浙江大学学报(农业与生命科学版)  2016, Vol. 42 Issue (3): 321-326
文章快速检索     高级检索
脱落酸对采后番茄果实损伤愈合的作用[PDF全文]
陶晓亚, 李家寅, 茅林春    
浙江大学食品科学与营养系,浙江省农产品加工重点实验室,杭州310058
摘要: 采用脱落酸(abscisic acid,ABA)及其合成抑制剂氟啶酮(fluridone,FLD)进行处理,研究ABA对采后番茄果实的愈伤能力及酶活性的影响。绿熟期樱桃番茄表皮切伤处理后,分别用ABA和FLD真空渗透处理(0.07 MPa,5 min),于黑暗条件下(温度20 ℃,相对湿度90%)贮存愈伤,每天取样测定与损伤愈合相关的果实失重率、自发荧光强度、苯丙氨酸解氨酶(phenylalanine ammonia-lyase,PAL)和过氧化物酶(peroxidase,POD)活性。结果表明:在愈伤过程中,对照组番茄果实ABA含量先降低后升高,而ABA组始终保持较高水平,FLD组则始终维持较低水平;番茄果实失重率均逐渐升高,ABA组始终低于对照组,FLD组则始终高于对照组;损伤部位细胞自发荧光强度逐渐增强,ABA组始终强于对照组(尤其在第3天以后更为显著),FLD组则始终弱于对照组;PAL活性先升高后降低,在第3天达到峰值,而POD活性则先降低后升高,2种酶活性均表现为ABA组高于对照组,FLD组低于对照组。以上结果说明,ABA具有促进采后番茄果实损伤愈合的作用。该研究将为采后果蔬损伤愈合机制的研究提供理论基础。
关键词: 脱落酸    采后    番茄    损伤愈合    苯丙氨酸解氨酶    过氧化物酶    
Effect of abscisic acid on wound-healing process in postharvest tomato fruit
TAO Xiaoya, LI Jiayin, MAO Linchun    
Department of Food Science and Nutrition, Zhejiang Key Laboratory of Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
Summary: The effect of abscisic acid (ABA) on wound-healing capability and related enzyme activities were investigated in postharvest cherry tomato fruits treated by ABA and fluridone (FLD, an inhibitor of ABA). After wounding at equator with a sterilized scalpel, fruits were immersed in 1.0 mmol/L ABA, 0.1 mmol/L FLD and deionized water (control, CK) under vacuum (0.07 MPa, 5 min), respectively. Treated fruits were allowed to wound-heal at 20 ℃ and 90% relative humidity in dark. Fruit weight loss, autofluorescence intensity, phenylalanine ammonia-lyase (PAL) and peroxidase (POD) activities were determined in wound tissues every day. The results indicated that ABA content decreased within the first two days followed by a slight increase in the control, but maintained at high levels in ABA group and low levels in FLD group. Fruit weight loss increased gradually in all groups during storage. However, the weight loss was more and faster in FLD group, but less and slower in ABA group in contrast with the control. The intensity of autofluorescence increased during wound-healing. Compared with the control, ABA group exhibited an increase in the intensity of autofluorescence especially after 3 d of storage, while FLD group depicted a reduced intensity. PAL activity increased after wounding, and reached the maximum at the third day and then decreased, while POD activity decreased after wounding and then increased in all groups during wound-healing. PAL and POD activities were enhanced by ABA application while inhibited by FLD treatment compared with the control. In conclusion, ABA promotes wound-healing process in postharvest tomato fruits. This study provides theoretical basis for the research of wound-healing mechanism in postharvest fruit and vegetable.
Key words: abscisic acid    postharvest    tomato    wound-healing    phenylalanine ammonia-lyase    peroxidase    

果蔬在采收、运输和贮藏过程中极易遭受机械损伤,从而使果蔬组织结构遭到破坏,营养成分和水分流失,微生物侵染,以致加速果蔬组织腐败[1]。因此,损伤后的快速愈合成为果蔬保鲜的关键因素。

采后果蔬遭受机械损伤后,损伤细胞的细胞壁发生栓化作用,栓化层下面细胞分裂形成创伤周皮和愈伤组织[1-2]。木栓质是果蔬在损伤愈合过程中形成的与细胞壁相结合的多聚物,由位于细胞壁上的多聚酚类物质(suberin poly phenolic,SPP)和位于细胞壁与质膜之间的多聚脂肪族物质(suberin poly aliphatic,SPA)组成,能隔绝伤口与外界环境的接触,起到保护作用[3-5]。其中,SPP可在特定激发波长下自发荧光[6],其荧光强弱与分布层数可直观反映木栓质的含量高低和伤口愈合程度。木栓质合成速率受苯丙氨酸解氨酶(phenylalanine ammonia-lyase,PAL)和过氧化物酶(peroxidase,POD)调控。PAL催化苯丙氨酸解氨生成反式肉桂酸,为木栓质多聚酚类物质的合成提供前体[5]。POD参与催化肉桂醇的聚合,是木栓质多聚酚类物质合成最后一步的关键酶[7]

脱落酸(abscisic acid,ABA)被称为植物的逆境“胁迫激素”[8]。当植物处于低温、干旱、损伤等不利环境时,体内ABA含量大增,启动自我修复机制,阻止有害物质的进一步侵入,诱导植物对逆境产生抗性[9]。研究表明,在马铃薯块茎损伤愈合过程中,ABA可提高PAL活性,增强伤口部位自发荧光强度,加速木栓质合成[10-12]

目前,有关ABA对损伤愈合进程的研究多集中于马铃薯块茎方面,而对其他果蔬的研究较少。本试验对损伤樱桃番茄果实进行ABA及其合成抑制剂氟啶酮(fluridone,FLD)处理,以果实失重率和伤口组织自发荧光为愈合指标,探究ABA对采后番茄损伤愈合进程及PAL和POD活性的影响,以进一步了解果蔬体内可能存在的损伤愈合机制,为促进果蔬采后损伤愈合提供理论依据。

1 材料与方法 1.1 仪器与试剂

Agilent 6460 HPLC-MS,美国Agilent科技有限公司;Olympus BX61荧光显微镜,日本Olympus公司;CryoStarTM NX50冰冻切片机,美国Thermo Scientific公司;UV-1750紫外可见分光光度计,日本岛津公司;UNIVERSAL 320 R台式高速离心机,德国Hettich Lab Technology;SHZ-D Ⅲ型循环水式多用真空泵,杭州明远仪器有限公司;HWS型恒温恒湿箱,宁波东南仪器有限公司。

ABA(≥90%)、聚乙烯吡咯烷酮(PVP)、L-苯丙氨酸(≥98.5%)、甲硫氨酸(≥99%),上海Aladdin试剂有限公司;愈创木酚(≥99%)、氯化硝基四氮唑蓝(NBT,≥98%)、核黄素(97.5%~102.0%),上海国药集团;FLD(99.8%),德国Fluka Analytical;包埋剂(Surgipath®),美国Leica Biosystems;牛血清蛋白(>98%),上海生工生物工程股份有限公司;其余试剂均为分析纯,试验用水均为无菌去离子水。

1.2 试验方法 1.2.1 样品选取与处理

番茄成熟分为4个时期:绿熟期、转色期、成熟期、完熟期。在实际应用中,番茄通常在绿熟期采摘用于贮存保鲜,在转色期采摘用于运输出售,在成熟期采摘用于就地出售或自食。绿熟期番茄采下后贮藏在温室内,待果实变熟后再上市,既延长供应期,又增加经济效益。鉴于此,本试验选取绿熟期樱桃番茄为材料开展研究。绿熟期樱桃番茄(Lycopersicon esculentum var. cerasiforme Xin Taiyang)采自浙江省萧山市温室。选取形状大小一致、无病虫害的番茄,于采收后2 h内运回实验室。用0.5%次氯酸钠溶液清洗果实表面,无菌去离子水冲洗,室温自然晾干。模拟损伤参考DEAN,等[2]的方法:用经75%乙醇擦拭消毒的手术刀于果实赤道处对称切除2个直径约10 mm、厚度1~2 mm的薄片,产生的创面即为损伤伤口。

将损伤番茄随机分为3组,每组120个,分别用1.0 mmol/L ABA、0.1 mmol/L FLD和去离子水(对照)于室温下真空渗透处理(0.07 MPa,5 min)。处理后的果实室温自然晾干,置于温度20 ℃、相对湿度90%的恒温恒湿箱中,于黑暗条件下贮存和愈伤。处理方法和药剂浓度根据预试验结果确定。

1.2.2 ABA提取及含量测定

取样方法参考LULAI,等[11],用已消毒的打孔器切取愈伤组织(10 mm×3 mm),液氮速冻。取约1 g样品研磨成粉,参考CHEN,等[13]的方法提取ABA,采用HPLC-MS测定ABA含量。进样柱型号规格:ZORBAX Eclipse XDB-C18(2.1 mm×150 mm×3.5 μm)。流动相A为甲醇,B为0.1%甲酸。洗脱体系:0~1.5 min,40% A;1.5~8 min,40% A~100% A;8~10 min,100% A~40% A;10~17 min,40% A。柱温为35 ℃,流速为300 μL/min,进样量为10 μL。

1.2.3 果实失重率

番茄果实损伤后,伤口暴露于空气中,容易造成水分蒸发,导致果实质量减轻,因此可用失重率作为果实伤口愈合程度的测定指标[14]。失重率/%=(m0-mt)/m0×100。其中:m0为果实初始质量;mt为果实检测时的质量。

1.2.4 自发荧光强度

用无菌刀片于伤口部位取样(15 mm×3 mm×3 mm),于-15 ℃条件下,将样品包埋于组织包埋剂,凝固后用冷冻切片机将其纵切成5 μm薄片,于荧光显微镜下观察。激发波长为470~495 nm,发射波长为510~550 nm。

1.2.5 PAL、POD活性

取样方法参考LULAI,等[11]。PAL酶液提取:取约1 g样品,加入4 mL经4 ℃预冷的0.1 mol/L硼酸-硼砂缓冲液(pH 8.7,含3 g/L PVP,1 mmol/L EDTA),冰浴研磨,于4 ℃下9 000×g离心15 min,取其上清液备用。PAL活性测定参考YINGSANGA,等[15]的方法,以波长290 nm处吸光度值每小时增加0.01为1 U,PAL活性表示为U/mg(蛋白)。可溶性蛋白含量测定参考BRADFORD[16]的方法。

POD酶液提取参考ZHANG,等[17]的方法:取约1 g样品,加入4 mL 50 mmol/L PBS(pH 7.8,含1 mmol/L EDTA,2 g/L PVP),冰浴研磨,于4 ℃下9 000×g离心15 min,取其上清液备用。POD活性测定参考曹建康,等[18]的方法,以波长470 nm处吸光度值每分钟增加0.01为1 U,POD活性表示为U/mg(蛋白)。以上试验均重复3次。

1.3 数据分析

用SPSS 20.0软件对数据进行统计分析,Duncan’s多重差异分析,ANOVA检测(P<0.05)。

2 结果与分析 2.1 番茄果实伤口部位ABA含量变化

为验证ABA与FLD的处理效果,本研究采用液质联用仪检测番茄伤口部位ABA含量。ABA渗透处理使番茄组织中的ABA含量大量增加,在愈合过程中呈明显下降趋势,但始终维持较高水平,显著高于对照组与FLD组(图 1)。对照组ABA含量在愈合前2 d呈下降趋势,随后逐渐上升,第4天达到最大值,是试验之初的1.17倍,并与FLD组有显著差异。FLD组ABA含量前3 d呈下降趋势,第4天有所提高,但仍低于试验之初。

图上不同小写字母表示在P<0.05水平差异有统计学意义。 Different lowercase letters above histogram indicate statistically significant differences at the 0.05 probability level. 图1 番茄果实伤口部位ABA含量 Fig. 1 ABA contents in wound tissues of tomato fruits
2.2 番茄果实失重率变化

果实伤口处形成的愈合层能有效阻止水分的蒸发,愈合程度越高,水分蒸发越慢,失重率越低。愈合过程中,番茄果实的失重率均逐渐增加(图 2)。失重率在第1天时增加最快,随后增加速率减缓。3组处理果实失重率在愈合前期差异较小,随愈合时间增加,差距逐渐加大,愈合后期差异显著。ABA组失重率始终低于对照组,随愈合时间增加,差距逐渐加大;FLD组则始终高于对照组,愈合前期差距较小,后期差距增大。

图上不同小写字母表示在P<0.05水平差异有统计学意义。 Different lowercase letters above histogram indicate statistically significant differences at the 0.05 probability level. 图2 番茄果实损伤后失重率变化 Fig. 2 Changes of tomato fruit weight loss after wounding
2.3 番茄果实损伤组织的自发荧光强度

损伤愈合过程中,各处理组果实损伤组织的自发荧光强度均逐渐增强(图 3)。总体而言,与对照相比,愈合前期ABA组荧光强度最强,荧光层连续而完整,荧光层数于第3天显著增加,第4天效果更明显;FLD组荧光强度最弱,荧光亮度增加缓慢,且荧光层数少,不连续。

(A~D):对照组1~4 d;(E~H):ABA处理组1~4 d;(I~L):FLD处理组1~4 d. (A-D): 1-4 d of the control; (E-H): 1-4 d of ABA treatment; (I-L): 1-4 d of FLD treatment. 图3 番茄果实损伤组织的自发荧光 Fig. 3 Autofluorescence in wound tissues of tomato fruits
2.4 番茄果实伤口部位PAL和POD活性变化

在番茄损伤愈合过程中,PAL活性先升高后降低(图 4)。PAL活性于损伤后立即上升,不同处理组上升程度不同。与对照相比,愈合第1天,ABA和FLD组PAL活性分别增加了110.72%、降低了17.37%。愈合第3天,ABA和对照组酶活性达到最大值,分别是愈合前的5.12倍、3.83倍,而FLD组是愈合前的2.29倍。ABA组PAL活性明显高于对照组,FLD组初期与对照组差异不显著,后期明显低于对照组。

图上不同小写字母表示在P<0.05水平差异有统计学意义。 Different lowercase letters above histogram indicate statistically significant differences at the 0.05 probability level. 图4 番茄果实伤口部位PAL活性 Fig. 4 PAL activity in wound tissues of tomato fruits

3个处理组果实损伤后POD活性立即降低,第1天达到最小值,随愈合时间延长,POD活性缓慢上升,愈合后期急剧增加(图 5)。与对照相比,ABA组POD活性始终差异显著,且两者差距随愈合时间延长逐渐加大,POD活性于愈合第4天增加27.29%;FLD组POD活性于第1天差异不显著,此后两者有显著差异,POD活性于愈合第4天降低7.44%。

图上不同小写字母表示在P<0.05水平差异有统计学意义。 Different lowercase letters above histogram indicate statistically significant differences at the 0.05 probability level. 图5 番茄果实伤口部位POD活性 Fig. 5 POD activity in wound tissues of tomato fruits
3 讨论与结论

植物损伤愈合包括3个阶段:表层细胞脱水,底层细胞壁增厚,损伤周皮形成[19]。损伤诱导植物伤口及邻近部位酶活性升高及木质素、木栓质、各种酚类等次生代谢物质的合成。这些次生代谢产物参与愈伤组织的形成,有利于保护机体免于脱水和防止病菌入侵,起到修补伤口的作用[20-22]。木栓质在伤口部位的堆积过程可由自发荧光直观反映。在本试验中,ABA组荧光强度强于对照组,木栓质层连续而完整,说明ABA能显著提高木栓质的积累,有利于隔绝伤口与外界环境的接触,延缓果实失重率的上升;FLD组荧光强度弱于对照组,表明抑制ABA合成可减缓木栓质的形成与堆积,加速果实失重率的上升。

已有报道称,ABA参与马铃薯块茎木栓化过程并刺激PAL-1基因表达[12],提高马铃薯块茎PAL活性[23]。类似地,ABA处理还能促进草莓果实[24]、番茄叶片[25]、苹果果皮[26]的PAL活性升高。本研究结果与以上相关报道基本一致,与对照相比,ABA处理能提高番茄伤口部位PAL活性,而FLD在降低ABA含量的同时也降低该酶活性。损伤后PAL活性先升高后降低,而ABA含量则是先降低后升高,说明此时PAL活性不仅受ABA调控,也可能存在其他调控途径。有研究表明,植物受机械损伤后,POD能催化受伤细胞壁形成一层不透水的屏障,可能参与受伤细胞壁的修复和新细胞壁的合成[27]。在本试验中,对照组果实伤口部位POD活性在损伤初期降低,随后损伤激活机体反应,增强酶活性以促进伤口愈合,ABA处理提高POD活性,FLD处理则起抑制作用。果实损伤后POD活性的变化趋势与ABA含量变化趋势基本一致,这表明POD活性变化可能与ABA含量有密切关系。也有研究表明,ABA可能是一种有效的诱导剂,能有效提高马铃薯组织[28]和甘薯悬浮培养组织[29]的POD活性。

总之,ABA可以提高PAL和POD的活性,促进采后番茄果实损伤愈合。但是,有关ABA促进采后番茄果实损伤愈合的详细分子机制还有待进一步系统研究。

参考文献
[1] 潘永贵, 施瑞城.采后果蔬受机械伤害的生理生化反应.植物生理学通讯,2000,36 (6):568–572.
PAN Y G, SHI R C. Postharvest physiology and biochemistry of fruits and vegetables responding to mechanical stress. Plant Physiology Communications, 2000,36 (6): 568–572. (in Chinese with English abstract)
[2] DEAN B B, KOLATTUKUDY P E. Synthesis of suberin during wound-healing in jade leaves, tomato fruit, and bean pods. Plant Physiology, 1976,58 (3): 411–416.
[3] POLLARD M, BEISSON F, LI Y, et al. Building lipid barriers: biosynthesis of cutin and suberin. Trends in Plant Science, 2008,13 (5): 236–246.
[4] RANATHUNGE K, SCHREIBER L, FRANKE R. Suberin research in the genomics era: new interest for an old polymer. Plant Science, 2011,180 (3): 399–413.
[5] BERNARDS M A, LEWIS N G. The macromolecular aromatic domain in suberized tissue: a changing paradigm. Phytochemistry, 1998,47 (6): 915–933.
[6] LEIDE J, HILDEBRANDT U, HARTUNG W, et al. Abscisic acid mediates the formation of a suberized stem scar tissue in tomato fruits. New Phytologist, 2012,194 (2): 402–415.
[7] QUIROGA M, GUERRERO C, BOTELLA M A, et al. A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiology, 2000,122 (4): 1119–1128.
[8] 李宗霆, 周燮. 植物激素及其免疫检测技术. 南京: 江苏科学技术出版社 , 1996 : 158 -203.
LI Z T, ZHOU X. Plant Hormones and Their Immunological Detection Techniques. Nanjing: Jiangsu Science and Technology Press , 1996 : 158 -203. (in Chinese with English abstract)
[9] 郝格格, 孙忠富, 张录强, 等.脱落酸在植物逆境胁迫研究中的进展.中国农学通报,2009,25 (18):212–215.
HAO G G, SUN Z F, ZHANG L Q, et al. A research overview of the plant resistance to adverse environment by using abscisic acid. Chinese Agricultural Science Bulletin, 2009,25 (18): 212–215. (in Chinese with English abstract)
[10] SOLIDAY C L, DEAN B B, KOLATTUKUDY P E. Suberization: inhibition by washing and stimulation by abscisic acid in potato disks and tissue culture. Plant Physiology, 1978,61 (2): 170–174.
[11] LULAI E C, SUTTLE J C, PEDERSON S M. Regulatory involvement of abscisic acid in potato tuber wound-healing. Journal of Experimental Botany, 2008,59 (6): 1175–1186.
[12] KUMAR G M, LULAI E C, SUTTLE J C, et al. Age-induced loss of wound-healing ability in potato tubers is partly regulated by ABA. Planta, 2010,232 (6): 1433–1445.
[13] CHEN J, MAO L, MI H, et al. Detachment-accelerated ripening and senescence of strawberry (Fragaria × ananassa Duch. cv. Akihime) fruit and the regulation role of multiple phytohormones. Acta Physiologiae Plantarum, 2014,36 (9): 2441–2451.
[14] DUAN J, WU R, STRIK B C, et al. Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions. Postharvest Biology and Technology, 2011,59 (1): 71–79.
[15] YINGSANGA P, SRILAONG V, KANLAYANARAT S, et al. Relationship between browning and related enzymes (PAL, PPO and POD) in rambutan fruit (Nephelium lappaceum Linn.) cvs. Rongrien and See-chompoo. Postharvest Biology and Technology, 2008,50 (2): 164–168.
[16] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976,72 (1): 248–254.
[17] ZHANG F Q, WANG Y S, LOU Z P, et al. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere, 2007,67 (1): 44–50.
[18] 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导. 北京: 中国轻工业出版社 , 2007 .
CAO J K, JIANG W B, ZHAO Y M. Experiment Guidance of Postharvest Physiology and Biochemistry of Fruits and Vegetables. Beijing: China Light Industry Press , 2007 . (in Chinese with English abstract)
[19] ARTSCHWAGER E F, STARRETT R C. Suberization and wound-periderm formation in sweet potato and gladiolus as affected by temperature and relative humidity. Journal of Agricultural Research, 1931,43 : 353–364.
[20] 李萌, 饶景萍, 王玉萍, 等.不同降温方式对机械损伤苹果伤口愈合的影响.食品科学,2013,34 (16):326–330.
LI M, RAO J P, WANG Y P, et al. Effects of different cooling methods on wound healing of “Red Fuji” apple. Food Science, 2013,34 (16): 326–330. (in Chinese with English abstract)
[21] KOLATTUKUDY P E. Biochemistry and function of cutin and suberin. Canadian Journal of Botany, 1984,62 (12): 2918–2933.
[22] BERNARDS M A. Demystifying suberin. Canadian Journal of Botany, 2002,80 (3): 227–240.
[23] COTTLE W, KOLATTUKUDY P E. Abscisic acid stimulation of suberization induction of enzymes and deposition of polymeric components and associated waxes in tissue cultures of potato tuber. Plant Physiology, 1982,70 (3): 775–780.
[24] JIANG Y, JOYCE D C. ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit. Plant Growth Regulation, 2003,39 (2): 171–174.
[25] SONG W, MA X, TAN H, et al. Abscisic acid enhances resistance to Alternaria solani in tomato seedlings. Plant Physiology and Biochemistry, 2011,49 (7): 693–700.
[26] 李明, 郝建军, 于洋, 等.脱落酸(ABA)对苹果果实着色相关物质变化的影响.沈阳农业大学学报,2005,36 (2):189–193.
LI M, HAO J J, YU Y, et al. Effects of abscisic acid on the color of Hanguang apple fruit. Journal of Shenyang Agricultural University, 2005,36 (2): 189–193. (in Chinese with English abstract)
[27] 李雄彪.植物细胞壁酶的分子结构与生理功能.植物生理学通讯,1991,27 (4):246–252.
LI X B. Molecular structure and physiological function of enzymes in plant cell wall. Plant Physiology Communications, 1991,27 (4): 246–252. (in Chinese with English abstract)
[28] ESPELIE K E, KOLATTUKUDY P E. Purification and characterization of an abscisic acid-inducible anionic peroxidase associated with suberization in potato (Solanum tuberosum). Archives of Biochemistry and Biophysics, 1985,240 (2): 539–545.
[29] KWAK S S, KIM S K, PARK I H, et al. Enhancement of peroxidase activity by stress-related chemicals in sweet potato. Phytochemistry, 1996,43 (3): 565–568.