27-29. (in Chinese with English abstract) DOI:10.3969/j.issn.1007-7731.2009.18.016
[7] 华春, 周泉澄, 张边江, 等. 毕氏海蓬子和盐角草幼苗对PEG-6000模拟干旱的生理响应. 干旱地区农业研究, 2009, 26(5): 702-707.
HUA C, ZHOU Q C, ZHANG B J, et al. Physiologic response of seedlings of Salicornia bigelovii torr and Salicornia europaea L. to drought simulated with PEG-6000. Arid Zone Research, 2009, 26(5): 702-707. (in Chinese with English abstract)
[8] 穆怀彬, 伏兵哲, 德英. PEG-6000胁迫下10个苜蓿品种幼苗期抗旱性比较. 草业科学, 2011, 28(10): 1809-1814.
MU H B, FU B Z, DE Y. Drought tolerance of alfalfa seedings of 10 varieties under PEG-6000 stress. Pratacultural Science, 2011, 28(10): 1809-1814. (in Chinese with English abstract)
[9] 郁万文, 曹帮华, 曹福亮. 干旱、旱盐胁迫对刺槐生长及离子吸收分配的影响. 南京林业大学学报 (自然科学版), 2007, 31(3): 68-72.
YU W W, CAO B H, CAO F L. Effects of drought and drought-NaCl stresses on the growth and ionic absorption and distribution of Robinia pseudoacacia clones. Journal of Nanjing Forestry University (Natural Sciences Edition), 2007, 31(3): 68-72. (in Chinese with English abstract)
[10] 柏新富, 朱建军, 王仲礼, 等. 离子吸收分布与几种荒漠植物适应性的关系. 生态学报, 2010, 30(12): 3247-3253.
BAI X F, ZHU J J, WANG Z L, et al. Ion uptake and distribution in relation to the adaptability of several desert species. Acta Ecologica Sinica, 2010, 30(12): 3247-3253. (in Chinese with English abstract)
[11] 刘静, 张芳, 崔悦慧, 等. 小美旱杨不同部位可溶盐离子含量的季节动态及影响因素. 干旱区资源与环境, 2006, 20(4): 176-181.
LIU J, ZHANG F, CUI Y H, et al. The variation of soluble salt Ions of Populus populars at different seasons. Journal of Arid Land Resources and Environment, 2006, 20(4): 176-181. (in Chinese with English abstract)
[12] 刘斌, 王吉, 蒋静, 等. 不同盐碱荒漠花花柴植株Na+、K+离子分布规律研究. 新疆农业科学, 2013, 50(9): 1632-1641.
LIU B, WANG J, JIAN J, et al. Na+ and K+ ions distribution of Karelinia caspica in different saline-alkaline deserts. Xinjiang Agricultural Sciences, 2013, 50(9): 1632-1641. (in Chinese with English abstract)
[13] 王磊, 隆小华, 孟宪法, 等. 水杨酸对NaCl胁迫下菊芋幼苗光合作用及离子吸收的影响. 生态杂志, 2011, 30(9): 1901-1907.
WANG L, LONG X H, MENG X F, et al. Effects of salicylic acid on photosynthesis and ion absorption Helianthus tuberosus seedlings under NaCl stress. Chinese Journal of Ecology, 2011, 30(9): 1901-1907. (in Chinese with English abstract)
[14] 王玉凤, 薛盈文, 杨克军, 等. NaCl胁迫对玉米幼苗不同器官离子含量的影响. 生态学杂志, 2011, 30(8): 1654-1661.
WANG Y F, XUE Y W, YANG K J, et al. Effects of NaCl stress on ion contents in different organs of maize (Zea mays L.) seedlings. Chinese Journal of Ecology, 2011, 30(8): 1654-1661. (in Chinese with English abstract)
[15] 杨子, 曾长英, 王斌, 等. 干旱胁迫对木薯K+、Ca2+和ABA的影响. 热带作物学报, 2013, 34(9): 1725-1729.
YANG Z, ZENG C Y, WANG B, et al. Effect of drought stress on K+, Ca2+ and ABA content in cassava. Chinese Journal of Tropical Crops, 2013, 34(9): 1725-1729. (in Chinese with English abstract)
[16] 王小山, 朱平华, 鲍国成, 等. 盐碱胁迫对紫花苜蓿根、茎和叶重要养分离子平衡的影响. 江苏农业科学, 2013, 41(7): 190-195.
WANG X S, ZHU P H, BAO G C, et al. Effects on the balance of nutrient ions of root, stem and leaf of alfalfa under saline alkali stress. Jiangsu Agricultural Science, 2013, 41(7): 190-195. (in Chinese with English abstract)