浙江大学学报(农业与生命科学版)  2016, Vol. 42 Issue (4): 411-418
文章快速检索     高级检索
马铃薯不同器官浸提液的自毒作用[PDF全文]
万年鑫1, 袁继超1, 何卫2, 龙文靖2, 张琴1, 周少猛1, 郑顺林1    
1. 四川农业大学农学院,农业部西南作物生理生态与耕作重点实验室,成都 611130;
2. 四川省农业科学院,成都 610066
摘要: 采用盆栽试验,以不含马铃薯浸提液处理为对照,分析马铃薯不同器官(根、茎、叶)浸提液处理对其生长的影响。结果表明:马铃薯不同器官浸提液对马铃薯生长产生明显的抑制作用。其中,茎、叶浸提液对株高具有显著抑制作用( P <0.05),化感效应指数( allelopathic response index,RI)均为-0.11;根浸提液对分枝数、茎粗的抑制作用最强,RI值分别为-0.11和-0.13;同时,根浸提液对马铃薯根系的抑制作用也最大,对根表面积、根尖数、分叉数的RI值分别为-0.25、-0.32、-0.32。经不同器官浸提液处理后,马铃薯叶片叶绿素含量、过氧化物酶和过氧化氢酶活性降低;而丙二醛含量随着浸提液质量浓度的升高化感效应降低,且根浸提液的化感效应最强,RI值为-0.10。除根浸提液处理使可溶性糖含量明显增加外,茎、叶浸提液处理使可溶性糖含量降低,RI值达-0.11和-0.02;马铃薯茎、叶浸提液对可溶性蛋白质含量有促进增加的作用,而根浸提液对其产生抑制作用,RI值达-0.06。表明马铃薯不同器官存在自毒作用,但其适应自毒物质胁迫的能力不同,其中,根系自毒作用最为明显。
关键词: 马铃薯    浸提液    自毒物质    化感作用    连作障碍    
Autotoxicity of water extracts from different organs of potato. Journal of Zhejiang University
WAN Nianxin1, YUAN Jichao1, HE Wei2, LONG Wenjing2, ZHANG Qin1, ZHOU Shaomeng1, ZHENG Shunlin1    
1. Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China;
2. Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
Summary: Continuous cropping obstacle caused by intensive cropping of potato has seriously affected its healthy development of industrialization. Autotoxicity was confirmed to be one of the mechanisms causing continuous cropping obstacle; therefore it will be significance to study the autotoxicity of potato for sustainable agriculture production. The growth of plants can be inhibited by autotoxicity through regulating the permeability of cell membrane, affecting the function and enzymatic activities, and even the photosynthesis system. It was so difficult to eliminate the continuous cropping obstacle by agronomic measures, thus it become necessary to solve the problem of continuous cropping obstacle and to reveal the mechanism of autotoxicity for potato. In this paper, a pot experiment was conducted to investigate effects of water extracts from different organs (root, stem and leaf) of potato on its growth and development. The potatoes were collected from tuber of mature potato in the field, and matrix culture method was adopted to conduct the experiments. Morphological characteristics of root system (root length, root surface area and root volume), and physiological parameters (catalase, peroxidase and malondiadehyde) were used as indicators to study the autotoxicity effect. The results showed that: Water extracts from different organs of potato exhibited obvious inhibitory effect on the growth of potato, and the extracts from stem and leaves had significant inhibitory effect on the height of potato (P <0.05), with the alleopathic response index (RI) value of -0.11. The root extracts significantly inhibited the number of branches and stem diameter, with the RI value of -0.11 and -0.13, respectively. Meanwhile, the damage of root system caused by the root extracts was also worst, with the RI value of -0.25 for the root surface area, -0.32 for the root tip number, and -0.32 for the branch number, respectively. The chlorophyll contents of potato leaf, activities of peroxidase and catalase all decreased under the treatments of water extracts from different organs of potato; however, the MDA content was increased, and the allelopathic effect of root extracts was the strongest, with the RI value of -0.10. The soluble sugar content was significantly increased by the root extracts, while reduced by the stem and leaf extracts, with the RI value of -0.11 and -0.02, respectively. On the contrary, the soluble protein content was increased by the stem and leaf extracts, while reduced by the root extracts, with the RI value of -0.06. In conclusion, the autotoxicity effect is observed in different organs of potato, but the adaptation to allelochemicals is distinct among the different organs of potato, and the inhibitory effect by root extracts is strongest.
Key words: potato    extract    autotoxication    allelopathy    continuous cropping obstacle    

自毒作用是植物通过根系分泌释放或植株腐解后产生有毒化学物质,影响同种植物种子萌发或对生长起抑制作用的现象,又称自化感作用或自体中毒[1]。自毒物质以挥发、淋溶、根系分泌和残体分解等途径从植物个体(供体)释放,通过改变膜透性[2]抑制植物养分吸收及细胞分裂伸长和亚显微结构,对植物光合与呼吸作用[3]、各种酶功能和活性、内源植物激素合成代谢及蛋白质生物合成[4]等产生一定的影响,从而影响环境中其他同种植物个体(受体)的生长[5]。自毒作用是连作障碍发生机制之一,该作用可使植物品质下降,病虫害增多,进而产生连作障碍[6]。在连作条件下土壤生态环境对植物生长有很大的影响,尤其是植物残体对植物有致毒作用,并连同植物根系分泌物中的自毒物质影响植株代谢,最后导致自毒作用的发生。已有研究发现,黄瓜[7]、茄子[8]、豌豆[9]等作物的连作障碍都与化感物质的自毒作用有关。

继马铃薯成为第四大主粮之后,其种植面积大幅增加。而产业化的发展导致马铃薯连作障碍越来越突出[10]。目前,对马铃薯连作障碍研究发现,连作导致土壤养分亏缺[11];土壤中脲酶、过氧化氢酶、磷酸酶等活性随连作年限增加而逐年降低[12-13];马铃薯连作后,其土壤细菌含量大量减少,真菌及放线菌含量增加[14]。但有关马铃薯自身对化感物质的响应机制并不清楚,对其自毒作用的研究还鲜见报道。为此,笔者采用盆栽试验,研究马铃薯根、茎、叶浸提液对马铃薯生长发育情况的影响,旨在初步探明残体自毒作用的机制,以期为马铃薯连作障碍的机制研究和应对措施提供依据。

1 材料与方法 1.1 供试材料

供试马铃薯品种为川芋117。参照文献[15]的方法获得马铃薯浸提液:在川芋117块茎形成期从田间取样,洗净后风干,取马铃薯根、茎、叶3部分,分别将其剪碎,与蒸馏水按质量体积比1∶1(kg∶L)混合,在30 ℃下浸提48 h,静置后过滤,即为母液。

1.2 试验方法

采用盆栽试验,基质为 V (蛭石)∶ V (珍珠岩)≈3∶1。 设置根、茎、叶3个处理,每个处理设3个质量浓度梯度,分别为0、500和1 000 mg/L。在每个质量浓度下种植9盆。在直径320 mm盆钵中每盆种植3株马铃薯。马铃薯出土约1 cm时进行处理。浸提液施用方式:将母液按一定倍数稀释至改良的Hoagland溶液中,每4 d浇一次浸提液。待马铃薯生长至块茎形成期时取样测定。

1.3 数据测定与统计分析

植株叶绿素含量采用SPAD-502型叶绿素仪测定[16];植株根系形态指标用根系扫描仪(Epson Perfection V700)将根系样品扫描成图片文件,再用WinRHIZO根系分析软件(Epson Expression 1 000 xl)测定根系长度、根表面积、根体积、根尖数以及平均直径和分叉数。植株叶片生理指标根据蔡庆生的方法[17]测定:过氧化物酶(peroxidase,POD)采用氮蓝四唑(nitro-blue tetrazolium,NBT)还原法测定;过氧化氢酶(catalase,CAT)采用紫外吸收法测定;丙二醛(malondialdehyde,MDA)采用硫代巴比妥酸法测定;可溶性蛋白质采用考马斯亮蓝G-250法测定;可溶性糖采用蒽酮比色法测定。化感效应指数(allelopathic response index,RI)=1- C / T ( TC )或RI= T / C -1( TC )。其中: C 为对照值; T 为处理值;RI>0为促进作用,RI<0为抑制作用,其绝对值的大小代表化感作用的强弱[18]

采用Excel 2007和DPS 7.05软件的最小显著差别法对数据进行统计分析。

2 结果与分析 2.1 马铃薯浸提液对地上部的影响

不同器官浸提液对株高有极显著影响( F =4.491**),而浸提液质量浓度主要显著影响分枝数( F =4.717*)(表 1)。与对照相比,马铃薯根浸提液对其株高无显著影响,而茎和叶浸提液处理使株高显著降低,两者的化感效应指数均为-0.11;高质量浓度根、 叶浸提液显著降低分枝数,其中,1 000 mg/L 根浸提液使分枝数减少40.99%,化感效应指数(RI)为-0.33;根浸提液对马铃薯茎粗抑制作用显著,其降幅为13.07%,化感效应指数达-0.13,茎、叶浸提液对茎粗也表现出一定的抑制作用。这说明马铃薯不同器官内的自毒物质种类可能存在差异,从而引起自毒物质作用部位不同。茎、叶内的自毒物质主要影响株高发育;而根内的自毒物质则主要影响茎粗与分枝数的形成,随着浸提液质量浓度增加,分枝数显著降低。

表1 马铃薯浸提液对其自身形态的影响 Table 1 Effects of water extracts from potato roots,stems and leaves on its morphological characteristics
点击放大
2.2 马铃薯浸提液对根系的影响

马铃薯浸提液对根系具有抑制作用(表 2表 3)。不同器官浸提液对根长、根尖数及分叉数的影响达到极显著水平( F =15.938**F =7.457**F =20.274**),对根表面积的影响达到显著水平( F =6.312*);而浸提液质量浓度仅对根的平均直径产生影响( F =5.283*)。与对照相比,马铃薯根浸提液对根表面积、根体积、根尖数抑制作用最强,分别降低了24.97%、22.78%和31.52%,RI值达-0.25、-0.23和-0.32;叶浸提液对根长、分叉数的抑制作用最强,降幅为30.87%和33.17%,化感效应指数分别为-0.31、-0.34。马铃薯浸提液对根的平均直径影响小,但其质量浓度对根平均直径的影响达显著水平,且随着浸提液质量浓度的增加,抑制作用有所增强。由此可知,马铃薯不同部位浸提液对根系影响很大,尤其以根浸提液对根系的抑制作用最为显著。说明自毒物质通过对马铃薯根系产生抑制作用,影响根系吸收及物质转运,进而影响马铃薯一系列的生理生化过程。

表2 马铃薯浸提液对其根长、根表面积和根体积的影响 Table 2 Effects of water extracts from potato roots,stems and leaves on root length,surface area and volume
点击放大

表3 马铃薯浸提液对其根尖数、分叉数及平均直径的影响 Table 3 Effects of water extracts from potato roots,stems and leaves on root tip,fork and average diameter
点击放大
2.3 马铃薯浸提液对叶片酶活性的影响

表 4可以看出:马铃薯浸提液对过氧化物酶的影响很大,不同器官浸提液的影响达到显著水平( F =4.159*),器官与浸提液质量浓度的交互作用达到极显著水平( F =6.096**);除1 000 mg/L根浸提液对过氧化物酶活性无化感效应外,其他处理均抑制该酶活性,且以500 mg/L根浸提液的抑制作用最强,酶活性降低了25.37%,RI值达-0.25。与对照相比,1 000 mg/L茎浸提液对过氧化氢酶活性抑制作用最为显著,RI值达-0.11;根浸提液对马铃薯过氧化氢酶活性具有一定的抑制作用;而叶浸提液及500 mg/L茎浸提液对过氧化氢酶活性化感效应极小。叶片丙二醛含量对不同部位浸提液的响应不同,在根、茎浸提液处理下丙二醛含量降低,在叶浸提液处理下丙二醛含量升高。说明在自毒物质存在的条件下,马铃薯的抗逆性活动复杂,通过降低植株抗性从而降低其对环境变化的抵抗能力,影响植株生长和产量的形成。

表4 马铃薯浸提液对其酶活性和丙二醛含量的影响 Table 4 Effects of water extracts from potato roots,stems and leaves on enzymatic activities and malondialdehyde content
点击放大
2.4 马铃薯浸提液对叶片叶绿素、可溶性糖及可溶性蛋白质含量的影响

马铃薯不同器官浸提液对叶绿素、可溶性糖和可溶性蛋白质含量的影响均达到极显著水平( F =8.988**F =123.023**F =5.436**),且器官与浸提液质量浓度的交互作用对可溶性糖也具有极显著作用( F =22.568**)(表 5)。对不同器官浸提液而言,叶绿素含量随着浸提液质量浓度的增大而减少,抑制作用增强;可溶性糖含量的均值在根浸提液处理下显著增加,在茎、叶浸提液处理下降低(RI值分别为-0.11、-0.02),随着浸提液质量浓度的增加,抑制效果增强;在500 mg/L根浸提液处下,可溶性蛋白质含量较对照减少了13.43%,RI值达-0.13,而在其他浸提液处理下可溶性蛋白质含量较对照有所增加。综上表明,在浸提液处理下,马铃薯体内抗逆性物质增加,特别是在根浸提液处理下可溶性糖含量显著增加,说明浸提液对其自身产生了抑制作用;同时,在自毒物质作用下,马铃薯通过降低叶绿素含量,增加可溶性糖和可溶性蛋白质含量,从而影响体内物质转化,以此适应自毒物质存在的逆境环境。

表5 马铃薯浸提液对其叶绿素、可溶性糖及可溶性蛋白质含量的影响 Table 5 Effects of water extracts from potato roots,stems and leaves on the contents of chlorophyll,soluble sugar and soluble protein
点击放大
3 讨论

植物不同组织的化感作用通常有所不同,而这种差异的来源与所含化感物质的含量和种类有关[19];一般认为,植株根、茎、叶各部位对相同受体植物的化感效应不同[20]。本试验结果表明:马铃薯根、茎、叶浸提液对其自身生长均有不同程度的抑制作用,以根浸提液对马铃薯根系生长的抑制作用效果最为明显;以化感效应指数衡量,根浸提液化感作用最强,叶浸提液次之,茎浸提液最弱。这与刘红彦等研究地黄的结果[21]一致。在对过氧化氢酶、过氧化物酶生理指标的影响上,不同器官浸提液对其影响差异不大;而根浸提液对丙二醛含量的影响与茎、叶浸提液有较明显的差异,根浸提液的化感作用最大,与对马铃薯自身生长的影响较一致。说明马铃薯根残体是产生化感物质的主要器官,可能是引起马铃薯连作障碍的主要因子。这与EINHELLIG等[22]报道的化感物质最初作用位点是根细胞质膜的观点相符。马铃薯残体分解后与土壤结合,释放化感物质,对根系产生自毒作用,导致根系吸收能力下降,从而影响马铃薯植株的生长。不同器官具有不同强度化感作用的可能原因是自毒物质主要靠根系分泌到环境中,影响植株的自身生长发育,但至今仍缺少对有关根系分泌引起自毒作用的直接证据,确切原因还有待深入探究,而根系与环境的化感入侵机制具有一定的研究意义。在生产实践中,马铃薯收获时尽可能将整个植株带出土地,避免其自身化学物质分泌对下一轮马铃薯生长发育产生影响。

本研究表明,不同处理对叶绿素含量均产生明显的抑制作用,影响植株光合速率;同时,除根浸提液在500 mg/L处理时可溶性蛋白质含量低于对照外,在其他处理下该含量均有所增加。可溶性糖含量仅在根浸提液处理下明显增加。另外,在马铃薯浸提液处理下过氧化物酶、过氧化氢酶活性降低,丙二醛含量降低(除叶浸提液外),但是抑制作用不强烈。这说明浸提液处理产生的生理毒害并不明显,未产生显著的逆境生理。这可能与马铃薯抗性和化感物质的入侵机制有关:当季种植马铃薯能够对自毒物质产生忍耐性;当下季连作马铃薯后,随着自毒物质的积累,马铃薯敏感性增强,抵抗力减弱,这也可能是造成马铃薯连作障碍的原因之一;同时,马铃薯植株为适应化感物质胁迫而增强细胞抗氧化能力[23],增强植株的抗性,从而适应土壤环境的改变,这也是植物适应不良环境和应对胁迫的共同表现[24]

连作障碍的形成和发生原因复杂多样。研究认为,连作障碍主要是由土壤土传病害、土壤理化性质劣变、微生物种类变化、根系分泌物和残茬分解等所引起的自毒作用[25-26]。对于土壤土传病害、理化性质裂变和微生物种类变化可以通过合理施药、有机肥和微生物肥等方式有效解决,但自毒作用所引起的连作障碍很难通过农艺措施解决。且由自毒作用所引起的连作障碍比土壤条件变化更加严重和具有不可消除性。本研究通过研究马铃薯浸提液对其自身生长发育的影响,发现在马铃薯浸提液中确实存在自毒物质,且自毒作用具有选择性、质量浓度效应和共同作用效应[27]等3个特征,且根浸提液自毒作用最强。研究马铃薯自毒作用可为解决马铃薯连作障碍提供新的理论与思路。在下阶段工作中,将通过设置周期长的轮作试验,研究在更为复杂的大田条件下是否能发生同样程度的自毒作用;同时,对马铃薯根系分泌物进行检测,研究自毒物质的遗传生化调控机制,最终全面揭示马铃薯自毒机制及其连作障碍的原因。

参考文献
[1] RICE E L. Allelopathy . New York, USA: Academic Press, 1984.
[2] 张晓玲, 潘振刚, 周晓锋, 等.自毒作用与连作障碍.土壤通报,2007,38 (4):781–784.
ZHANG X L, PAN Z G, ZHOU X F, et al. Autotoxicity and continuous cropping obstacles: A review. Chinese Journal of Soil Science , 2007,38 (4): 781–784. (in Chinese with English abstract)
[3] LEE J G, LEE B Y, LEE H J. Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce(Lactuca sativa L.). Scientia Horticulturae , 2006,110 (2): 119–128.
[4] 曾令杰, 林茂兹, 李振方, 等.连作对太子参光合作用及药用品质的影响.作物学报,2012,38 (8):1522–1528.
ZENG L J, LIN M Z, LI Z F, et al. Effects of continuous cropping on photosynthesis and medicinal quality of Pseudostellariae heterophylla. Acta Agronomica Sinica , 2012,38 (8): 1522–1528. (in Chinese with English abstract)
[5] 李兆慧, 王强, 廖俊俊, 等.天山云杉凋落物自毒物质分析与初步鉴定.分析化学研究,2009,37 (6):888–892.
LI Z H, WANG Q, LIAO J J, et al. Elementary identification of potential autotoxins from Picea schrenkiana litters. Chinese Journal of Analytical Chemistry , 2009,37 (6): 888–892. (in Chinese with English abstract)
[6] HAO Z P, WANG Q, CHRISTIEA P, et al. Allelopathic potential of watermelon tissues and root exudates. Scientia Horticulturae , 2007,112 (3): 315–320.
[7] 吕卫光, 张春兰, 袁飞, 等.化感物质抑制连作黄瓜生长的作用机理.中国农业科学,2002,35 (1):106–109.
LV W G, ZHANG C L, YUAN F, et al. Mechanism of allelochemicals inhibiting continuous cropping cucumber growth. Scientia Agricultura Sinica , 2002,35 (1): 106–109. (in Chinese with English abstract)
[8] 王芳, 王敬国.茄子秸秆水提物自毒作用初探.中国生态农业学报,2005,13 (2):51–53.
WANG F, WANG J G. Study on autotoxic effects of aqueous extract from eggplant residues. Chinese Journal of Eco-Agriculture , 2005,13 (2): 51–53. (in Chinese with English abstract)
[9] 喻景权, 松井佳久.豌豆根系分泌物自毒作用的研究.园艺学报,1999,26 (3):175–178.
YU J Q, MATSUI Y. Autointoxication of root exudates in Pisum sativus. Acta Horticulturae Sinica , 1999,26 (3): 175–178. (in Chinese with English abstract)
[10] 刘星, 张书乐, 刘国锋, 等.连作对甘肃中部沿黄灌区马铃薯干物质积累和分配的影响.作物学报,2014,40 (7):1274–1285.
LIU X, ZHANG S L, LIU G F, et al. Effects of continuous cropping on dry matter accumulation and distribution of potato plants in the Yellow River irrigation areas of middle Gansu Province. Acta Agronomica Sinica , 2014,40 (7): 1274–1285. (in Chinese with English abstract)
[11] 胡宇, 郭天文, 张绪成.旱地马铃薯连作对土壤养分的影响.安徽农业科学,2009,37 (12):5436–5439.
HU Y, GUO T W, ZHANG X C. Effect of continuous cropping on soil nutrients in dry land. Journal of Anhui Agricultural Sciences , 2009,37 (12): 5436–5439. (in Chinese with English abstract)
[12] 白艳茹, 马建华, 樊明寿.马铃薯连作对土壤酶活性的影响.作物杂志,2010 (3):34–36.
BAI Y R, MA J H, FAN M S. Effect of continuous cropping potato on activities of soil enzymes. Crops , 2010 (3): 34–36. (in Chinese with English abstract)
[13] 万年鑫, 郑顺林, 周少猛, 等.薯玉轮作对马铃薯根区土壤养分及酶活效应分析.浙江大学学报(农业与生命科学版),2016,42 (1):74–80.
WAN N X, ZHENG S L, ZHOU S M, et al. Analysis of potato-maize rotation on rhizosphere soil nutrient and enzyme activity for potato. Journal of Zhejiang University (Agriculture and Life Sciences) , 2016,42 (1): 74–80. (in Chinese with English abstract)
[14] 吴凤芝, 王学征.设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系.中国农业科学,2007,40 (10):2274–2280.
WU F Z, WANG X Z. Effect of monocropping and rotation on soil microbial community diversity and cucumber yield, quality under protected cultivation. Scientia Agricultura Sinica , 2007,40 (10): 2274–2280. (in Chinese with English abstract)
[15] 于建光, 顾元, 常志洲, 等.小麦秸秆浸提液和腐解液对水稻的化感效应.土壤学报,2013,50 (2):349–356.
YU J G, GU Y, CHANG Z Z, et al. Allelopathic effects of wheat straw extract and decomposition liquid on rice. Acta Pedologica Sinica , 2013,50 (2): 349–356. (in Chinese with English abstract)
[16] 朱娟娟, 梁银丽, TREMBLAYN.不同水氮处理对玉米氮素诊断指标的影响.作物学报,2011,37 (7):1259–1265.
ZHU J J, LIANG Y L, TREMBLAY N. Responses of corn (Zea mays L .) nitrogen status indicators to nitrogen rates and soil moisture. Acta Agronomica Sinica , 2011,37 (7): 1259–1265. (in Chinese with English abstract)
[17] 蔡庆生.植物生理学实验.北京:中国农业大学出版社,2013:81-126.
CAI Q S. Plant Physiology . Beijing: China Agricultural University Press, 2013:81-126. (in Chinese)
[18] WILLIAMSON G B, RICHARDSON D. Bioassays for allelopathy: Measuring treatment responses within dependent controls. Journal of Chemical Ecology , 1988,14 (1): 181–187.
[19] 朱春福, 贺峦, 王建国.桃金娘水浸提液对拟南芥种子萌发和幼苗生长的化感作用.广东农业科学,2014(7):83-87.
ZHU C F, HE L, WANG J G. Allelopathy of aqueous extracts from Rhodomyrtus tomentosa on seed germination and seedling growth of Arabidopsis thaliana (L.) Heynh. Guangdong Agricultural Sciences , 2014(7):83-87. (in Chinese with English abstract)
[20] 张琴, 李艳宾, 李勇, 等.不同腐解方式下棉秆腐解液对棉花种子萌发的化感效应.种子,2011,30 (4):17–21.
ZHANG Q, LI Y B, LI Y, et al. Allelopathy effect of decomposed liquids of cotton stalk under different decomposing modes on cotton seeds germination. Seeds , 2011,30 (4): 17–21. (in Chinese with English abstract)
[21] 刘红彦, 王飞, 王永平, 等.地黄连作障碍因素及解除措施研究.华北农学报,2006,21 (4):131–132.
LIU H Y, WANG F, WANG Y P, et al. The causes and control of continuous cropping barrier in Dihuang ( Rehmannia glutinosa Libosch. Acta Agriculturae Boreali-Sinica , 2006,21 (4): 131–132. (in Chinese with English abstract)
[22] EINHELLIG F A, RASMUSSEN J A, HEJL A M, et al. Effects of root exudate sorgoleone on photosynthesis. Journal of Chemical Ecology , 1993,19 (2): 369–375.
[23] 沈宝云.甘肃黄河灌区马铃薯不同品种对连作逆境的响应机理研究.兰州:甘肃农业大学,2013 :72–78.
SHEN B Y. Mechanism of potato in response to continuous cropping stress in Yellow River irrigation farming districts of Gansu. Lanzhou: Gansu Agricultural University , 2013 : 72–78. (in Chinese with English abstract)
[24] 吴榕, 陈雅君, 张璐, 等.白三叶浸提液对蒲公英细胞膜透性及相关生理指标的影响.草地学报,2014,22 (2):334–338.
WU R, CHEN Y J, ZHANG L, et al. Effects of white clover plant aqueous extracts on the germination, seedling growth and physiological metabolism of dandelion. Acta Agrestia Sinica , 2014,22 (2): 334–338. (in Chinese with English abstract)
[25] 邱立友, 戚元成, 王明道, 等.植物次生代谢的自毒作用及其与连作障碍的关系.土壤,2010,42 (1):1–7.
QIU L Y, QI Y C, WANG M D, et al. Relationship between secondary metabolite autotoxic to plant and continuous cropping obstacles. Soils , 2010,42 (1): 1–7. (in Chinese with English abstract)
[26] TAHLAN K, SANG K A, SING A, et al. Initiation of actinorhodin export in Streptomyces coelicolor. Molecular Microbiology , 2007,63 (4): 951–961.
[27] 邹丽芸.西瓜连作障碍中自毒作用的研究.杭州:浙江大学,2004 :2–3.
ZOU L Y. Study on autotoxicity in continuous cropping obstacle of watermelon plant. Hangzhou: Zhejiang University , 2004 : 2–3. (in Chinese with English abstract)