果糖的吸收代谢以及与健康的关系 | [PDF全文] |
目前我国的超重和肥胖人群已高达总人口的25%[1],饮食是引起高脂血症、心血管疾病和糖尿病等慢性疾病的重要因素之一。近年来,由于我国受西方饮食文化的影响,富含果葡糖浆的软饮料等食品的消费量大幅提升,果糖的摄入量也随之增加[2]。果糖因其血糖指数低(仅为葡萄糖的20%),近年来在临床上用来代替或部分代替葡萄糖,然而其临床效果一直备受争议。荟萃分析和系统综述结果表明含果糖饮料的摄入与非酒精性脂肪肝和儿童肥胖呈显著正相关[3-10]。本文的目的是总结果糖的食物来源、吸收和代谢,与不同疾病之间的关系及其推荐摄入量,为国民通过调节膳食中糖的摄入量以增强体质提供理论指导。
1 果糖的主要食物来源 1.1 天然食物果糖是一种单糖,是水溶性最好的糖类物质,首先被法国化学家AUGUSTIN于1847年发现[11]。纯果糖是一种白色、无臭并具有甜味的固体。果糖存在于蜂蜜、蔓果类水果、花朵、浆果以及大多数根类蔬菜等天然食物中,其中大部分则以蔗糖形式存在。多数水果中的果糖和葡萄糖的比例均接近1∶1;苹果和梨中的果糖是葡萄糖的2倍;蜂蜜中果糖含量最高,占总糖的50%(表 1)。
点击放大 |
目前,我国的高浓度果糖的果葡糖浆的年消费量近100万吨,且呈逐年增长的趋势[2]。在食品工业中,甘蔗常用来生产蔗糖糖浆,其蔗糖含量最高可达99.9%。果葡糖浆则以淀粉为原料在酶的作用下生产制成,其果糖含量最高可达90%。果葡糖浆主要分为F-42型(果糖42%,葡萄糖58%)、F-55型(果糖55%,葡萄糖45%)和F-90型(果糖90%,葡萄糖10%)。近年来,含有高浓度果糖的果葡糖浆由于其良好的甜度和风味已经替代了传统的蔗糖糖浆而成为了软饮料、乳制品和面包糕点类加工食品的主要甜味剂。流行病学发现,高果糖软饮料的摄入与儿童龋齿的发生呈显著正相关[12]。
2 果糖在小肠内的吸收与葡萄糖相比,果糖进入血液的速度较慢,且水平较低,半衰期也较长[13]。健康成人在摄入450 mL的软饮料(蔗糖69 g,果糖34.5 g)后,血液中的果糖水平从0.005 mol/L高至0.317 mol/L,在3 h后降至基线水平。同时,血糖水平从5.5 mol/L升高至6.8 mol/L,在1.5 h后就恢复至基线水平[14]。GULT2、GULT4和GULT5是主要存在于小肠内运输糖类物质的转运蛋白(图 1)。果糖通过小肠上GULT2和GULT5的2种转运蛋白的作用,进入至血液中[15]。其中GULT5对果糖具有高度专一性;GULT2可以同时转运葡萄糖和果糖,在由果糖引起的非酒精性脂肪肝过程中有着重要的作用[16];GULT4则将葡萄糖输送至机体的各个部位[17-19]。由于GULT2和GULT5在小肠内的低活动性,使果糖在小肠的吸收率不高[20-22]。葡萄糖会影响小肠对果糖的吸收,当摄入的葡萄糖和果糖的比例为1∶1时,果糖在小肠内的吸收率最高[23]。同时,RIBY,等[24]发现在大鼠体内的合成双糖的二糖酶转运系统可同时转运葡萄糖和果糖,而当酶活性受到抑制时,葡萄糖促进果糖吸收的能力被抑制。未被小肠吸收的果糖在肠内菌群的发酵作用下,产生二氧化碳、短链脂肪酸等,从而引起腹胀、腹泻等肠激综合征疾病[25]。
所有组织和细胞均参与了葡萄糖的代谢,而果糖的主要代谢场所是肝(图 2)。果糖在肝中部分被氧化,一部分转化为糖原或乳酸,而大部分则进入到脂质新生(de novo lipogenesis,DNL)的代谢途径中[26-27]。BJORKMAN,等[28]曾报道肾也可以代谢果糖,机体内其他的组织及或器官如肾、肝、睾丸,以及大脑和骨骼肌等均发现也有GULT5存在,但果糖在这些组织或器官内的代谢尚未得知。果糖激酶(phosphofructokinase,PFK)、醛缩酶(aldolase,ALD)和丙糖激酶是果糖代谢过程中3种主要的酶。果糖在PFK的作用下转化为1-果糖磷酸(fructose-1-phosphate,F-1-P),即使在机体三磷酸腺苷(adenosine triphosphate,ATP)水平较高下,果糖仍然可以不断地转化为F-1-P,且不受ATP的限制[29]。F-1-P在ALD的作用下生成磷酸二羟丙酮(dihydroxyacetone phosphate,DHAP)和甘油醛;甘油醛和ATP在3-磷酸甘油脱氢酶(glycerol 3-phosphate dehydrogenase,GAPD)的作用下转化为甘油醛-3-磷酸(glyceraldehyde 3-phosphate,GA-3-P)后进入糖酵解的代谢过程。果糖在代谢过程中无果糖磷酸激酶等限速酶的作用,进入糖酵解的速度比葡萄糖快。果糖在肝内部分转化为葡萄糖,以糖原形式贮存,为机体提供能量;其余一部分代谢为脂肪酸,促进肝中甘油三酯的合成。最近有报道称果糖可以促进生长因子21(fibroblast growth factor-21,FGF21)的分泌,该因子是一种可参与糖和脂质代谢平衡的激素,高FGF21水平可增加代谢性疾病的发病风险[30-31]。
DNL是机体内一个将乙酰辅酶A转化为脂肪酸的过程,此过程可将体内多余的能量转化为脂肪[32]。果糖在肝中代谢为GA-3-P后在丙酮酸激酶和乳酸脱氢酶(lactate dehydrogenase,LDH)的作用下产生大量的乳酸和乙酰辅酶A(图 3),促使肝中的DNL代谢途径加快,引起血液中甘油三酯和极低密度脂蛋白水平升高,导致体脂代谢异常,增加机体高脂血症的发病风险[33-34]。因此,长此以往,果糖通过DNL途径导致肝贮存大量脂肪,从而引起非酒精性脂肪肝[35]。同时,在肝中合成的甘油三酯进入到血液中被运输至其他的组织和器官后,增加机体发生肥胖的风险[36-38]。MAERSK,等[39-40]报道当膳食中25%的能量来自于果糖时,患有胰岛素抵抗的肥胖患者的血液中低密度脂蛋白水平升高,脂肪组织增加。
高血压是一种常见的非传染性慢性疾病。影响血压的因素很多,其中最主要的是饮食与生活方式[41]。如上所述,果糖可促进肝内DNL的合成,导致血液中棕榈酸水平升高,从而增加心血管疾病的发病风险[42-43]。果糖在肝中的代谢不受磷酸果糖激酶等限速酶的作用,肝中内源性磷酸和ATP迅速被消耗,腺苷酸脱氨酶的活性增加,促使磷酸腺苷(adenosine monophosphate,AMP)降解产生大量的核苷酸,累积大量的尿酸[44-45];同时,果糖也可以间接促进甘氨酸转化生成尿酸[46],不断累积的尿酸则会增加心血管疾病的发病风险。尿酸也会通过抑制内皮细胞一氧化氮合成酶的活性,使血管中一氧化氮的含量减少而引起血管内皮功能损伤[47-48]。此外,当摄入果糖时,会减少尿中草酸的排泄量,从而导致肾结石等疾病的发生[49]。
6 果糖与糖尿病目前,我国已有9 000余万糖尿病患者和1.5亿前期糖尿病患者,糖尿病已成为我国最重要的公共卫生问题[50]。饮食对血糖稳态的影响是引起Ⅱ型糖尿病的重要原因[51]。果糖在肝中有一部分转化为葡萄糖,葡萄糖进入到血液中,引起机体血糖和胰岛素水平稍稍升高[32]。STANHOPE,等[52]发现长期摄入大量果糖后通过抑制味觉受体TIR2和T1R3的表达,引起胰岛素抵抗。体外实验发现,大剂量的果糖可以刺激胰岛β细胞分泌胰岛素和增强葡萄糖刺激胰岛素分泌(glucose-stimulated insulin secretion,GSIS)的作用[53]。同样,AEBERLI,等[54]报道每日摄入80 g、110 g和250 g等大剂量果糖,会引起机体的胰岛素抵抗[38, 56]。机体摄入果糖后,肝不断累积脂肪,从而引起炎性反应和氧化应激反应,造成胰岛素受体和胰岛素信号传导途径中信号分子的表达受到抑制,导致机体胰岛素敏感性下降,增加Ⅱ型糖尿病的发病风险。最近,KUHRE,等[57]报道果糖可能通过刺激小肠分泌胰高血糖素样肽-1(glucagon-like peptide-1,GLP-1)来影响机体胰岛素的分泌。因此,果糖与Ⅱ型糖尿病之间的关系应引起重视,蜂蜜等富含果糖的保健食品在糖尿病患者中的食用应引起警惕。
7 推荐摄入量在西方,不同国家和相关组织对膳食结构中的摄入量所占比例一直很关注。世界卫生组织新制定的《成人和儿童糖摄入量指南》建议在整个生命历程中减少游离糖摄入量。成人和儿童游离糖摄入量应减至摄入总能量的10%以内。如能进一步将其降至低于摄入总能量的5%,对健康有更多好处[58]。但是,面对这样一个极具争议性的命题,我国尚无相关膳食摄入量的建议,有关部门应加快制定,为保障国民健康提供理论指导。
8 结论果糖与非酒精性脂肪肝、肥胖、心血管疾病和Ⅱ型糖尿病等常见非传染性疾病存在着一定的联系。由于食品工业的迅猛发展,含有果糖的软饮料消费量正逐年增加,但若果糖应用不当,就可对民众的健康产生不利影响。因此应予以重视,参考推荐摄入量,降低膳食中糖类的摄入量。
[1] |
武阳丰, 马冠生, 胡永, 等.中国居民的超重和肥胖流行现状.中华预防医学杂志,2005,39
(5):316–320.
WU Y F, MA G S, HU Y, et al. The prevalence of body overweight and obesity in China. Journal of Chinese Cardiovascular Medicine, 2005,39 (5): 316–320. (in Chinese with English abstract) |
[2] |
王犇, 宁玉娟, 李克贤, 等.果葡糖浆生产技术的研究进展.大众科技,2014,16
(1):173–178.
WANG B, NING Y J, LI K X, et al. Fructose syrup production technology research. Popular Science Technology, 2014,16 (1): 173–178. (in Chinese with English abstract) |
[3] |
WANG Y C, BLEICH S N, GORTMAKER S L. Increasing caloric contribution from sugar-sweetened beverage and 100% fruit juices among US children and adolescents, 1988—2004.
Pediatrics, 2008,121 (6): 1604–1614. |
[4] |
FORSHEE R A, ANDERSON P A, STOREY M L. Sugar-sweetened beverages and body mass index in children and adolescents: a meta-analysis.
American Journal of Clinical Nutrition, 2008,87 (6): 1662–2671. |
[5] |
RUYTER J C D, OLTHOF M R, SEIDELL J C, et al. A trial of sugar-free or sugar-sweetened beverage and body weight in children.
England Journal of Medicine, 2012,367 (15): 1397–1414. |
[6] |
MALIK V S, AN P, WILLETT W C, et al. Sugar-sweetened beverages and weight gain in children and adults: a systematic review and meta-analysis.
American Journal of Clinical Nutrition, 2013,98 (4): 1084–1102. |
[7] |
JIA M, WANG C, ZHANG Y, et al. Sugary beverage intakes and obesity prevalence among junior high school students in Beijing-a cross-sectional research on SSBs intake.
Asia Pacific of Journal Clinical Nutrition, 2012,21 (3): 425–430. |
[8] |
SULLLIAN J S, LEM T, PAN Z, et al. Oral fructose absorption in obese children with non-alcohol fatty liver disease.
Pediatric Obesity, 2015,10 (3): 188–195. |
[9] |
MALIK V S, POPKIN B M, BRAY G A, et al. Sugar sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis.
Diabetes Care, 2010,33 (11): 2477–2483. |
[10] |
CHUANG M, MA J T, PATEL K, et al. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis.
American Journal of Clinical Nutrition, 2014,100 (3): 833–849. |
[11] |
FLETCHER H G. Augustin-Pierre Dubrunfaut-An early sugar chemist.
Journal of Chemical Education, 1940,17 (4): 153–156. |
[12] |
PARK S, LIN M, ONUFRAK S, et al. Association of sugar-sweetened beverage intake during infancy with dental caries in 6-year olds.
Clinical Nutrition Research, 2015,4 (1): 9–17. |
[13] |
PAGEK A, CHAN O, ARORA J, et al. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways.
Journal of the American Medical Association, 2013,309 (1): 63–70. |
[14] |
LE M T, Frye R F, RIVARD C J, et al. Effects of high-fructose corn syrup and sucrose on the pharmacokinetic of fructose and acute metabolic and hemodynamic response in healthy subjects.
Metabolism, 2012,61 (5): 641–651. |
[15] |
LI D, HEANEY A P. Regulation of adipose differentiation by fructose and GLUT5.
Molecular Endocrinology, 2012,26 (10): 1773–1782. |
[16] |
REGNELL S E, LERMARK A. Hepatic steatosis in type 1 diabetes.
Review of Diabetic Studies Rds, 2011,8 (4): 454–467. |
[17] |
KELLET G L, BROT-LAROCHE E. Apical GLUT2-a major pathway of intestine sugar absorption.
Diabetes, 2005,54 (10): 3056–3062. |
[18] |
STUART C A, HOWELL M E, BAKER J D, et al. Cycle training increased GLUT4 and activation of mTOR in fast twitch muscle fibers.
Medicine & Science Sports Exercise, 2010,42 (1): 96–106. |
[19] |
BYER P L, CAVIAR E M, MCCALLUM R W. Fructose intake at normal levels in the US may cause gastrointestinal distress in normal adults.
Journal of American Diet Association, 2005,105 (10): 1559–1566. |
[20] |
DENSUPSOONTORN H, JIRAPINYO P, THAMONSIRI N, et al. Fructose malabsorption in Thai adult.
Asia Pacific of Journal Clinical Nutrition, 2007,16 (2): 209–212. |
[21] |
GOMARA R E, HALTAS M S, NEWMAN L J, et al. Fructose intolerance in children presenting with abdominal pain.
Journal of Pediatric Gastroenterology & Nutrition, 2008,47 (3): 303–308. |
[22] |
TRESWELL A S, SEACH J M, THORBURN A W. Incomplete absorption of pure fructose in healthy subjects and the facilitating effect of fructose.
American Journal of Clinical Nutrition, 1988,48 (6): 1424–1430. |
[23] |
KNEEPKENS C M, VONK R J, FERNANDES J. Incomplete intestinal absorption of fructose.
Archives of Disease in Childhood, 1984,59 (8): 735–738. |
[24] |
RIBY J E, FUJISAWA T, KRETCHMER N. Fructose absorption.
American Journal of Clinical Nutrition, 1993,58 (5): 748–753. |
[25] |
DOUAR V, FERRARIS R P. The role of fructose transporter in disease linked to excessive fructose induced disease.
Journal of Physiology, 2013,591 (2): 401–414. |
[26] |
LECOULTRE V, BENOIT R, CAREEL G, et al. Fructose and glucose co-ingestion during prolonged exercises increase lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose.
American Journal of Clinical Nutrition, 2010,92 (5): 1071–1079. |
[27] |
COUCHEPIN C, KIM-ANN L E, BORTOLOTTI M, et al. Markedly blunted metabolic effects of fructose in healthy young female subjects compared with male subjects.
Diabetes Care, 2008,31 (6): 1254–1256. |
[28] |
BJORKMAN O, FELIG P. Role of the kidney in the metabolism of fructose in 60-hour fasted human.
Diabetes, 1982,31 (6): 516–520. |
[29] |
SAMUEL V T. Fructose induced lipogenesis: from sugar to fat to insulin resistance.
Trends Endocrinology & Metabolism, 2011,22 (2): 60–65. |
[30] |
DUSHAY J R, TOSCHI E K, MITTEN F M, et al. Fructose ingestion acutely stimulates circulating FGF21 levels in humans.
Molecular Metabolism, 2014,4 (1): 51–57. |
[31] |
BOBBERT F, SCHWARZ F, FISHER-ROSINSK Y, et al. Fibroblast growth factor 21 predicts the metabolic syndrome and type 2 diabetes in Caucasians.
Diabetes Care, 2013,36 (1): 145–149. |
[32] |
HELLERSTEIN M K, SCHWARZ J M, NEESE R A. Regulation of hepatic de novo lipogenesis in humans.
Annual Review of Nutrition, 1996,16 (1): 523–57. |
[33] |
STANHOPE K L, GRIFFEN S, BAIR S, et al. Twenty four endocrine and metabolic profiles following consumption of high-fructose corn syrup, sucrose, fructose and glucose-sweetened beverages with meals.
American Journal of Clinical Nutrition, 2008,87 (5): 1194–1203. |
[34] |
TEFF K L, GRUDZIAL J, TOWNSEND R R, et al. Endocrine and metabolic effects of consuming fructose and glucose sweetened beverage with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses.
Journal of Clinical Endocrinology & Metabolism, 2009,94 (5): 1562–1569. |
[35] |
DONNELLY K L, SMITH C L, SCHWARZENBERG S J, et al. Sources of fatty acid stored in liver and secreted via lipoprotein in patients with nonalcoholic fatty liver disease.
Journal of Clinical Investigation, 2005,115 (5): 1343–1351. |
[36] |
MADERO M, ARRIAGE J C, JALAL D, et al. The effect of two energy-restricted diets, a low-fructose diet versus a moderate natural fructose on weight loss and metabolic syndrome parameters: a randomized controlled trial.
Metabolism Clinical & Experimental, 2011,60 (11): 1551–1559. |
[37] |
STANHOPE K L, SCHWARZ J M, KEIM N L, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increase visceral adiposity and lipids and decrease insulin sensitivity in overweight/obese human.
Journal of Clinical Investigation, 2009,119 (5): 1322–1334. |
[38] |
LE KA, ITH M, KREIS R, et al. Fructose over-consumption caused dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes.
American Journal of Clinical Nutrition, 2009,89 (6): 1760–1765. |
[39] |
MAERSK M, BELZA A, HOLST J J, et al. Satiety scores and satiety hormone response after sucrose-sweetened soft drink compared with isocaloric semi-skimmed milk and with non-caloric soft drink: a controlled trial.
European Journal of Clinical Nutrition, 2012,66 (4): 523–529. |
[40] |
MAERSK M, BELZA A, STODKIDE-JORGENSEN H, et al. Sucrose-sweetened beverage increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study.
American Journal of Clinical Nutrition, 2012,95 (2): 283–389. |
[41] |
DASKALOPOILOU S S, KHAN N A, QUINN R R, et al. The 2012 Canadian hypertension education program recommendations for the management of hypertension: blood pressure measurement, diagnosis, assessment of risk, and therapy.
Canadian Journal of Cardiology, 2012,28 (3): 270–287. |
[42] |
ARSLAND A, WOLFE R R. Hepatic secretion of VLDL fatty acids during stimulated lipogenesis in men.
Journal of Lipid Research, 1998,39 (6): 1280–1286. |
[43] |
CONNOER W E. Harbingers of coronary heart disease: dietary saturated fatty acid and cholesterol. Is chocolate benign because of its stearic acid content.
American Journal of Clinical Nutrition, 1999,70 (6): 951–952. |
[44] |
RHO Y H, ZHU Y Y, CHOI H K. The Epidemiology of Uric Acid and Fructose.
Seminars in Nephrology, 2011,31 (5): 410–419. |
[45] |
PEREZR-POZO S E, SCHOLD J, NAKAGAWA T, et al. Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response.
International Journal of Obesity, 2010,34 (3): 454–461. |
[46] |
WANG D D, SIEVENPIPER J L, DE-SOUZA R J, et al. The effects of fructose on serum uric acid vary among controlled dietary trials.
Journal of Nutrition, 2012,142 (5): 916–923. |
[47] |
BIDWELL A J, HOLMSTRUP M E, DOYLE R P, et al. Assessment of endothelial function and blood metabolic status following acute ingestion of a fructose-containing beverage.
Acta Physiologica, 2010,200 (1): 35–43. |
[48] |
ZHAO C X, XU X, CUI Y, et al. Increased endothelial nitric-oxide synthase expression reduces hypertension and hyperinsulinemia in fructose-treated rats.
Journal of Pharmacol & Experimental, 2009,328 (2): 610–620. |
[49] |
JOHNSON R J, SANCHEZ-LOZADA L G, NAKAGAWA T. The effect of fructose on renal biology and disease.
Journal of the American Society of Nephrology, 2010,21 (12): 2036–2039. |
[50] |
YANG W, LU J, WENG J, et al. Prevalence of diabetes among men and women in China.
England Journal of Medicine, 2010,362 (12): 1090–1101. |
[51] |
AJAILA O, ENGLISH P, PINKNEY J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabete.
American Journal of Clinical Nutrition, 2013,97 (3): 505–516. |
[52] |
STANHOPE K L, SCHWARZ J M, KEIM N L, et al. Sweet taste receptor expressed in pancreatic β-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion.
PLoS ONE, 2009,4 (4): e5106. |
[53] |
REIMANN F, HABIBA M, TOLHURST G, et al. Glucose sensing in L cells: a primary cell study.
Cell Metabolism, 2008,8 (6): 532–539. |
[54] |
AEBERLI I, HOCHULI M, GERBER P A, et al. Moderate amount of fructose consumption impair insulin sensitivity in healthy young men: a randomized controlled trial.
Diabetes Care, 2013,36 (1): 150–156. |
[55] |
BECK-NIELSEN H, PEDERSEN O, LINDSKOV H O. Impaired cellular insulin biding and insulin sensitivity induced by high-fructose feeding in normal subjects.
American Journal of Clinical Nutrition, 1980,33 (2): 273–278. |
[56] |
HALLFRISCH J, ELLWOODK C, MICHAELIS O E, et al. Effects of dietary fructose on plasma-glucose and hormone response in normal and hyperinsulinemic.
Journal of Nutrition, 1983,113 (9): 1819–1826. |
[57] |
KUHRE R E, GRIBBLE F M, HARTMAN B, et al. Fructose stimulates GLP-1 but not GIP secretion in mice, rats and humans.
American Journal of Physiol Gastrointestinal Liver Physiology, 2014,306 (7): G622–630. |
[58] | World Health Organisation. Guideline: Sugars Intake for Adults and Children. Geneva: World Health Organization, 2015. |