浙江大学学报(农业与生命科学版)  2016, Vol. 42 Issue (2): 199-208
文章快速检索     高级检索
干旱胁迫对拉萨半干旱河谷主要乔木树种幼树耗水及光合特性的影响[PDF全文]
辛福梅1, 2 , 杨小林1, 赵垦田1 , 罗桑卓玛1    
1. 西藏大学农牧学院,西藏林芝 860000;
2. 北京林业大学林学院,北京 100083
摘要: 在拉萨半干旱河谷以三年生藏川杨、银白杨、左旋柳和榆树为研究对象,通过盆栽控制试验,采用盆栽苗木称量法和Li-6400光合测定法,研究在轻度、中度和重度干旱胁迫(土壤含水量分别为田间持水量的70%~75%、50%~55%和30%~35%)条件下4个树种的蒸腾耗水特性和水分利用效率。结果表明:1)正常供水时,藏川杨、银白杨、左旋柳和榆树白天耗水量分别为1 096.5、1 363.8、915.1、702.9 g/m2,藏川杨和左旋柳白天耗水量显著低于银白杨;轻度干旱时左旋柳和榆树的全天总耗水量和白天总耗水量均有明显增加,其中左旋柳的增幅分别达到38.1%和40.8%,榆树的增幅分别为30.1%和28.7%,其余2个树种均有不同程度的下降;中度干旱时4种苗木耗水量均有下降;重度干旱时耗水量最小。2)正常供水时,银白杨和左旋柳的耗水速率日变化为双峰曲线,峰值均出现在12:00—14:00和16:00—18:00,藏川杨和榆树为单峰曲线,峰值出现在12:00—14:00;轻度干旱时,银白杨为双峰曲线,第1峰值出现在12:00—14:00,其余3个树种为单峰曲线;中度和重度干旱时各树种耗水速率均表现为单峰曲线。3)随干旱加剧,藏川杨和银白杨的净光合速率和蒸腾速率均逐步下降;左旋柳的净光合速率和蒸腾速率均在轻度干旱时最大,在其余3个水分条件下随干旱加剧,其净光合速率和蒸腾速率逐渐下降;榆树的净光合速率和蒸腾速率相对较低,最大值均出现在轻度干旱下,重度干旱时其值显著小于其余处理。4)藏川杨在中度和重度干旱时水分利用效率高于正常供水和轻度干旱;银白杨在各干旱胁迫下水分利用效率均相对较低;随干旱加剧,左旋柳的水分利用效率逐渐增加;榆树在重度干旱时水分利用效率显著高于其余3个处理。综上所述,4个树种均能耐受一定程度的水分亏缺,属耐旱较强的树种,综合各因素,其耐旱性排序为榆树>藏川杨>左旋柳>银白杨。
关键词: 拉萨半干旱河谷    干旱胁迫    乔木树种    耗水    光合特性    
Effect of drought stress on characteristics of water consumption and photosynthesis for main arbor species in semi-arid valley of Lhasa
XIN Fumei1, 2 , YANG Xiaolin1, ZHAO Kentian1 , Luosang zhuoma1    
1. College of Agricultural and Animal Husbandry, Tibet University, Linzhi 860000, Xizang, China;
2. College of Forestry, Beijing Forestry University, Beijing 100083, China
Summary: Water is a main limiting factor in arid and semi-arid areas, so the core technical problem for afforestation is how to ensure and maintain basic water demand for normal growth and development of trees. Investigation on the actual transpiration water consumption of main afforestation tree species can provide important guidance and theoretical basis for density control, water use, forest stability, woodland water balance and environmental capacity estimation of water resources of artificial vegetation.

In this paper, four arbor species Populus szechuanica var. tibetica, Populus alba, Salix paraplesia var. subintegra and Ulmus pumila of three years old were selected in semi-arid valley of Lhasa, water consumptions of which were measured by pot seedling weight method, and net photosynthetic rate (Pn), transpiration rate (Tr) and water use efficiency (WUE) of them were investigated by Li-6400 photosynthetic system measuring method under different drought stresses. The stress treatments included normal water supply (90%-95% of field moisture capacity, CK), light drought stress (70%-75% of field moisture capacity, LS), moderate drought stress (50%-55% of field moisture capacity, MS) and heavy drought stress (30%-35% of field moisture capacity, HS) on potted experiments.

The results showed that: 1) Under the normal water supply, the day water consumptions of P. szechuanica var. tibetica, P. alba, S. paraplesia var. subintegra and U. pumila seedlings were 1 096.5, 1 363.8, 915.1 and 702.9 g/m2, respectively. The water consumption of native trees (P. szechuanica var. tibetica and S. paraplesia var. subintegra) was significantly lower than that of P. alba. Under the light drought stress, the day-and-night and day water consumptions of S. paraplesia var. subintegra and U. pumila increased significantly compared to the control, wherein, the former increasing by 38.1% and 40.8%, and the latter increasing by 30.1% and 28.7%, respectively; and the remaining two species declined at different degrees. The water consumption of the four kinds of seedlings declined under the moderate drought stress, and it was minimal under the heavy drought stress. For example, the day-and-night water consumption of P. szechuanica var. tibetica and P. alba under the heavy drought stress was only 25.0% and 19.3% under the normal supply. 2) Under the normal water supply, the diurnal variation of water consumption rate (WCR) of P. szechuanica var. tibetica and S. paraplesia var. subintegra was bimodal curve, with the two peaks at 12:00—14:00 and 16:00—18:00; the other two species was a single peak curve, with the peak at 12:00—14:00. Under the light drought stress, the WCR diurnal variation of P. alba was bimodal curve, the first peak of which was at 12:00—14:00, and the remaining three species were observed a single peak, the peak of P. szechuanica var. tibetica in which was at 12:00—14:00, and the other two species were at 14:00—16:00. Under the moderate drought stress, the WCR diurnal variation of all tree species showed a single peak curve, the peak of P. szechuanica var. tibetica and P. alba in which was at 12:00—14:00, and the other two species appeared at 14:00—16:00. The curves of all species were single peak under the heavy drought stress, all peaks of which appeared at 14:00—16:00. 3) The Pn and Tr of P. szechuanica var. tibetica and P. alba declined gradually with the increase of drought stress. The Pn and Tr of S. paraplesia var. subintegra were largest under the light drought stress, while they decreased gradually with the increase of drought stress. The Pn and Tr of U. pumila were relatively low, and the maximum values were observed under the moderate drought stress, and its Pn and Tr were significantly lower than any other treatment under the heavy drought stress. 4) The WUE of P. szechuanica var. tibetica under the moderate and heavy drought stresses was higher than the other two stress conditions. The WUE of P. alba was relatively low under the each drought stress. The WUE of S. paraplesia var. subintegra became higher with the increase of drought stress. Under the heavy drought stress, the WUE of U. pumila was significantly higher than any other treatment.

In conclusion, all the four species can tolerate water deficit to a certain degree, and the order of drought tolerance is U. pumila > P. szechuanica var. tibetica > S. paraplesia var. subintegra > P. alba.

Key words: semi-arid valley of Lhasa    drought stress    arbor species    water consumption    photosynthetic characteristics    

水分是植物生长的重要环境因子,在陆地生态系统中,干旱与半干旱生态系统大约覆盖了地球表面的50%[1]。水分影响着植物形态、生理生化代谢及地理分布范围,植物对土壤水分胁迫的响应包含着极其复杂的变化,并形成了遭受遗传性制约的适应机制[2, 3, 4]。随着全球气候与环境变化,以及降水季节和地域分布极不均匀,水资源短缺日趋明显,土壤有效含水量逐年减少[5]。由于水分是干旱半干旱地区最主要的限制因子,所以造林要解决的中心技术问题就是如何保证和维持林木正常生长发育的基本水分需求[6]。研究主要造林树种的实际蒸腾耗水量,对于人工植被的密度调控、水分利用、林分稳定以及林地水量平衡和水资源环境容量估测具有重要的指导作用和理论意义[7]

随着西藏高原国家生态安全屏障保护与建设规划等项目的实施,拉萨半干旱河谷植被恢复和重建越来越受到人们的普遍关注,也已成为西藏生态文明建设中面临的迫切任务之一。尽管国内外对林木耗水性已有相当多的研究[8, 9, 10, 11, 12, 13, 14],但在西藏这种特殊环境下有关树木的耗水性研究还未见报道。本研究选择拉萨半干旱河谷地带4个主要造林树种(藏川杨、银白杨、左旋柳、榆树)为研究对象,通过盆栽控制试验,研究其在拉萨半干旱河谷特定环境条件下的蒸腾耗水特性和水分利用效率,以期了解各树种的蒸腾耗水规律,正确选择耐旱树种,科学制定苗期水分管理措施,确保造林成功。

1 材料与方法 1.1 研究区概况

试验在西藏自治区林业厅林木科学研究院内完成。该研究院地处拉萨市堆龙德庆县柳梧乡桑达村,为典型的拉萨半干旱河谷地带。拉萨半干旱河谷地处雅鲁藏布江支流拉萨河,喜马拉雅山北侧,受下沉气流影响,全年多晴朗天气,冬无严寒,夏无酷暑,属高原季风半干旱气候;河谷内气候温暖、干燥,年均气温7.4 ℃,日温差大,最热月6月平均气温为18.7 ℃,最冷月1月平均气温为1.0 ℃,多年极端最高气温为29.6 ℃,极端最低气温为-16.5 ℃,分别出现在6月和1月;干湿季明显,冬季干燥少雨,降水主要集中在湿季,仅6、7、8月降水量就占到全年降水总量的88.3%,多夜雨,夜雨率达到80%左右,是西藏雨季夜雨最多的地区之一;平均相对湿度30%~50%,降水量200~500 mm,干燥度1.5~10,干湿指数3~7,10 ℃以上积温2 177 ℃,无霜期133 d,全年日照时数3 000 h以上;该地区植被类型主要为亚高山灌丛和草甸植被以及河谷人工林群落[15]

1.2 试验材料及设计

选取该地区主要造林乔木树种三年生幼树藏川杨(Populus szechuanica var. tibetica)、银白杨(Populus alba)、左旋柳(Salix paraplesia var. subintegra)、榆树(Ulmus pumila),生长势良好、形态特征相近。所用土壤为拉萨河谷典型灌丛草原土,土壤田间持水量为19.41%,体积质量为1.23 g/cm3。栽植用花盆盆口直径为30 cm,高25 cm,每盆装入灌丛草原土14 kg,每个花盆栽植苗木1株。试验于2013年6月在西藏自治区林业厅林木科学研究院内进行,苗木栽植后经过2个月缓苗期,于8月10日开始干旱胁迫,8月15日开始称量花盆,测定苗木耗水特性,9月18日结束实验,期间选择5个不连续的典型晴天,于上午9:00—11:00测定苗木光合特性。试验共设4组处理。CK:正常充分供水,土壤含水量为田间持水量的90%~95%;LS:轻度干旱胁迫,为田间持水量的70%~75%;MS:中度干旱胁迫,为田间持水量的50%~55%;HS:重度干旱胁迫,为田间持水量的30%~35%。每组设5次重复[16, 17]

试验时用保鲜膜覆盖花盆的上表面以防止土壤水分蒸发,同时密封花盆底部以防止水分渗漏和花盆内土壤流失。

1.3 测定内容及方法 1.3.1 耗水特性

每天8:00和20:00用精密天平(量程为30 kg,精度为1×10-4 g)称花盆质量以计算各树种苗木每天的耗水量。20:00称完后通过注射器在保鲜膜上扎孔注水以保证花盆内土壤含水量在设定范围内。耗水日变化测定为每天8:00—20:00,每隔2 h测定1次。用剪纸称量法(硫酸纸法)测定叶面积,计算耗水量。

1.3.2 光合特性

从4组处理的各重复中选取5~6片功能叶,采用Li-6400XT便携式光合作用测定仪测定其净光合速率和蒸腾速率。各处理的水分利用效率=净光合速率/蒸腾速率。由于部分左旋柳、榆树叶片不能充满叶室,光合测定完成后,用Microtek Phantom 3500扫描仪扫描处理叶片,通过UTHSCSA图像分析系统确定叶面积,重新换算净光合速率、蒸腾速率和水分利用效率。

1.4 数据分析

用Excel 2003软件进行数据处理和作图,用SPSS 10.0软件进行方差分析。

2 结果与分析 2.1 各树种幼苗耗水特性对干旱胁迫的响应 2.1.1 耗水量的变化

林木耗水主要包括自身蒸腾和土壤蒸发2部分,在本研究中盆栽苗木土壤均采用保鲜膜密封,因此,苗木蒸腾耗水是其向外界散失水分的唯一途径。由表 1可以看出,在不同土壤水分条件下,4个树种苗木的全天总耗水量和白天总耗水量存在差异。总体上,正常供水时银白杨的全天总耗水量和白天总耗水量均最大;轻度干旱时左旋柳和榆树的全天总耗水量和白天总耗水量均有明显增加,其中左旋柳的增幅分别达到38.1%和40.8%,榆树的增幅分别为30.1%和28.7%,其余2个树种均有不同程度的下降;中度干旱时4种苗木的耗水量均下降,但各树种下降幅度不同,4种苗木的全天总耗水量与各树种耗水量最大值相比分别下降了67.1%(藏川杨)、46.0%(银白杨)、29.9%(左旋柳)、16.5%(榆树);重度干旱时耗水量最小,藏川杨和银白杨的全天总耗水量仅为正常供水时的25.0%和19.3%。从表 1中还可以看出:正常供水时4个树种的各耗水量相差较大,榆树的耗水量最小;轻度干旱时银白杨和左旋柳耗水量相差不大,而藏川杨的全天总耗水量最小;中度干旱时除藏川杨外其余3个树种耗水量较为接近;重度干旱时4个树种耗水量相差不大。说明不同树种在不同水分条件下对水分的利用方式不同,如藏川杨从轻度干旱胁迫开始就大幅度降低耗水量以减小对水分的消耗;中度干旱时银白杨和左旋柳耗水明显降低。从表 1中各树种白天总耗水量占全天总耗水量的比例可知,苗木耗水主要产生在白天,白天的耗水规律是该地区苗木耗水规律研究的主要内容。

表1 不同干旱胁迫下4种苗木的日均耗水量 Table 1 Average daily water consumption rates of four kinds of seedlings under different drought stresses g/m2
点击放大
2.1.2 耗水速率的日变化

图 1可以看出,不同树种在相同水分条件下和同一树种在不同水分条件下的耗水速率变化不同。在正常供水条件下,银白杨和左旋柳的耗水速率日变化为明显的双峰曲线,两者峰值均出现在12:00—14:00和16:00—18:00,银白杨在16:00—18:00达到第1峰值,左旋柳的第1峰值出现在12:00—14:00,银白杨和左旋柳的第2峰值与第1峰值相比,分别降低了3%和40%;藏川杨为典型的单峰曲线,峰值出现在12:00—14:00;榆树也为峰值出现在12:00—14:00的单峰曲线,但是在14:00—18:00的整个时间段内其耗水基本保持不变。在轻度干旱胁迫下,银白杨表现为双峰曲线,其第1峰值出现在12:00—14:00,第2峰值与第1峰值相比,降低了近60%;其余3个树种在轻度干旱时表现为单峰曲线,但峰值出现的时间不同,藏川杨出现在12:00—14:00,左旋柳和榆树出现在14:00—16:00。中度干旱时各树种耗水速率均表现为单峰曲线,银白杨和藏川杨的峰值出现在12:00—14:00,左旋柳和榆树出现在14:00—16:00,峰值最大的是银白杨,藏川杨的峰值仅为银白杨的54.2%。重度干旱胁迫时各树种的耗水速率也均为单峰曲线,但4个树种的峰值均出现在14:00—16:00。

各处理符号表示的含义详见表 1注。
Please see footnote of Table 1 for details of each treatment.
图1 不同干旱胁迫下4种苗木耗水速率的日变化 Fig. 1 Daily variation of water consumption rates of four kinds of seedlings under different drought stresses

图 2显示,各苗木白天平均耗水速率的变化趋势与最大耗水速率的变化基本一致,且同一树种在不同干旱胁迫条件下和不同树种在同一干旱胁迫下耗水速率差异有统计学意义(P<0.05)。正常供水时银白杨的耗水速率显著高于其他3个树种,轻度干旱时,银白杨和左旋柳的耗水速率显著高于其他2个树种,榆树在正常供水和轻度干旱时耗水速率较小。随着苗木受干旱胁迫程度的加剧,藏川杨和银白杨的白天平均耗水速率均呈现下降趋势,两者在各干旱胁迫处理间均差异有统计学意义(P<0.05),藏川杨在重度干旱时其白天平均耗水速率仅为正常供水时的21.8%。左旋柳在各干旱胁迫处理间差异也有统计学意义(P<0.05),但其白天平均耗水速率的最大值出现在轻度干旱时,正常供水时平均耗水速率下降了近40.8%,重度干旱时其大小仅为轻度干旱时的25.5%。

各处理符号表示的含义详见表1注。短栅上的不同小写字母表示在同一干旱胁迫条件下不同树种之间在P<0.05水平差异有统计学意义,不同大写字母表示同一树种在不同干旱胁迫之间在P<0.05水平差异有统计学意义。
Please see footnote of Table 1 for details of each treatment. Different lowercase letters above bars indicate statistically significant differences among tree species under the same drought stress, and the different capital letters indicate statistically significant differences among different drought stresses on the same tree species at the 0.05 probability level, respectively.
图2 不同干旱胁迫下4种苗木白天平均耗水速率 Fig. 2 Average daily water consumption rates of four kinds of seedlings under different drought stresses
2.2 各树种幼苗光合特性对干旱胁迫的响应 2.2.1 净光合速率的变化

图 3显示,在同一干旱胁迫条件的不同树种之间以及同一树种的不同干旱胁迫之间各苗木的净光合速率不同。正常供水时银白杨的净光合速率与其余3个树种间差异有统计学意义(P<0.05),达到最大值。在轻度干旱条件下银白杨的净光合速率仍然最大,显著大于其余3个树种(P<0.05),而左旋柳、藏川杨和榆树之间的差异无统计学意义(P>0.05),与银白杨相比,藏川杨的净光合速率下降了近44.5%。在中度和重度干旱时左旋柳的净光合速率均最大,中度干旱时其余3个树种的净光合速率相差不大,均与银白杨之间差异有统计学意义(P<0.05),重度干旱时,银白杨的净光合速率最小。另外,在不同干旱胁迫下藏川杨的净光合速率差异有统计学意义(P<0.05),重度干旱时约为正常供水时的1/3。银白杨在正常供水和轻度干旱时净光合速率差异不大,中度干旱时净光合速率急剧下降,约为正常供水时的52%,而重度干旱时仅为正常供水时的6.9%。左旋柳在轻度干旱时净光合速率达到最大值,在正常供水和中度干旱胁迫下净光合速率均有所下降,重度干旱时其净光合速率约为轻度干旱时的42.5%。榆树在轻度干旱时净光合速率最大,与正常供水和中度干旱胁迫时差异有统计学意义(P<0.05),在重度干旱胁迫下其净光合速率显著小于其他3个水分条件,仅为最大值的1/3。

各处理符号表示的含义详见表1注。短栅上的不同小写字母表示在同一干旱胁迫条件下不同树种之间在P<0.05水平差异有统计学意义,不同大写字母表示同一树种在不同干旱胁迫之间在P<0.05水平差异有统计学意义。
Please see footnote of Table 1 for details of each treatment. Different lowercase letters above bars indicate statistically significant differences among tree species under the same drought stress, and the different capital letters indicate statistically significant differences among different drought stresses on the same tree species at the 0.05 probability level, respectively.
图3 不同干旱胁迫下4种苗木净光合速率的变化 Fig. 3 Changes of net photosynthetic rates of four kinds of seedlings under different drought stresses
2.2.2 蒸腾速率的变化

图 4可以看出,不同树种在同一干旱胁迫下和同一树种在不同干旱胁迫下其蒸腾速率的变化不尽相同。正常供水时银白杨的蒸腾速率显著高于其余3个树种(P<0.05),藏川杨和左旋柳之间差异不大,但两者均显著高于榆树,榆树在正常供水时蒸腾速率约为银白杨的1/3。在轻度干旱胁迫下银白杨的蒸腾速率仍显著高于其余3个树种(P<0.05),左旋柳的次之,约为最大值的78.1%,藏川杨略高于榆树,两者差异无统计学意义(P>0.05)。中度干旱时藏川杨的蒸腾速率最小,银白杨和左旋柳的蒸腾速率间差异无统计学意义(P>0.05),榆树与其余3个树种之间的差异未达统计学上的显著水平(P>0.05)。重度干旱时银白杨的蒸腾速率最小,与银白杨比较,其余3个树种的蒸腾速率略有提高,且相互间差异无统计学意义(P>0.05)。从图 4还可知:随着干旱胁迫程度的加剧,藏川杨的蒸腾速率逐渐下降,部分处理间差异有统计学意义(P<0.05),重度干旱时蒸腾速率最小,仅为最大值的27.7%;银白杨在正常供水和轻度干旱胁迫下蒸腾速率差异无统计学意义(P>0.05),从中度干旱开始蒸腾速率急剧下降,重度干旱时约为其最大蒸腾速率的1/10;左旋柳在轻度干旱时蒸腾速率最大,其余3个处理随干旱胁迫加剧,蒸腾速率逐渐下降;榆树的蒸腾速率相对较低,最大值出现在轻度干旱胁迫下,正常供水和中度与轻度干旱之间差异有统计学意义(P<0.05),在重度干旱胁迫下其蒸腾速率显著小于其余处理,与轻度干旱相比,下降了近70.8%。

各处理符号表示的含义详见表1注。短栅上的不同小写字母表示在同一干旱胁迫条件下不同树种之间在P<0.05水平差异有统计学意义,不同大写字母表示同一树种在不同干旱胁迫之间在P<0.05水平差异有统计学意义。
Please see footnote of Table 1 for details of each treatment. Different lowercase letters above bars indicate statistically significant differences among tree species under the same drought stress, and the different capital letters indicate statistically significant differences among different drought stresses on the same tree species at the 0.05 probability level, respectively.
图4 不同干旱胁迫下4种苗木蒸腾速率的变化 Fig. 4 Changes of transpiration rates of four kinds of seedlings under different drought stresses
2.2.3 水分利用效率的变化

图 5可知:在正常供水时榆树的水分利用效率最高,为2.90 μmol/mmol,藏川杨有所下降,银白杨和左旋柳之间差异无统计学意义(P>0.05),约为榆树的75%;轻度干旱时藏川杨和榆树之间相差不大,但两者均高于银白杨和左旋柳,且差异有统计学意义(P<0.05);在中度干旱胁迫下藏川杨、左旋柳和榆树的水分利用效率之间无显著差异,均在3 μmol/mmol左右,而银白杨的水分利用效率显著低于其余3个树种(P<0.05);重度干旱时左旋柳的水分利用效率最大,而银白杨的最小。就各树种而言,藏川杨在中度和重度干旱时水分利用效率高于正常供水和轻度干旱,差异有统计学意义(P<0.05);银白杨在各个干旱胁迫条件下水分利用效率均相对较低,重度干旱时最小;随着干旱胁迫的加剧,左旋柳的水分利用效率有逐渐增加的趋势,重度干旱与正常供水相比,增幅达到43.6%;榆树在重度干旱时水分利用效率高于其余3个处理,差异有统计学意义(P<0.05)。

各处理符号表示的含义详见表1注。短栅上的不同小写字母表示在同一干旱胁迫条件下不同树种之间在P<0.05水平差异有统计学意义,不同大写字母表示同一树种在不同干旱胁迫之间在P<0.05水平差异有统计学意义。
Please see footnote of Table 1 for details of each treatment. Different lowercase letters above bars indicate statistically significant differences among tree species under the same drought stress, and the different capital letters indicate statistically significant differences among different drought stresses on the same tree species at the 0.05 probability level, respectively.
图5 不同干旱胁迫下4种苗木水分利用效率的变化 Fig. 5 Changes of water use efficiency of four kinds of seedlings under different drought stresses
3 讨论与结论

在进行抗旱节水树种筛选时耗水量经常作为重要的评价指标,能很好地反映树种之间耗水能力差异[18, 19, 20]。邱权等[21]对速生树种尾巨桉和竹柳幼苗耗水特性的研究结果显示,其盆栽苗木白天单株耗水量为795.7和1 074 g/m2;王瑞辉等[22]对北京15种园林树木耗水性的研究结果显示,秋季耗水量最大的榆叶梅日耗水量达到1 696 g/m2,最小的黄栌仅为345 g/m2。本研究表明,在正常供水时,藏川杨、银白杨、左旋柳和榆树的白天耗水量分别为1 096.5、1 363.8、915.1和702.9 g/m2。结合拉萨气候特点,本研究认为拉萨半干旱河谷主要造林树种耗水量相对较低,作为乡土树种的藏川杨和左旋柳白天耗水量显著低于银白杨。拉萨河谷苗木的耗水主要产生在白天。土壤水分是植物生长的重要限制因子,大量研究表明在不同土壤水分条件下植物耗水特性存在明显差异[23, 24]。在本研究中随着土壤水分含量的下降,各树种的耗水量变化不同:轻度干旱时左旋柳和榆树的全天总耗水量和白天总耗水量均有明显增加,其余2个树种均有不同程度的下降;中度干旱时4种苗木的耗水量均下降,但各树种下降幅度不同,全天总耗水量与各树种耗水量最大值相比分别下降了67.1%(藏川杨)、46.0%(银白杨)、29.9%(左旋柳)、16.5%(榆树);重度干旱时耗水量最小,藏川杨和银白杨的全天总耗水量仅为正常供水时的25.0%和19.3%。

耗水速率反映了植物调节自身水分损耗能力和在不同环境中的实际耗水特征,用耗水速率来比较树种耗水的特点和大小更具有可行性[25]。在本次选取的4个树种中,正常供水时银白杨的耗水速率显著高于其他3个树种;轻度干旱时,银白杨和左旋柳的耗水速率显著高于其他2个树种;相比较而言,榆树在正常供水和轻度干旱时耗水速率较小。由此可见,干旱地区的乡土树种有其节水性能方面的潜力,但引种的耐旱树种同样表现较好。由于时差及光照强度的影响,在拉萨半干旱地区部分树种耗水速率的日变化峰值出现在14:00—16:00,甚至16:00—18:00。在正常供水条件下,银白杨和左旋柳的耗水速率日变化为明显的双峰曲线,藏川杨和榆树为典型的单峰曲线;轻度干旱时,银白杨表现为双峰曲线,其余3个树种表现为单峰曲线;中度和重度干旱时各树种耗水速率均表现为单峰曲线。

光合作用是植物体内非常重要的代谢过程,植物通过光合作用为生长提供同化物和能量。许多研究表明,植物在干旱胁迫状态下光合速率会随之降低,降低的幅度取决于干旱胁迫的程度和植物的耐旱能力[26]。本研究4个树种的净光合速率和蒸腾速率表现出近似的变化趋势。随着干旱胁迫程度的加剧,藏川杨和银白杨的净光合速率和蒸腾速率均逐步下降,在重度干旱时达到最小。左旋柳的净光合速率和蒸腾速率均在轻度干旱时最大,其余3个处理随干旱胁迫加剧,净光合速率和蒸腾速率逐渐下降。榆树的净光合速率和蒸腾速率相对较低,最大值均出现在轻度干旱胁迫下,在重度干旱胁迫下其值显著小于其余处理。结合影响林木耗水的气孔和非气孔因素[27, 28],其原因可能是植物为了减小水分丧失,减小气孔张度,从而降低了胞间CO2的浓度,最终使得蒸腾速率和净光合速率下降。

水分利用效率是评价植物对环境适应的综合性生理生态指标,也是确定植物体生长发育所需水分供应的重要指标之一[29, 30]。本研究藏川杨在中度和重度干旱时水分利用效率高于正常供水和轻度干旱。银白杨在各个水分胁迫条件下水分利用效率均相对较低,重度干旱时最小。随着干旱胁迫的加剧,左旋柳的水分利用效率有逐渐增加的趋势,重度干旱与正常供水相比,增幅达到43.6%。榆树在重度干旱时水分利用效率显著高于其余3个处理。

综合以上结果,藏川杨、银白杨、左旋柳、榆树的耗水量相对较低,均能耐受一定程度的水分亏缺,属于耐旱能力较强的树种。结合耗水量、耗水速率及水分利用效率等因素,4个树种的耐旱性排序为榆树>藏川杨>左旋柳>银白杨。其中,银白杨的耐旱性最小,藏川杨对干旱的敏感程度较高,能够在干旱胁迫较轻时就降低耗水量以应对干旱,而轻度干旱胁迫更有利于左旋柳的生长,适应性较好的榆树在拉萨半干旱河谷仍表现出较强的耐旱性。

参考文献
[1] BAILEY R G. Ecosystem Geography with Separate Maps of the Oceans and Continents at 1∶8 000 000.
New York, USA: Springer-Verlag, 1996:3.
[2] REMORINI D, MASSAI R. Comparison of water status indicators for young peach trees. Irrigation Science, 2003, 22(1):39-46.
[3] FERNANDEZ R J, REYNOLDS J F. Potential growth and drought tolerance of eight desert grasses: Lack of a trade-off? Oecologic, 2000, 123:90-98.
[4] EGERT M, TEVINI M. Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Alliums schoenoprasum). Environmental and Experimental Botany, 2002, 48:43-49.
[5] MAESTRE F T, VALLADARES F, REYNOLDS J F. Is the change of plant-plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. Journal of Ecology, 2005, 93(4):748-757.
[6] 刘敏.青海黄土高寒区主要生态树种耗水特性研究.北京:北京林业大学, 2009:1.
LIU M. Study on water consumption of main ecosystem tree species in high cold region on Loess Plateaus of Qinghai. Beijing: Beijing Forestry University, 2009:1. (in Chinese with English abstract)
[7] 贺康宁, 田阳, 张光灿.刺槐日蒸腾过程的Penman-Monteith方程模拟.生态学报, 2003, 23(2):251-258.
HE K N, TIAN Y, ZHANG G C. Modeling of the daily transpiration variation in locust forest by Penman-Monteith equation. Acta Ecologica Sinica, 2003, 23(2):251-258. (in Chinese with English abstract)
[8] 周平, 李吉跃, 招礼军.北方主要造林树种苗木蒸腾耗水特性研究.北京林业大学学报, 2002, 24(5/6):50-55.
ZHOU P, LI J Y, ZHAO L J. Characteristics of seedlings water consumption by transpiration of main afforestation tree species in north China. Journal of Beijing Forestry University, 2002, 24(5/6):50-55. (in Chinese with English abstract)
[9] 马履一, 王华田, 林平.北京地区几个造林树种耗水性比较研究.北京林业大学学报, 2003, 25(2):1-7.
MA L Y, WANG H T, LIN P. Comparison of water consumption of some afforestation species in Beijing area. Journal of Beijing Forestry University, 2003, 25(2):1-7. (in Chinese with English abstract)
[10] 王华田, 马履一, 孙鹏森.油松、侧柏深秋边材木质部液流变化规律的研究.林业科学, 2002, 38(5):31-37.
WANG H T, MA L Y, SUN P S. Sap flow fluctuations of Pinus tabulaeformis and Platycladus orientalis in late autumn. Scientia Silvae Sinicae, 2002, 38(5):31-37. (in Chinese with English abstract)
[11] 李吉跃, 周平, 招礼军.干旱胁迫对苗木蒸腾耗水的影响.生态学报, 2002, 22(9):1380-1386.
LI J Y, ZHOU P, ZHAO L J. Influence of drought stress on transpiring water-consumption of seedlings. Acta Ecologica Sinica, 2002, 22(9):1380-1386. (in Chinese with English abstract)
[12] 赵平, 饶兴权, 马玲, 等.基于树干液流测定值进行尺度扩展的马占相思林段蒸腾和冠层气孔导度.植物生态学报, 2006, 30(4):655-665.
ZHAO P, RAO X Q, MA L, et al. Sap flow-scaled stand transpiration and canopy stomatal conductance in an Acacia mangium forest. Journal of Plant Ecology, 2006, 30(4):655-665. (in Chinese with English abstract)
[13] ERMáK J, KUERA J, Nadezhdina N. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees, 2004, 18:529-546.
[14] GIORIO P, GIORIO G. Sap flow of several olive trees estimated with the heat pulse technique by continuous monitoring of a single gauge. Enviromental and Experimental Botany, 2003, 49:9-20.
[15] 中国科学院青藏高原综合科学考察队.西藏植被.北京:科学出版社, 1988:90-309.
Institute of Tibetan Plateau Comprehensive Scientific Expedition. Vegetation in Tibet. Beijing: Science Press, 1988:90-309. (in Chinese)
[16] 吴敏, 张文辉, 周建云, 等.干旱胁迫对栓皮栎幼苗细根的生长与生理生化指标的影响.生态学报, 2014, 34(15):4223-4233.
WU M, ZHANG W H, ZHOU J Y, et al. Effects of drought stress on growth, physiological and biochemical parameters in fine roots of Quercus variabilis Bl. seedlings. Acta Ecologica Sinica, 2014, 34(15):4223-4233. (in Chinese with English abstract)
[17] 罗桑卓玛, 辛福梅, 杨小林, 等.干旱胁迫对香柏幼苗生长和生理指标的影响.西北农林科技大学学报(自然科学版), 2014, 43(5):1-8.
Luosangzhuoma, XIN F M, YANG X L, et al. Effect of drought stress on growth and physiological indicators of Sabina pingii var. wilsonii seedlings. Journal of Northwest A & F University (Natural Science Edition), 2014, 43(5):1-8. (in Chinese with English abstract)
[18] 胡红玲, 张健, 万雪琴, 等.巨桉与5种木本植物幼树的耗水特性及水分利用效率的比较.生态学报, 2012, 32(12):3873-3882.
HU H L, ZHANG J, WAN X Q, et al. The water consumption and water use efficiency of the seedlings of Eucalyptus grandis and other five tree species in Sichuan Province. Acta Ecologica Sinica, 2012, 32(12):3873-3882. (in Chinese with English abstract)
[19] 段爱国, 张建国, 何彩云, 等.干旱胁迫下金沙江干热河谷主要造林树种盆植苗的蒸腾耗水特性.林业科学研究, 2008, 21(4):436-445.
DUAN A G, ZHANG J G, HE C Y, et al. Studies on transpiration of seedlings of the main tree species under the condition of drought stress in the dry-hot river valleys of the Jinsha River. Forest Research, 2008, 21(4):436-445. (in Chinese with English abstract)
[20] 朱妍, 李吉跃, 史剑波.北京6个绿化树种盆栽蒸腾耗水量的比较研究.北京林业大学学报, 2006, 28(1):65-70.
ZHU Y, LI J Y, SHI J B. Comparison of transpiration of six potted afforestation species in Beijing. Journal of Beijing Forestry University, 2006, 28(1):65-70. (in Chinese with English abstract)
[21] 邱权, 潘昕, 李吉跃, 等.速生树种尾巨桉和竹柳幼苗耗水特性和水分利用效率.生态学报, 2014, 34(6):1401-1410.
QIU Q, PAN X, LI J Y, et al. Water consumption characteristics and water use efficiency of Euclyptus urophylla×Eucalyptus grandis and bamboo-willow seedlings. Acta Ecologica Sinica, 2014, 34(6):1401-1410. (in Chinese with English abstract)
[22] 王瑞辉, 马履一.北京15种园林树木耗水性的比较研究.中南林业科技大学学报, 2009, 29(4):16-20.
WANG R H, MA L Y. Comparative research of water consumption from 15 garden tree species in Beijing. Journal of Central South University of Forestry & Technology, 2009, 29(4):16-20. (in Chinese with English abstract)
[23] 林雯, 何茜, 苏艳, 等.干旱胁迫对欧洲云杉水分生理特征的影响.西北农林科技大学学报(自然科学版), 2014, 42(6):69-77.
LIN W, HE Q, SU Y, et al. Effects of drought stress on water physiological characteristics of Picea abies. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(6):69-77. (in Chinese with English abstract)
[24] 单长卷, 郝文芳, 梁宗锁, 等.不同土壤干旱程度对刺槐幼苗水分生理和生长指标的影响.西北农业学报, 2005, 14(2):44-49.
SHAN C J, HAO W F, LIANG Z S, et al. Effect of different droughty soil on water physiology and growth index of locust seedling. Acta Agriculturae Boreali-Occidentalis Sinica, 2005, 14(2):44-49. (in Chinese with English abstract)
[25] 招礼军.我国北方主要造林树种耗水特性及抗旱造林技术研究.北京:北京林业大学, 2003:52-54.
ZHAO L J. Studies on water consumption characteristics of main plantation tree species and technology of drought resistance for afforestation in northern China. Beijing: Beijing Forestry University, 2003:52-54. (in Chinese with English abstract)
[26] 王强, 陈存根, 钱红格, 等.水分胁迫对6种苗木光合生理特性的影响.水土保持通报, 2009, 29(2):144-149.
WANG Q, CHEN C G, QIAN H G, et al. Effects of water stress on photosynthetic characteristics of six sorts of seedlings. Bulletin of Soil and Water Conservation, 2009, 29(2):144-149. (in Chinese with English abstract)
[27] 张劲松, 孟平, 尹昌君.杜仲蒸腾强度和气孔行为的初步研究.林业科学, 2002, 38(2):34-37.
ZHANG J S, MENG P, YIN C J. A preliminary study on leaf transpiration and stomatal conductance of Eucommia ulmoides. Scientia Silvae Sinicae, 2002, 38(2):34-37. (in Chinese with English abstract)
[28] 阮成江, 李代琼.黄土丘陵区沙棘林几个水分生理生态特征研究.林业科学研究, 2002, 15(1):47-53.
RUAN C J, LI D Q. Study on several hydrological and ecological characteristics of Hippophae rhamnoides in the loess hilly region. Forest Research, 2002, 15(1):47-53. (in Chinese with English abstract)
[29] 曹生奎, 冯起, 司建华, 等.植物叶片水分利用效率研究综述.生态学报, 2009, 29(7):3882-3892.
CAO S K, FENG Q, SI J H, et al. Summary on the plant water use efficiency at leaf level. Acta Ecologica Sinica, 2009, 29(7):3882-3892. (in Chinese with English abstract)
[30] SURABHI G K, REDDY K R, SINGH S K. Photosynthesis, fluorescence, shoot biomass and seed weight responses of three cowpea (Vigna unguiculata (L.) Walp.) cultivars with contrasting sensitivity to UV-B radiation. Environmental and Experimental Botany, 2009, 66(2):160-171.