浙江大学学报(农业与生命科学版)  2016, Vol. 42 Issue (1): 99-106
文章快速检索     高级检索
自动液液萃取分散固相萃取净化-气相色谱法测定水体中的多氯联苯[PDF全文]
胡红美, 郭远明 , 郝青, 孙秀梅, 金衍健, 钟志, 张小军    
浙江省海洋水产研究所/浙江省海洋渔业资源可持续利用技术研究重点实验室, 浙江 舟山 316021
摘要: 为快速、准确监测环境水体中多氯联苯(polychlorinated biphenyls,PCBs)的含量,建立了一种自动液液萃取、分散固相萃取净化、气相色谱电子捕获检测法同时测定水体中7种PCBs的方法。样品经正己烷液液萃取后,只需在萃取浓缩液中加入固相吸附剂除杂便可达到净化效果,并对分散固相萃取净化过程中吸附剂的种类和用量进行了优化。结果表明,7种PCBs在1.25~100 μg/L质量浓度范围内组分含量与峰面积呈线性相关,相关系数为0.999 0~0.999 8,检测限为0.000 2~0.000 3 μg/L。千岛湖水和岱衢洋海域海水中7种PCBs不同浓度加标水平回收率分别为74%~105%和71%~107%,相对标准偏差分别为3.1%~6.2%和3.5%~5.9%(n=5)。本方法简单快速,高效,基体干扰小,灵敏度、准确度、精密度均满足水体中PCBs的定量分析要求。
关键词: 自动液液萃取    分散固相萃取净化    气相色谱电子捕获检测法    多氯联苯    水体    
Determination of polychlorinated biphenyls in water by gas chromatography-electron capture detector combined with automated liquid-liquid extraction and dispersive solid phase extraction clean-up.
HU Hongmei, GUO Yuanming , HAO Qing, SUN Xiumei, JIN Yanjian, ZHONG Zhi, ZHANG Xiaojun    
Marine Fishery Institute of Zhejiang Province/Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, Zhejiang, China
Summary: Polychlorinated biphenyls (PCBs) are a group of synthetic organic compounds and comprise a family of 209 possible congeners. PCBs are hazardous due to their persistence, hydrophobic character and toxic properties. Although they have been banned on a global scale since 1972, PCBs are still routinely found throughout the world and cause many ecotoxicological problems. Therefore, it is necessary to continue developing analytical methods for the analysis of PCBs in environmental samples. Analysis of PCBs in water is usually performed by gas chromatography (GC) or gas chromatography-mass spectrometry (GC-MS) combined with liquid-liquid extraction (LLE), solid phase extraction (SPE), solid phase disk extraction (SPDE), solid phase microextraction (SPME), headspace SPME (HS SPME), (magnetic) dispersive solid phase extraction (DSPE), dispersive liquid-liquid microextraction (DLLME) and membrane-assisted solvent extraction (MASE). Among these sample preparation methods, SPE, SPDE, SPME, and HS SPME usually suffer from high cost, sample carry-over, and time-declining performance. DLLME is easy to over-extraction and some matrix could be easily condensed. LLE as a reliable and simple method is often used for water sample pretreatment in large volumes. But after LLE, the extracts are usually required for further clean-up using concentrated sulfuric acid or SPE. (Magnetic) DSPE is quick, easy, cheap, effective, rugged and safe, but it is also subject to adsorbent. Besides, the extraction process is tedious, including dispersed, isolate, transfer, elute and even further purification. Therefore, the objective of this study was to develop an improved DSPE clean-up method to replace concentrated sulfuric acid or SPE after LLE, which needs less time and operation steps.
Now, a simple, rapid, efficient, sensitive, and low matrix interference method for determination of seven PCBs (including PCB28, PCB52, PCB101, PCB118, PCB153, PCB138, PCB180) in water samples using gas chromatography-electron capture detector (GC-ECD) combined with automated LLE and DSPE has been described. In the designed experiment, water samples were firstly extracted with n-hexane, and then the extracts were directly purified by a suitable adsorbent. The kinds and amounts of adsorbent were optimized.
Primary secondary amine (PSA) sorbent was chosen for DSPE purification, which could eliminate interferences to PCB28 and PCB52. But there were still some impurities to PCB52 and PCB28 by DSPE purification with C18 as sorbent as well as concentrated sulfuric acid purification. It may be because PSA could effectively remove carbohydrates, fatty acids, organic acids, polyphenols, sugar and polar pigments on the objective compounds, while C18 was mostly used to remove some non-polar disruptors such as fat and esters. By increasing the amount of PSA sorbent from 0 to 100 mg, the purify efficiency values increased significantly, and the recoveries of seven PCBs were almost invariant when the amount of sorbent ranged from 100 to 200 mg. As PSA could also adsorb n-hexane, increasing amount of PSA would result in a decrease of supernatant after centrifugation. Hence, 100 mg PSA sorbent was used, at this point, good purify efficiency and satisfactory recoveries were both achieved. Furthermore, the present DSPE process only needed less than 5 min for dispersion and centrifugation.
The linearity of this method ranged from 1.25 μg/L to 100 μg/L, with correlation coefficients ranging between 0.999 0 and 0.999 8. The detection limits for seven PCBs were 0.000 2-0.000 3 μg/L. The recoveries of spiked PCBs at different concentration levels in water samples of Qiandao Lake and seawater samples of Daiquyang sea area were 74%-105%, and 71%-107%, respectively, with relative standard deviations (RSDs) of 3.1%-6.2%, and 3.5%-5.9% (n=5), respectively. It was concluded that this method could be successfully applied for the determination of PCBs in water samples with good accuracy and precision.
Key words: automated liquid-liquid extraction    dispersive solid phase extraction    gas chromatography-electron capture detector    polychlorinated biphenyls    water    

多氯联苯(polychlorinated biphenyls,PCBs)作为一类人工合成的氯代持久性有机污染物,迄今发现有209种异构体,具有高毒性、长距离迁移性、环境持久性和生物蓄积性等特点[1, 2, 3],极易在水、大气、土壤等环境介质中残留,并通过食物链蓄积于人和动物体中,对人类健康带来巨大威胁,是2001年5月《斯德哥尔摩公约》12种优先控制污染物之一[4, 5]。尽管从1972年开始,全球范围内要求逐渐停止使用和生产PCBs,但由于其持久性和疏水性等特性导致其在环境中残留并积累。PCBs难溶于水,水中痕量PCBs污染经常被人忽略,《地表水环境质量标准》(GB 3838—2002)规定集中式生活饮用水地表水源地水中PCBs的含量不能超过2×10-5 mg/L,因此亟须寻找一种简单、快速而又准确的方法来定量分析水体中PCBs残留。

目前,国内外测定水体中多氯联苯的分析方法有气相色谱法、气相色谱-质谱法、高效液相色谱法、磁共振法、红外光谱法、生物或化学传感器法、酶联免疫检测法等,其中最常用的仍为气相色谱法和气相色谱-质谱法。常用的前处理技术主要有液液萃取(liquid-liquid extraction,LLE)[6, 7, 8, 9]、固相萃取(solid phase extraction,SPE)[10, 11, 12, 13]、固相膜萃取(solid phase disk extraction,SPDE)[14]、固相微萃取(solid phase microextraction,SPME)[15, 16]、顶空固相微萃取(headspace SPME,HS SPME)[17, 18]、(磁性)分散固相萃取(dispersive solid phase extraction,DSPE)[19, 20, 21, 22, 23, 24]、分散液液微萃取(dispersive liquid-liquid microextraction,DLLME)[25]、膜辅助溶剂萃取(membrane-assisted solvent extraction,MASE)[26]等。当使用LLE时,由于水体中存在一些杂质,常需结合浓硫酸磺化净化[8, 9]或SPE净化[7, 8]的1种或2种。当水样直接采取SPE时,水样流经萃取柱时间较长,通常需要100 min,使用固相膜萃取虽显著增加水样流速,但萃取过程仍需萃取膜活化、上样、淋洗、洗脱等过程,操作比较烦琐。水样直接采用SPME或HS SPME时,萃取头成本较高,萃取涂层易磨损,萃取后样品需要解析,使用寿命较短,多次使用还存在交叉污染问题。DSPE具有快速、简单、便宜、有效、可靠和安全的特点,已逐步应用到水体中各种有机污染物的检测。目前,虽有文献采用磁性纳米材料或自制吸附剂直接分散固相萃取水体中多氯联苯,但萃取过程需分散—吸附—分离—转移—洗脱等步骤,操作较复杂,且有时萃取后还需结合浓硫酸磺化净化。因此,寻找一种合适的固相吸附剂直接吸附杂质,且目标化合物仍然遗留在浓缩液中,离心分离后萃取浓缩液可以直接上机测试的分散固相萃取方法,将为水体中多氯联苯前处理净化技术提供新思路。

不同水体基体差别较大,前处理成为水样中PCBs残留分析的关键。本研究为缩短前处理时间,建立自动液液萃取、快速分散固相萃取净化、气相色谱电子捕获检测法(gas chromatography-electron capture detector,GC-ECD)测定不同基质水体中7种“指示性PCB”单体(PCB28、PCB52、PCB101、PCB118、PCB153、PCB138、PCB180)含量,取得了比较满意的效果,可作为进一步研究多氯联苯的暴露水平和环境行为之参考。

1 材料与方法 1.1 主要仪器和试剂

GC-450气相色谱仪,购自美国Varian公司;配置电子捕获检测器(electron capture detector,ECD);Varian Star50C 色谱工作站;Jipad-6XB垂直振荡器,购自上海旌派仪器有限公司;MS2涡旋混合器,购自德国IKA公司;Centrifuge 5810高速离心机,购自德国Eppendorf公司;R-215旋转真空蒸发仪,购自瑞士Büchi公司;N-丙基乙二胺吸附剂(primary secondary amine,PSA),粒径50 μm,购自上海安谱科学仪器有限公司;C18吸附剂,粒径50 μm,购自上海安谱科学仪器有限公司。

7种多氯联苯混合标准溶液,2.0 mg/L,SB 05-174—2008,购自农业部环境保护科研监测所;丙酮、正己烷(色谱纯),购自国药集团化学试剂有限公司;无水硫酸钠(优级纯),购自国药集团化学试剂有限公司,使用前550 ℃烘烤2 h。

7种多氯联苯混合标准使用液(100 μg/L):取0.5 mL的7种多氯联苯混合标准溶液,用正己烷定容至10 mL,配制成100 μg/L的混合标准使用液,于4 ℃储存。

1.2 色谱条件

CD-5MS毛细管气相色谱柱(30 m×0.25 mm,0.25 μm);进样方式开始不分流进样,0.75 min后分流比为50∶1;载气为高纯氮气(99.999%);流速为2.0 mL/min;进样口温度为260 ℃;ECD检测器温度为300 ℃;程序升温条件为柱初始温度120 ℃,保持1.0 min,以10 ℃/min升至200 ℃,再以2 ℃/min升温至240 ℃,最后以15 ℃/min升温至270 ℃,保持1.0 min;总运行时间32 min,进样体积为1 μL。

1.3 实验方法 1.3.1 水样采集

分别采集杭州千岛湖的湖水和岱衢洋海域的海水水样,装于4-L带硅胶密封垫的棕色细口玻璃瓶中,然后用便携式冷藏箱运回实验室。

1.3.2 样品前处理

准确量取1 L待测水样,置于2-L分液漏斗中,加入30 g氯化钠 (海水样品不用加),分别用40 mL正己烷采用垂直振荡器自动振荡萃取2次,每次振荡5 min,静置分层, 弃去水相,有机相经无水硫酸钠脱水,35 ℃旋转蒸发至干,加入1 mL正己烷溶解,转移至含100 mg PSA的具塞离心管中,涡旋30 s,6 000 r/min高速离心2 min,取1 μL上清液进行上机测试。

2 结果与讨论 2.1 萃取方式的选择

水样直接固相萃取或固相膜萃取虽然可以富集大体积水样,但固相萃取柱/膜的活化、吸附、解吸过程耗时较长,当水样含较多悬浮物时容易堵塞萃取装置,萃取前需过滤水样,增加前处理时间,容易造成损失,且商品化萃取柱填充材料以及膜介质材料中的干扰物质可能会随洗脱剂洗脱下来影响测定。固相微萃取头成本较高,萃取涂层易磨损,萃取后样品需要解析,使用寿命较短,多次使用还存在交叉污染问题,重现性也较差。水样直接分散固相萃取也需分散、吸附、分离、解吸等操作,且找到一种合适的吸附材料是萃取效率的关键。目前报道较多的是使用磁性纳米材料作为吸附剂,以便于磁性分离。ZENG等[20, 21]设计了一种基于磁性纳米管材料的分散固相萃取方法,萃取后还需浓硫酸净化,且磁性纳米管材料需实验室自制备。液液萃取法则具有操作简单,成本低,回收率高等优点,尤其在批量化水样前处理时,仍是目前实验室分析的首选[27]。经过综合考虑,决定选择垂直振荡器实现自动液液萃取水体中的多氯联苯。

2.2 净化方式的选择

由于本实验选择自动液液萃取法萃取水体中多氯联苯,萃取液通常需要净化。文献报道最多的是浓硫酸净化或固相萃取净化。浓硫酸可破坏活性强、稳定性差的有机化合物,经研究表明浓硫酸净化法可以除去大多数的干扰杂质,但始终有杂质对PCB52产生干扰,且有时对PCB28也产生干扰。虽然固相萃取法净化效果也较好,但操作复杂,需要进行萃取柱活化—上样—淋洗—洗脱等过程,耗时较长,不适合批量化样品处理。本研究采用分散固相萃取净化法,只需在萃取浓缩液中加入适量合适吸附剂吸附杂质,便可达到净化目的。整个分散固相萃取净化过程最多只需要5 min,而常规固相萃取通常需要50 min,大大缩短前处理时间。

2.3 固相吸附剂种类和用量的选择

比较了100 mg PSA吸附剂和100 mg C18吸附剂的净化效果(图1)。结果表明,C18吸附剂对PCB28、PCB52附近杂质净化基本没效果,PSA吸附剂能有效消除杂质对PCB28、PCB52检测的干扰。这可能是因为PSA吸附剂能有效除去影响目标物检测的碳水化合物、脂肪酸、有机酸、酚类、糖类以及一些极性色素的干扰,C18吸附剂主要用于去除脂肪和酯类等非极性干扰物,而对于水体中多氯联苯检测,杂质主要干扰PCB28、PCB52。接着,考察PSA吸附剂含量(0~200 mg)对净化效果的影响。结果(图2)表明,随着PSA吸附剂用量的增加,净化效果有所增加,当达到一定量后,即使吸附剂增加,但回收率变化不大。由于PSA吸附剂会吸附一定的正己烷,PSA剂量增加,离心分离后,上清液减少,最终选择100 mg,此时既能达到较好的净化效果,又能保证较满意的回收率。另外,多次收集废弃PSA吸附剂,使用合适的有机溶剂可以解析被PSA吸附的杂质,从而实现PSA的集中回收利用,这不仅降低了实验成本,也减少了废弃固相吸附剂带来的环境问题。这方面的研究将在今后工作中开展。

图1 C18、PSA吸附剂对7种多氯联苯的净化回收率影响 Fig. 1 Recoveries of seven PCBs purified with C18 and PSA

图2 不同剂量PSA吸附剂对7种多氯联苯的净化回收率影响 Fig. 2 Recoveries of seven PCBs purified with different amounts of PSA
2.4 方法评价 2.4.1 方法的线性范围及检出限

将已配制的1.25、2.5、5、10、50、100 μg/L 6个质量浓度梯度的标准系列,按样品分析相同的色谱条件进行GC-ECD分析。用外标法绘制出浓度-峰面积标准曲线。7种多氯联苯在1.25~100 μg/L范围内呈良好线性关系,相关系数为0.999 0~0.999 8。各组分的线性回归方程、线性范围和相关系数见表1,根据3倍信噪比测得7种多氯联苯的检出限为0.000 2~0.000 3 μg/L。7种多氯联苯的标准气相色谱谱图见图3

表1 7种多氯联苯回归方程,线性范围,相关系数和检出限Table 1 Regression equations,linear ranges,correlation coefficients and detection limits of seven PCBs
点击放大

1: PCB28; 2: PCB52; 3: PCB101; 4: PCB118; 5: PCB153; 6: PCB138; 7: PCB180。 图3 7种多氯联苯(10 μg/L)的标准色谱图 Fig. 3 Standard chromatogram with 10 μg/L of seven PCBs
2.4.2 实际样品分析、方法的精密度和回收率

分别准确量取千岛湖采集的6个湖水样品(样品1至样品6)和岱衢洋海域12个采样点采集的海水样品(样品7至样品18) 1 L,进行3次平行测定,结果均未检出7种多氯联苯。在其中2个样品(样品1和样品7)中分别加入12.5 μg/L、100 μg/L和1 000 μL的100 μg/L多氯联苯混合标准使用液,配制成低(0.001 25 μg/L),中(0.01 μg/L)和高(0.1 μg/L)3种质量浓度的标样,分别进行5次重复测定。结果(表23)表明,样品1和样品7中7种PCBs回收率范围分别为74%~105%和71%~107%,RSDs范围分别为3.1%~6.2%和3.5%~5.9%,准确度和精密度均满足分析方法要求。2种不同基质样品回收率差别不大,图4为样品7和加标样品7的气相色谱图。结果表明,经过PSA吸附剂快速分散固相萃取后,杂质对目标化合物基本无干扰峰。

表2 样品1中7种多氯联苯的加标回收率和方法的精密度Table 2 Recoveries and RSDs of seven PCBs in sample 1 by the proposed method of seven PCBs
点击放大

表3 样品7中7种多氯联苯的加标回收率和方法的精密度Table 3 Recoveries and RSDs of seven PCBs in sample 7 by the proposed method of seven PCBs
点击放大

1: PCB28; 2: PCB52; 3: PCB101; 4: PCB118; 5: PCB153; 6: PCB138; 7: PCB180. 图4 样品7(A)和加标样品7(0.01 μg/L)(B)的标准色谱图 Fig. 4 Chromatogram of sample 7 (A) and spiked sample 7 with 0.01 μg/L (B) of seven PCBs
3 结论

采用正己烷自动液液萃取提取水体中的多氯联苯,再采用分散固相萃取快速净化后,进行GC-ECD分析。实验结果表明,将萃取浓缩液直接用固相吸附剂吸附杂质实现分散固相萃取净化,与水样直接分散萃取或固相萃取相比,只需分散、吸附,无需富集、洗脱步骤。该方法简单、快速、灵敏度高、重现性好,回收率令人满意,可以实现批量化处理样品,值得大力推广,对水质环境中多氯联苯的检测具有重要的指导意义。

参考文献
[1] 杨国兴.多氯联苯类(PCBs)及被其污染物质的安全处置.环境保护科学,1993,19(3):65-67.
[2] 金军,张岱辉,蒋可.多氯联苯毒性、分析方法和治理技术新进展.上海环境科学,1996,15(7):20-26.
[3] 蒋可.环境中多氯联苯及其代谢物的测定.环境科学丛刊,1983,4(4):30-37.
[4] PENTTI N, HELI L, ANTTI H, et al. Polychlorinated biphenyls (PCBs) in relation to secondary sex ratio: a systematic review of published studies.Chemosphere, 2013,91(2):131-138.
[5] 刘贝贝,陈剑峰,张勇.多氯联苯的肝毒性研究进展.环境与健康杂志,2009,26(1):90-92.
[6] ZAATER M, TAHBOUB Y, QASRAWY S. Monitoring of polychlorinated biphenyls in surface water using liquid extraction, GC/MS and GC/ECD.Analytical Letters, 2005,38(13):2231-2245.
[7] HELLAR-KIHAMPA H, WAEL K D, LUGWISHA E, et al. Spatial monitoring of organohalogen compounds in surface water and sediments of a rural-urban river basin in Tanzania.Science of the Total Environment, 2013,447:186-197.
[8] 沈斐,李睿,苏晓燕,等.双柱双检测器气相色谱法测定水样中多氯联苯Aroclor系列.分析科学学报,2013,29(4):556-560.
[9] 范磊,黄素华,田霆,等.气相色谱-串联质谱法测定水中多氯联苯.理化检验:化学分册,2013,49(12):1479-1482.
[10] WESTBOM R, THRNEBY L, ZORITA S, et al. Development of a solid-phase extraction method for the determination of polychlorinated biphenyls in water.Journal of Chromatography A, 2004,1033(1):1-8.
[11] BIZKARGUENAGA E, ROS O, IPARRAGUIRRE A, et al. Solid-phase extraction combined with large volume injection-programmable temperature vaporization-gas chromatography-mass spectrometry for the multiresidue determination of priority and emerging organic pollutants in wastewater.Journal of Chromatography A, 2012,1247:104-117.
[12] 刘静,王丽,曾兴宇,等.固相萃取-气相色谱法测定海水中狄氏剂和多氯联苯.岩矿测试,2014,33(2):282-286.
[13] BARCO-BONILLA N, NIETO-GARCA A J, ROMERO-GONZLEZ R, et al. Simultaneous and highly sensitive determination of PCBs and PBDEs in environmental water and sediments by gas chromatography coupled to high resolution magnetic sector mass spectrometry.Analytical Methods, 2015,7(7):3036-3047.
[14] 秦明友,张新申,康莉,等.全自动固相萃取分子筛脱水气质联用法测定水中多氯联苯.分析化学,2013,41(1):76-82.
[15] LI Q L, WANG X, LIU Y L, et al. Feasibility of metal-organic nanotubes [Cu33-O)(μ-OH)(triazolate)2]+-coated fibers for solid-phase microextraction of polychlorinated biphenyls in water samples.Journal of Chromatography A, 2014,1374:58-65.
[16] OSHI M D, HO T D, COLE W T S, et al. Determination of polychlorinated biphenyls in ocean water and bovine milk using crosslinked polymeric ionic liquid sorbent coatings by solid-phase microextraction.Talanta, 2014,118:172-179.
[17] DEROUICHE A, DRISS M R, MORIZUR J P, et al. Simultaneous analysis of polychlorinated biphenyls and organochlorine pesticides in water by headspace solid-phase microextraction with gas chromatography-tandem mass spectrometry.Journal of Chromatography A, 2007,1138(1/2):231-243.
[18] LIU Y L, CHEN X F, WANG X, et al. Sensitive determination of polychlorinated biphenyls in environmental water samples by headspace solid-phase microextraction with bamboo charcoal iron oxide black fibers prior to gas chromatography with tandem mass spectrometry.Journal of Separation Science, 2014,37(12):1496-1502.
[19] FU M Z, XING H Z, CHEN X F, et al. Ultrathin-shell boron nitride hollow spheres as sorbent for dispersive solid-phase extraction of polychlorinated biphenyls from environmental water samples.Journal of Chromatography A, 2014,1369:181-185.
[20] ZENG S L, CAO Y T, SANG W G, et al. Enrichment of polychlorinated biphenyls from aqueous solutions using Fe3O4 grafted multiwalled carbon nanotubes with poly dimethyl diallyl ammonium chloride.International Journal of Molecular Science, 2012,13(5):6382-6389.
[21] ZENG S L, GAN N, WEIDEMAN-MERA R, et al. Enrichment of polychlorinated biphenyl 28 from aqueous solutions using Fe3O4 grafted graphene oxide.Chemical Engineering Journal, 2013,218:108-115.
[22] CAO X J, CHEN J Y, YE X M, et al. Ultrasound-assisted magnetic SPE based on Fe3O4-grafted graphene for the determination of polychlorinated biphenyls in water samples.Journal of Separation Science, 2013,36(21/22):3579-3585.
[23] PREZ R A, ALBERO B, TADEO J L, et al. Application of magnetic iron oxide nanoparticles for the analysis of PCBs in water and soil leachates by gas chromatography-tandem mass spectrometry.Analytical and Bioanalytical Chemistry, 2015,407(7):1913-1924.
[24] ZHANG J B, GAN N, PAN M Y, et al. Separation and enrichment of six indicator polychlorinated biphenyls from real waters using a novel magnetic multiwalled carbon nanotube composite absorbent.Journal of Separation Science, 2015,38(5):871-882.
[25] REZAEI F, BIDARI A, BIRJANDI A P, et al. Development of a dispersive liquid-liquid microextraction method for the determination of polychlorinated biphenyls in water.Journal of Hazardous Materials, 2008,158(2/3):621-627.
[26] SHI X Z, TANG Z G, SUN A L, et al. Simultaneous analysis of polychlorinated biphenyls and organochlorine pesticides in seawater samples by membrane-assisted solvent extraction combined with gas chromatography-electroncapture detector and gas chromatography-tandem mass spectrometry.Journal of Chromatography B, 2014,972:58-64.
[27] WANG Y W, LI X M, LI A, et al. Effect of municipal sewage treatment plant effluent on bioaccumulation of polychlorinated biphenyls and polybrominated diphenyl ethers in the recipient water. Environmental Science and Technology, 2007,41(17):6026-6032.
[28] YANG G X. The safe disposal of polychlorinated biphenyls and its contamination.Environmental Protection Science, 1993,19(3):65-67. (in Chinese with English abstract)
[29] JIN J, Zhang D H, Jiang K. Progress on toxicity, analytical methods and treatment technology of polychlorinated biphenyl. Shanghai Environmental Science, 1996,15(7):20-26. (in Chinese with English abstract)
[30] JIANG K. Determination of polychlorinated biphenyls (PCBS) and its metabolites in the environment. Comments on Environmental Studies in China, 1983,4(4):30-37. (in Chinese)
[31] LIU B B, CHEN J F, ZHANG Y. Advances in toxicity of polychlorinated biphenyls oil animals and human livers. Journal of Environment and Health, 2009,26(1):90-92. (in Chinese with English abstract)
[32] SHEN F, LI R, SU X Y, et al. Determination of polychlorinated biphenyls (aroclors) in water samples by dual-column GC/dual-ECD.Chinese Journal of Analytical Science, 2013,29(4):556-560. (in Chinese with English abstract)
[33] FAN L, HUANG S H, TIAN T, et al. GC-MS/MS determination of polychlorinated biphenyls in water.Physical Testing and Chemical Analysis Part B: Chemical Analgsis, 2013,49(12):1479-1482. (in Chinese with English abstract)
[34] LIU J, WANG L, ZENG X Y, et al. Determination of dieldrin and polychlorinated biphenyls in seawater by solid phase extraction and capillary gas chromatography.Rock and Mineral Abalysis, 2014,33(2):282-286. (in Chinese with English abstract)
[35] QIN M Y, ZHANG X S, KANG L, et al. Determination of polychlorinated biphenyls in water samples using automated solid phase extraction and molecular sieve dehydration coupled with gas chromatography-mass spectrometry.Chinese Journal of Analytical Chemistry, 2013,41(1):76-82. (in Chinese with English abstract)