浙江大学学报(农业与生命科学版)  2016, Vol. 42 Issue (2): 256-264
文章快速检索     高级检索
内生菌对柳树生长及氮磷吸收的强化作用[PDF全文]
刘桂青1, 杨栋2, 倪其军2, 李廷强1, 郝虎林3, 陈宝1, 杨卫东1, 杨肖娥1     
1. 浙江大学环境与资源学院,污染环境修复与生态健康教育部重点实验室,杭州 310058;
2. 中国船舶重工集团公司第七○二研究所,江苏无锡 214082;
3. 宁波原水研究院,浙江宁波 315100
摘要: 采用水培试验,比较了8株来源于超积累植物的内生菌(SaMR12、SaZR4、SaMR10、SaNR1、SaCS20、SM03、SM05和LM02)对柳树生长及氮磷吸收的影响。结果表明:接种SaMR12和SaMR10后柳树叶绿素含量显著增加,分别比对照提高了15%和14%;接种LM02、SaNR1和SaMR12对柳树根系生长有明显的促进作用,其中柳树的总根长比对照分别增加了163%、136%和66%,根表面积分别增加了54%、12%和17%,根尖数分别增加了54%、44%和48%;接种LM02、SaMR12和SaMR10后柳树总生物量分别比对照增加了234%、43%和54%;LM02、SaMR12和SaMR10这3株内生菌能显著促进柳树氮磷吸收,其中柳树地上部氮积累量比对照分别增加了176%、26%和41%,根系氮积累量分别是对照的8.3倍、2.4倍和3.4倍,柳树地上部磷积累量比对照分别增加了109%、12%和30%,根系磷积累量分别是对照的4.8倍、2.1倍和2.8倍。研究结果显示,接种LM02、SaMR10和SaMR12对柳树生长和氮磷积累有显著的促进作用,同时,显著提高了对富营养化水体的修复效率。
关键词: 内生细菌    柳树    生物量            生物强化    
Bioaugmentation effects of endophytic bacteria on growth and nitrogen and phosphorus accumulation of willow
LIU Guiqing1, YANG Dong2, NI Qijun2, LI Tingqiang1, HAO Hulin3, CHEN Bao1, YANG Weidong1,YANG Xiao’e1    
1. Key Laboratory of Polluted Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China;
2. Chinese Ship Scientific Research Center, Wuxi 214082, Jiangsu, China;
3. Ningbo Raw Water Resource Research Academy, Ningbo 315100, Zhejiang, China
Summary: Due to large biomass, submergence tolerance, rapid growth, well-developed root system and strong adaptability, willow (Salix matsudana) trees were not only widely used in ecological restoration of the heavy metal pollution, organic pollution and eutrophication, but also used as source of biomass energy. To expand the range of application and improve the economic value, it is necessary to enhance the biomass and nutrient accumulation of willow. Phyto-microbial remediation technology was widely used in recent years for it was environmentally friendly, low cost and high efficiency in restoration. With assistance of microbe, the efficiency of phytoremediation was significantly enhanced. Endophytic bacterium, a kind of microbe colonized in plant tissue without causing pathogenicity, could produce plant hormones like gibberellin and indole acetic acid (IAA) to promote plant growth.

In this study, willow trees were inoculated by eight endophytic bacteria (SaMR12, SaZR4, SaMR10, SaNR1, SaCS20, SM03, SM05 and LM02) derived from hyperaccumulator Sedum alfredii, and the plant growth and accumulation of nitrogen and phosphorus were investigated. In hydroponics experiment, the willow cuttings were grown in 2.5 L Hoagland’s solution with physiology upward until root length was above 1 cm. And propagation of endophytic bacteria suspension was added to the vessel with final density of 1×108 CFU/mL. The bacterial solution was replaced after 3 days. The treatment without bacterial inoculation was used as a control. The willows were observed and determined after 2 months of culture.

The chlorophyll contents, root morphology, shoot and root biomass, nitrogen and phosphorus accumulation showed significantly different among different endophytic bacteria treatments. Chlorophyll content was significantly increased by 15% and 14% with inoculation of SaMR12 and SaMR10 endophytic strains as compared with the control. After inoculation with LM02, SaNR1 and SaMR12, the root morphology was significantly improved. The total root length was increased by 163%, 136% and 66%, respectively. Root surface area was increased by 54%, 12% and 17%, and the number of root tips was increased by 54%, 44% and 48%, respectively. With the inoculation of LM02, SaMR12 and SaMR10, the total biomass of willow was increased by 234%, 43% and 54%, respectively. The accumulation of nitrogen and phosphorus nutrients was also significantly promoted. Shoot nitrogen accumulation was increased by 176%, 26% and 41%, and shoot phosphorus accumulation was increased by 109%, 12% and 30%, respectively, as compared with the control. The root nitrogen accumulation was increased by 8.3 times, 2.4 times and 3.4 times, and the root phosphorus accumulation was increased by 4.8 times, 2.1 times and 2.8 times, respectively, with the inoculation of LM02, SaMR12 and SaMR10. Meanwhile, the concentrations of nitrogen and phosphorus in eutrophic water were significantly decreased.

It is concluded that LM02, SaMR10 and SaMR12 are more efficient in promotion of plant growth than other endophytic bacteria. These strains also show the enhancement of willow growth for bio-energy and improvement of phytoremediation efficiency, which have a broad application prospect.

Key words: endophytic bacteria    willow (Salix matsudana)    biomass    nitrogen    phosphorus    bioaugmentation    

柳树属于杨柳科,大约有450种,主要分布在北半球温带地区,有丰富的遗传和生态多样性[1]。柳树具有生物量大、树型优美、景观效果良好,喜湿耐水、速生性强,根系发达、适应能力强和良好的防污、净化空气的优点[2, 3]。早在20世纪90年代,欧洲与北美地区已开始研究将柳树应用于植物修复和营建环保林等[1]。近些年,有许多研究报道表明,柳树因良好的生长特性,可以进行重金属污染、有机物污染[4, 5, 6]、水体富营养化等方面的修复,可以用于构建人工湿地净化废水[7],发展短轮伐期柳树矮林用于生物质能源[8],可以快速改良土壤、水体、大气等环境。但单一的植物修复技术在工程应用过程中仍存在一定的局限性[9]

近年来,植物与微生物联合修复技术逐渐成为国内外研究的热点。有许多研究将植物与微生物联合修复技术应用于土壤重金属污染修复中,因其具有环境友好、成本低廉等优点而得到重视[10]。植物与微生物结合组成生态修复联合系统,不仅可以应用于土壤污染修复,还可以应用于江河湖海的富营养化综合治理中[11]。植物-微生物联合修复已成为生态修复的重要技术,如何提高植物对污染物的吸收与抗性、促进植物生长是影响修复效率的关键之一。联合植物修复的微生物在修复过程中至关重要,许多特异性微生物起着关键作用,比如海洋细菌中的假单胞菌属(Pseudomonas)和弧菌属(Vibrio)等可被用于降解水体中低分子质量的多环芳烃[12];来自土壤微生物类群的假单胞菌属细菌可有效降解农药[13];许多根际微生物可以通过改善根区微环境,产生分泌物质螯合重金属、活化重金属等多种方式促进重金属的吸收[14];一些假单胞菌属和芽孢杆菌属等内生菌会产生赤霉素或吲哚乙酸促进植物生长[15],有的内生菌可以提高植物抗病性,影响生理生态[16]等。

在植物-微生物联合修复中,对植物的相关研究较多,但对联合的微生物中特异性内生菌的研究较少。本研究的主要目的就是将多株高效促生的特异性内生菌接种到应用广泛的木本修复植物柳树体内,筛选出对柳树促生明显且有较好亲和力的特异性内生细菌,通过内生菌强化能源柳树,提高生物质产量,改善生态修复效率,同时增加经济效益。

1 材料与方法 1.1 试验材料

供试柳树(Salix matsudana)是从江苏省林业科学研究院引进、在浙江大学农业试验站培植的柳树种质资源品种SM24。供试的8株内生细菌是从超富集型植物东南景天体内分离纯化得到的,其基本特性见表 1

表1 供试内生菌的基本特征 Table 1 Basic characteristics of tested endophytic bacteria
点击放大

供试内生菌菌液制备:将8株内生细菌分别接种到盛有等量LB(Luria-Bertani)液体培养基的三角瓶中,放入振荡机过夜培养(30 ℃,200 r/min)12 h,其菌落总数约为2×109 CFU/mL。

根据WASTON等[17]的方法改进水培营养液配方:1 mmol/L Ca(NO3)2·4H2O,0.1 mmol/L NH4H2PO4,1.25 mmol/L KNO3,0.5 mmol/L MgSO4·7H2O,0.025 mmol/L Fe-EDTA,0.5 mL/L微量元素溶液(23.1 μmol/L H3BO3,0.4 μmol/L ZnCl2,0.18 μmol/L CuCl2,4.57 μmol/L MnCl2,0.06 μmol/L Na2MoO4)。

1.2 试验设计

试验于2014年2月21日—4月22日在浙江大学紫金港校区农业试验站玻璃温室中进行,光照与室外自然光照一致,昼夜温度控制在15~27 ℃之间。试验共设9个处理,包括8种内生细菌和不接菌空白对照。每个处理接种100 mL菌液,对照组中添加不含菌体的等量LB培养基。每个处理3个重复,每个重复5株植物。选取粗细均匀的一年生柳树枝条剪成10 cm的茎段,直接扦插在盛有2.5 L营养液的塑料黑色盆钵内的泡沫板上,连续不断充气,预培养至长出1 cm左右长度的根系,然后接菌培养3 d,之后更换营养液继续培养[18, 19]。另外,对促生明显的2株内生菌处理进行富营养化水体氮磷净化效果检测。试验期间,每个塑料容器内用充气泵通气,每5 d更换1次营养液,并定期用蒸馏水补充由于蒸发损失的水量。

1.3 样品处理 1.3.1 植物测量与根系形态分析

在温室培养一定时间后收获植株,用自来水反复冲洗根部3次,再用去离子水冲洗3次。直接用直尺测定最长根长度、最长茎长度,并将每个处理拍照,然后将植株分成地上部(茎和叶)、根系和插条,一组植物用根系扫描仪(WinRHIZO图像分析系统)测定根系形态指标,另一组植物在105 ℃烘箱中烘30 min,之后调至70 ℃,烘至恒量,测定地上部与根生物量,并计算根冠比。

1.3.2 植物叶绿素含量的测定

选取新鲜展开的叶片约0.5 g,剪成2 mm左右的碎片,放入盛有15 mL 95%乙醇溶液的比色管内,在黑暗条件下浸提48 h,至叶片全部发白。浸提液使用Lambda 35紫外可见分光光度计(北京谱朋科技有限公司)分别在波长663和645 nm下进行比色,测定吸光度,重复3次,计算出相应的叶绿素含量[20]

1.3.3 氮磷的测定

将烘干的地上部和根系植物样品粉碎成粉末,待化学分析测定。取0.2 g烘干的植物样品放入盛有H2SO4-H2O2消煮管内消煮,定容至100 mL后取消煮液,使用Lambda 35紫外可见分光光度计,分别采用奈氏比色法和钼锑抗比色法测定样品中的氮和磷[21]

水体氮和磷的测定参考国标法(GB 3838—2002):用碱性过硫酸钾消解-紫外分光光度法测定总氮,用钼酸铵分光光度法测定总磷。

1.4 数据分析

植株地上部氮(磷)积累量=植株地上部氮(磷)含量×地上部生物量;

植株根部氮(磷)积累量=植株根部氮(磷)含量×根系生物量。

用DPS 7.05[22]和Origin 8.0软件进行数据统计分析与作图,用最小显著差异法进行多重比较(P <0.05)。

2 结果 2.1 不同内生菌对柳树根系形态、茎长和叶绿素含量的影响

接种不同内生菌促进了柳树根系发育,表现在柳树总根长、根表面积、根尖数和最长根长均比对照有不同程度的增加(表 2图 1)。接种LM02、SaNR1和SaMR12处理柳树总根长比对照分别增加了163%、136%和66%,根表面积分别增加了54%、12%和17%,根尖数分别增加了54%、44%和48%。接种LM02柳树最长根长比对照增加了96%。接种内生菌不仅增加了柳树根尖数、根表面积和根长,而且对柳树地上部的最高茎长也有促进作用,其中接种LM02显著高于其他处理,与对照相比增加了40%。

表2 内生菌对柳树根系形态和茎生长的影响 Table 2 Influence of endophytic bacteria on root morphology and stem growth of willow
点击放大

CK:不接菌。 CK: Without bacterial inoculation. 图1 内生菌对柳树根系发育的影响 Fig. 1 Influence of endophytic bacteria on root development of willow

不同内生菌处理对柳树叶绿素含量的影响存在明显差异。从图 2中可以看出:SaMR12和SaMR10内生菌处理的柳树叶绿素含量显著高于其他处理,且分别比对照处理提高15%和14%;其他各处理之间差异无统计学意义(P <0.05)。

CK:不接菌。短栅上的不同小写字母表示在P<0.05水平差异有统计学意义. CK: Without bacterial inoculation. Different lowercase letters above bars represent statistically significant differences at the 0.05 probability level. 图2 不同内生菌处理56 d对柳树叶绿素含量的影响 Fig. 2 Influence of endophytic bacteria on chlorophyll contents of willow after 56 d of inoculation
2.2 不同内生菌对柳树生物量和根冠比的影响

表 3中可以看出,8株内生菌对柳树地上部和根部生物量的影响存在显著差异。其中,LM02、SaMR12和SaMR10处理比对照的地上部生物量分别增加了225%、41%和51%,根部生物量分别是对照的7倍、2倍和2.5倍,总生物量分别比对照增加了234%、43%和54%。接种SaNR1处理的柳树生物量比对照处理的增大幅度较LM02、SaMR12和SaMR10小。而接种SaZR4和SM03处理的地上部生物量比对照处理明显减小。不同处理的柳树根冠比也差异显著,其中LM02、SaMR12和SaMR10菌株处理根冠比分别是对照的2.6倍、1.6倍和2.1倍。另外,SaZR4和SM03处理的根冠比与对照相比也有增加,原因是地上部生物量减小,根生物量差异较小,根冠比从而增大。SM05处理的根冠比也明显高于对照,这与该菌株对根系的促进作用明显大于对地上部的促进作用有关。

表3 内生菌对柳树生物量和根冠比的影响 Table 3 Influence of endophytic bacteria on biomass and root-shoot ratio of willow
点击放大
2.3 在不同内生菌处理下柳树氮磷积累量及水体氮磷去除的差异

图 3中可以看出,不同内生菌处理之间的柳树地上部与根部养分积累量均存在显著差异。8个接菌处理中除SaZR4和SM03外,其他接菌处理的柳树地上部氮磷养分积累量均比对照有明显的增加,8个接菌处理的柳树根部氮磷养分积累量均高于对照。其中LM02、SaMR12、SaMR10和SM05菌株处理的地上部氮积累量比对照分别增加了176%、26%、41%和20%,根部氮积累量分别是对照处理的8.3倍、2.4倍、3.4倍和3.9倍;同时,这4株菌处理的柳树地上部磷积累量比对照分别增加了109%、12%、30%和21%,根部磷积累量分别是对照的4.8倍、2.1倍、2.8倍和3.8倍。

CK:不接菌。短栅上的不同小写字母表示在P<0.05水平差异有统计学意义. CK: Without bacterial inoculation. Different lowercase letters above bars represent statistically significant differences at the 0.05 probability level. 图3 不同内生菌处理56 d对柳树养分积累量的影响 Fig. 3 Influence of endophytic bacteria on nutrient contents in tissues of willow after 56 d of inoculation

图 4中可以看出:柳树接种LM02和SaMR10处理的水体总氮和总磷质量浓度明显低于对照处理;第28天CK、LM02和SaMR10处理的水体总氮去除率分别是59.9%、71.0%和69.8%,总磷去除率分别是49.9%、67.9%和62.7%。这进一步说明接种内生菌有利于提高柳树对富营养化水体总氮和总磷的去除效率。

CK:不接菌。 CK: Without bacterial inoculation. 图4 不同内生菌处理对富营养化水体中总氮和总磷质量浓度的影响 Fig. 4 Effect of endophytic bacteria on total nitrogen (TN) and total phosphorus (TP) concentrations in eutrophic water
3 讨论

植物根际促生细菌可以通过植物根际进入植物体内或者与植物共生等方式生存,进而促进植物生长,增加生物量[23, 24]。植物根际促生细菌对植物生长的影响有许多方式,包括植物激素调节作用和增加磷酸盐溶解性等[25, 26];此外,细菌可以改变植物根系形态,通过产生吲哚乙酸促进根长和根毛生长[27]。在本试验中,LM02、SaMR10和SaMR12内生菌相比其他菌株有更好的根系促进效果,不仅与吲哚乙酸含量差异有关,还由于细菌在植物上的定殖能力因植物种类不同而有差异[28]。SHI等[29]从醉马草的根、茎、叶和种子中分离出许多细菌可以促进植物生长,但促进程度有所不同。TRUYENS等[30]研究表明,从重金属镉处理的拟南芥种子中分离出的细菌可通过改善植物抗性和酶活性,并产生更多的铁载体和有机酸等,对植物也有较好的促生效果。推测LM02、SaMR10和SaMR12比其他菌株有更好的根系促进作用,与它们和柳树亲和力更强、不同细菌在不同植物体内的促进机制存在差异也密切相关。张新成[31]研究报道,植物内生菌也可以通过促进植物氮、镁(叶绿素的组成成分)含量增加,提高叶片叶绿素含量,增强光合作用,从而促进植物生物量增加。在本试验中,分离自超积累型东南景天体内的LM02、SaMR10和SaMR12内生菌相比其他菌株,可以明显提高叶片叶绿素含量,增强柳树光合作用,从而使柳树的生物质产量增加。

在自然条件下,植物根系生长是矿质营养吸收的基础[32],根系生长旺盛会增加矿质元素的吸收和运输。同时,有研究表明鞘氨醇单胞菌属、伯克霍尔德菌属、肠杆菌属等内生菌通过分泌吲哚乙酸,增加磷酸盐矿物溶解[25],发挥生物固氮作用[33, 34]或产生铁载体[26]等,一方面可以明显增加植物氮磷的吸收,另一方面可以增加内生菌的自身生长。在本试验中特异性内生菌LM02、SaMR10和SaMR12对柳树氮磷养分积累量的影响与对照相比有明显的提高,正是由于接种这3株菌后柳树根系生长更加旺盛,分泌吲哚乙酸促进氮磷的吸收;另外,还可能与接菌的柳树根系内生菌数量增加,分泌的吲哚乙酸增加有关。SHAN等[35]从富营养化水体中分离出的光合细菌、酵母菌、丝状真菌和放线菌对富营养化水体总氮和总磷去除率分别达77.8%和72.2%。胡绵好等[36]将固定化氮循环细菌与凤眼莲结合,其对富营养化水体中总氮和铵态氮的去除率达77.2%和49.2%,显著高于凤眼莲单独处理的净化效率。陆开宏等[37]研究表明,狐尾藻和喜旱莲子草因根际存在假单胞菌属和不动杆菌属2类主要聚磷菌,而在富营养化水体修复中效果显著。用微生物修复富营养化水体的研究比较广泛,而将内生细菌接种于植物来修复富营养化水体的研究鲜有报道。在本试验中内生菌LM02、SaMR10和SaMR12对富营养化水体中氮磷的去除效率明显增加,进一步验证了内生菌接种于柳树可以用来修复富营养化水体的结论,为今后富营养化水体生态修复材料的选择指明了新方向。

4 结论

本研究通过将分离自超积累型东南景天体内的8株内生细菌接种至应用较多的木本修复植物柳树体内,发现柳树根系形态、叶绿素含量、根及地上部生物量、植物体内氮和磷积累量受到不同内生细菌处理的显著影响。其中,菌株LM02、SaMR12和SaNR1对柳树根表面积、根尖数等根系形态发育有明显的促进效果;LM02、SaMR10和SaMR12对柳树生物量、氮磷养分积累量以及修复富营养化水体氮磷的效果有显著促进作用。综上所述,不同的内生菌与柳树的亲和力差异较大,其中,菌株LM02、SaMR10和SaMR12可以用来强化能源柳树,促进植株生长和养分吸收,增加生物量,提高修复效率,同时增加能源生物质的经济价值,具有广泛的应用前景。

参考文献
[1] 汪有良, 王宝松, 李荣锦, 等.柳树在环境污染生物修复中的应用.江苏林业科技, 2006, 33(2):40-43. WANG Y L, WANG B S, LI R J, et al. Utilization of willow (Salix sp.) in phytoremediation. Journal of Jiangsu Forestry Science & Technology, 2006, 33(2):40-43. (in Chinese with English abstract)
[2] 林惠凤, 黄婧, 朱联东, 等.浮床栽培柳树在富营养化水体中的生长特性及水质净化效果研究.湖北大学学报(自然科学版), 2009, 31(2):210-212. LIN H F, HUANG J, ZHU L D, et al. Study on the growth characteristic of willow (Salix babylonica Linn) planted on floating bed and its purification efficiency in eutrophicated water body. Journal of Hubei University (Natural Science), 2009, 31(2):210-212. (in Chinese with English abstract)
[3] 隋德宗, 王保松, 施士争.盐胁迫对5个柳树无性系幼苗根系生长发育的影响.江苏林业科技, 2007, 34(4):5-8. SUI D Z, WANG B S, SHI S Z. Effects of salt stress on root growth of 5 willow clones seedling. Journal of Jiangsu Forestry Science & Technology, 2007, 34(4):5-8. (in Chinese with English abstract)
[4] MARMIROLI M, PIETRINI F, MAESTRI E, et al. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiology, 2011, 31(12):1319-1334.
[5] 杨卫东, 陈益泰.不同杞柳品种对镉(Cd)吸收与忍耐的差异.林业科学研究, 2008, 21(6):857-861. YANG W D, CHEN Y T. Differences in uptake and tolerance to cadmium in varieties of Salix integra. Forest Research, 2008, 21(6):857-861. (in Chinese with English abstract)
[6] 杨卫东, 陈益泰.不同品种杞柳对高锌胁迫的忍耐与积累研究.中国生态农业学报, 2009, 17(6):1182-1186. YANG W D, CHEN Y T. Tolerance of different varieties of Salix integra to high zinc stress. Chinese Journal of Eco-Agriculture, 2009, 17(6):1182-1186. (in Chinese with English abstract)
[7] ELOWSON S. Willow as a vegetation filter for cleaning of polluted drainage water from agricultural land. Biomass and Bioenergy, 1999, 16(4):281-290.
[8] DIMITRIOU I, ERIKSSON J, ADLER A, et al. Fate of heavy metals after application of sewage sludge and wood-ash mixtures to short-rotation willow coppice. Environmental Pollution, 2006, 142(1):160-169.
[9] 韩永和, 李敏.植物-微生物联合修复技术治理水体富营养化.水处理技术, 2012, 38(3):1-6. HAN Y H, LI M. Phyto-microremediation technology on treatment of eutrophic water. Technology of Water Treatment, 2012, 38(3):1-6. (in Chinese with English abstract)
[10] 牛之欣, 孙丽娜, 孙铁珩.重金属污染土壤的植物-微生物联合修复研究进展.生态学杂志, 2009, 28(11):2366-2373. NIU Z X, SUN L N, SUN T H. Plant-microorganism combined remediation of heavy metals-contaminated soils: Its research progress. Chinese Journal of Ecology, 2009, 28(11):2366-2373. (in Chinese with English abstract)
[11] LI H, ZHAO H P, HAO H L, et al. Enhancement of nutrient removal from eutrophic water by a plant-microorganisms combined system. Environmental Engineering Science, 2011, 28(8):543-554.
[12] 郭楚玲, 郑天凌, 洪华生.多环芳烃的微生物降解与生物修复.海洋环境科学, 2000, 19(3):24-29. GUO C L, ZHENG T L, HONG H S. Biodegradation and bioremediation of polycyclic aromatic hydrocarbons. Marine Environmental Science, 2000, 19(3):24-29. (in Chinese with English abstract)
[13] 李顺鹏, 蒋建东.农药污染土壤的微生物修复研究进展.土壤, 2004, 36(6):577-583. LI S P, JIANG J D. Microbial remediation of pesticide-contaminated soil. Soils, 2004, 36(6):577-583. (in Chinese with English abstract)
[14] 姜理英, 杨肖娥, 石伟勇, 等.植物修复技术中有关土壤重金属活化机制的研究进展.土壤通报, 2003, 34(2):154-157. JIANG L Y, YANG X E, SHI W Y, et al. Activation of soil heavy metals for phytoremediation. Chinese Journal of Soil Science, 2003, 34(2):154-157. (in Chinese with English abstract)
[15] 冯永君, 宋未.植物内生细菌.自然杂志, 2001, 23(5):249-252. FENG Y J, SONG W. Endophytic bacteria. Nature Magazine, 2001, 23(5):249-252. (in Chinese)
[16] 朱雪竹, 倪雪, 高彦征.植物内生细菌在植物修复重金属污染土壤中的应用.生态学杂志, 2010, 29(10):2035-2041. ZHU X Z, NI X, GAO Y Z. Applications of endophytic bacteria in phytoremediation of heavy metals-contaminated soils. Chinese Journal of Ecology, 2010, 29(10):2035-2041. (in Chinese with English abstract)
[17] WATSON C, PULFORD I D, RIDDELL-BLACK D. Development of a hydroponic screening technique to assess heavy metal resistance in willow (Salix). International Journal of Phytoremediation, 2003, 5(4):333-349.
[18] ROGERS A, MCDONALD K, MUEHLBAUER M F, et al. Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp 638 increases biomass but does not impact leaf level physiology. Global Change Biology Bioenergy, 2012, 4(3):364-370.
[19] GERMAINE K, KEOGH E, GARCIA-CABELLOS G, et al. Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiology Ecology, 2004, 48(1):109-118.
[20] LIU J, XIONG Z T, LI T Y, et al. Bioaccumulation and ecophysiological responses to copper stress in two populations of Rumex dentatus L. from Cu contaminated and non-contaminated sites. Environmental and Experimental Botany, 2004, 52(1):43-51.
[21] GUO L, MA K M. Seasonal dynamics of nitrogen and phosphorus in water and sediment of a multi-level ditch system in Sanjiang Plain, Northeast China. Chinese Geographical Science, 2011, 21(4):437-445.
[22] TANG Q Y, ZHANG C X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Science, 2013, 20(2):254-260.
[23] DUTTA S, PODILE A R. Plant growth promoting rhizobacteria (PGPR): The bugs to debug the root zone. Critical Reviews in Microbiology, 2010, 36(3):232-244.
[24] RAJKUMAR M, SANDHYA S, PRASAD M N V, et al. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, 2012, 30(6):1562-1574.
[25] LI J H, WANG E T, CHEN W F, et al. Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang Province of China. Soil Biology and Biochemistry, 2008, 40(1):238-246.
[26] IDRIS R, TRIFONOVA R, PUSCHENREITER M, et al. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology, 2004, 70(5):2667-2677.
[27] VESSEY J K. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 2003, 255(2):571-586.
[28] ROSENBLUETH M, MARTINEZ-ROMERO E. Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 2006, 19(8):827-837.
[29] SHI Y W, ZHANG X B, LOU K. Isolation, characterization, and insecticidal activity of an endophyte of drunken horse grass, Achnatherum inebrians. Journal of Insect Science, 2013, 13(1):151.
[30] TRUYENS S, WEYENS N, CUYPERS A, et al. Changes in the population of seed bacteria of transgenerationally Cd-exposed Arabidopsis thaliana. Plant Biology, 2013, 15(6):971-981.
[31] 张新成.东南景天内生菌分离鉴定及其强化重金属超积累效应与机制.杭州:浙江大学, 2012:97-109. ZHANG X C. Isolation and identification of endophytes from Sedum alfredii and the mechanisms of their enhancement on heavy metal hyperaccumulation. Hangzhou: Zhejiang University, 2012:97-109. (in Chinese with English abstract)
[32] 张福锁, 曹一平.根际动态过程与植物营养.土壤学报, 1992, 29(3):239-250. ZHANG F S, CAO Y P. Rhizosphere dynamics and plant nutrition. Acta Pedologica Sinica, 1992, 29(3):239-250. (in Chinese with English abstract)
[33] BALDANI J I, BALDANI V L. History on the biological nitrogen fixation research in graminaceous plants: Special emphasis on the Brazilian experience. Anais da Academia Brasileira de Ciências, 2005, 77(3):549-579.
[34] MANO H, MORISAKI H. Endophytic bacteria in the rice plant. Microbes and Environments, 2008, 23(2):109-117.
[35] SHAN M J, WANG Y Q, XUE S. Study on bioremediation of eutrophic lake. Journal of Environmental Sciences, 2009, 21(Suppl. 1):16-18.
[36] 胡绵好, 袁菊红, 常会庆, 等.凤眼莲-固定化氮循环细菌联合作用对富营养化水体原位修复的研究.环境工程学报, 2009, 3(12):2163-2169. HU M H, YUAN J H, CHANG H Q, et al. In situ remediation of eutrophic water bodies by the combination of water hyacinth and immobilized nitrogen cycle bacteria. Journal of Environmental Engineering, 2009, 3(12):2163-2169. (in Chinese with English abstract)
[37] 陆开宏, 胡智勇, 梁晶晶, 等.富营养水体中2种水生植物的根际微生物群落特征.中国环境科学, 2010, 30(11):1508-1515. LU K H, HU Z Y, LIANG J J, et al. Characteristics of rhizosphere microbial community structure of two aquatic plants in eutrophic waters. China Environmental Science, 2010, 30(11):1508-1515. (in Chinese with English abstract)