浙江大学学报(农业与生命科学版)  2016, Vol. 42 Issue (1): 81-88
文章快速检索     高级检索
生长调节剂对马铃薯贮藏期出芽及主要碳氮代谢物质含量的影响[PDF全文]
钟蕾1, 邓俊才1, 王良俊2, 袁继超1, 郑顺林1     
1.四川农业大学农学院/农业部西南作物生理生态与耕作重点实验室,成都 611130;
2.四川省眉山市东坡区农业技术推广站,四川 眉山 620000
摘要: 为深入了解在不同生长调节剂处理下马铃薯的休眠生理变化,本研究以西南主栽马铃薯品种“川芋117”为供试材料,分别用抑芽剂氯苯胺灵(chlorpropham,CIPC)、脱落酸(abscisic acid,ABA)和促芽剂赤霉素(gibberellin A3,GA3)浸泡处理其块茎,研究生长调节剂处理下马铃薯贮藏过程中芽生长情况及块茎主要碳氮代谢物质含量变化。结果表明:GA3处理可使马铃薯提前完成休眠,休眠强度与休眠幅度的时间分别较对照(CK)缩短17 d和11 d,发芽后芽较纤弱但生长较快;ABA处理延长了块茎的休眠,休眠强度较CK增加6 d,而休眠幅度较CK缩短11 d,解除休眠后芽较粗壮,生长快且整齐;而CIPC延长休眠的效果更显著,处理70 d后块茎才开始发芽,萌发期较对照至少延长40 d以上。不同生长调节剂处理的块茎在贮藏期碳氮代谢规律相同,但变化幅度不同。处理12周后,GA3、ABA和CIPC处理块茎淀粉含量较刚处理时分别降低13.36%、11.30%和5.93%,可溶性糖含量分别降低48.3%、58.9%和56.1%。各处理块茎在贮藏期可溶性蛋白质和粗蛋白质含量均呈现先升高后降低的变化趋势,在贮藏前期,GA3、ABA和CIPC处理可溶性蛋白质含量,较刚处理时分别上升25.73%、39.68%和31.32%,后期分别降低19.17%、33.22%和17.74%;前期粗蛋白质含量较刚处理时分别上升4.77%、12.5%和12.8%,后期分别降低11.37%、18.02%和8.71%。贮藏期各处理块茎碳氮比变化不尽相同,促芽剂处理的块茎碳氮比大,而抑芽剂处理的块茎碳氮比小,且呈逐渐减小的趋势。由本研究可知:GA3可使马铃薯提前完成休眠,休眠解除后块茎发芽迅速,且营养物质消耗较快;ABA可延长马铃薯的休眠,块茎出芽整齐,后期营养物质消耗多;CIPC的抑芽效果最强,可有效抑制马铃薯芽的萌发及生长,营养物质消耗少。
关键词: 抑芽剂    促芽剂    马铃薯    出芽    碳氮代谢    
Effects of different growth regulators on germination and main carbon-nitrogen metabolites contents during the storage period of potato tuber.
ZHONG Lei1, DENG Juncai1, WANG Liangjun2, YUAN Jichao1, ZHENG Shunlin1     
1. College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Physiology, Ecology and Cultivation in Southwest, Ministry of Agriculture, Chengdu 611130, China;
2. Agricultural Extension Station of Dongpo District of Meishan City in Sichuan, Meishan 620000, Sichuan, China
Summary: The regulation of dormancy is very essential in the production of potato. To satisfy the demand of different sowing dates and to keep high rate of emergence and growth potential in seed potato, it always requires prolonging or shortening the dormancy stage to guarantee the field emergence. Meanwhile, when potatoes are treated as food, the dormancy period should be prolonged as long as possible to keep the potatoes fresh. Physical and plant growth regulator treatments are two main methods that regulate the dormancy in potato. The physical treatment requires high cost of labor and material resources, while the plant growth regulator treatment has advantages of convenience and cost saving over the physical treatment. The conventional plant growth regulators were used to adjust the plant dormancy including sprouting inhibitors chlorpropham (CIPC), abscisic acid (ABA), and sprouting promoter gibberellin A3 (GA3). There were numerous reports about the regulating effects of these regulators, but only a few investigations have been done to compare the regulating effects of these regulators on potato.
To comprehensively study the effects of different growth regulators on the germination and main carbon-nitrogen metabolites contents of potato during storage, a laboratory experiment was conducted from May to August in 2014. The potato cultivar “Chuanyu-117” was used in this research. Potato tubers were dipped in aqueous solutions of CIPC, ABA and GA3 with efficacious concentrations for 30 minutes, respectively. The results indicated that GA3 could release potato dormancy in advance, and the intensity and amplitude of tubers dormancy, when treated with GA3, reduced by 17 days and 11 days, respectively, the length/diameter ratio of bud was much higher than that of control (CK), showing that GA3 could accelerate potato tubers germination and bud growth. Whereas, ABA significantly prolonged the dormancy, the dormancy amplitude reduced by 11 days but the dormancy intensity increased by 6 days, and the length/diameter ratio of bud was lower than that of CK, which showed that ABA could accelerate the speed, vigor and uniformity of bud growth after germination. The CIPC had a more obviously suppressive effect with a 70-day interval between the beginning of treatment and germination, and the germination period was also expanded to at least 40 days in contrast with CK. The change regulations of carbon-nitrogen metabolites contents in different treatments were the same, but the degrees of changes were quite different. The starch contents of potatoes treated with GA3, ABA and CIPC for 12 weeks reduced by 13.36%, 11.30% and 5.93%, respectively; while the soluble sugar contents reduced by 48.3%, 58.9% and 56.1%, respectively, when compared with those of the beginning of treatments. Both of the soluble protein content and the crude protein content showed a high-low trend line. The soluble protein content of GA3, ABA and CIPC treatment at the previous time of storage increased by 25.73%, 39.68% and 31.32%, respectively, and then reduced by 19.17%, 33.22% and 17.74% at later storage period, respectively. The crude protein content of GA3, ABA, and CIPC treatments increased by 4.77%, 12.67% and 12.65% at the previous time of storage, respectively, and then reduced by 11.37%, 18.02% and 8.71% at later storage period, respectively. The C/N ratio of the sprouting promoter treatment was higher than those of the sprouting inhibitor treatments, and all of them showed a downward tendency.
In conclusion, GA3 could release the dormancy of potato in advance, the bud grew faster and the carbon-nitrogen metabolism activity was strong. Whereas, CIPC could prolong the dormancy period and inhibit the bud growth, the carbon-nitrogen metabolism activity of potato tuber was weak and the nutrient consumption was also less. ABA also prolonged the dormancy period but enhanced the germination uniformity and bud growth and the carbon-nitrogen metabolism activity after germination was strong.
Key words: sprouting inhibitors    sprouting promoter    potato tuber    germination    carbon-nitrogen metabolism    

马铃薯作为世界第四大粮食作物,具有良好的营养价值和经济价值,广泛应用于食品工业、淀粉工业、饲料工业和医药工业[1]。马铃薯块茎作为繁殖器官和营养器官,其贮藏是马铃薯产业链中最重要的环节之一,种薯的质量影响着马铃薯播种后的生长状况及产量的形成,而商品薯的质量则直接关乎经济效益[2, 3]。收获后的马铃薯在贮藏过程中由于休眠程度不一,会出现块茎发芽不规律、缩水等现象,造成块茎营养成分流失,营养品质、加工品质及栽培品质下降[4]。在实际生产中,为满足不同播期的需要及保证种薯播种后的出苗率、出苗整齐度和生长势,需要适时适度打破或延长种薯的休眠,以调整种薯的休眠期及出芽的整齐度[5],而当马铃薯作为加工和粮饲用材料时,为了延长块茎的保鲜时间,又需要延长其休眠期。因此,马铃薯块茎休眠调控技术对实际生产具有重要意义。目前,关于马铃薯休眠调控的研究主要包括物理措施和植物生长调节剂处理2方面,前者要求高成本的人力和物力,且所耗时间长;后者则有方便、直接、节约成本等特点[6]。赤霉素(gibberellin A3,GA3)被认为是打破马铃薯块茎休眠最有效的生长调节剂,但对种类、级别、大小等不同的马铃薯块茎其适宜的使用剂量和处理方法与前人的研究结果不尽一致[7, 8]。氯苯胺灵(chlorpropham,CIPC)是一种应用广泛的高效马铃薯抑芽剂,关于其抑芽效果有广泛的报道[9, 10]。脱落酸(abscisic acid,ABA)被认为是诱导休眠的正调节因子,可能参与休眠的保持[11],目前在洋葱等作物上已有过其延长休眠的研究[12],但将其作为马铃薯抑芽剂的研究报道甚少,同时亦鲜见ABA、GA3和CIPC对马铃薯块茎休眠影响效应的对比研究。本试验以西南地区主栽马铃薯品种“川芋117”为试验材料,深入比较抑芽剂CIPC和ABA与促芽剂GA3对马铃薯贮藏期间芽的萌发生长动态和块茎碳氮代谢的影响,探寻其休眠的调控技术及其物质基础,以期为马铃薯块茎的科学贮藏与处理提供理论依据。

1 材料与方法 1.1 供试材料

供试马铃薯品种为西南地区主推品种“川芋117”;供试试剂GA3、ABA购自成都市科龙化工试剂厂,氯苯胺灵乳油(CIPC含量为30%)为甘肃省农业科学院农产品贮藏加工研究所研制。

1.2 试验方法

马铃薯于2014年4月底收获后,挑选出外观完好、无机械损伤、无病害、质量为50 g左右的块茎,将挑选出的马铃薯块茎洗净平铺置于通风避光处晾干后平均分成4份,放置15 d后分别用质量浓度15 mg/L的GA3、稀释200倍的CIPC乳油(CIPC质量浓度为1.5 g/L)、质量浓度4 mg/L的ABA浸泡30 min后取出避光晾干、贮藏,以清水浸泡为对照。每处理6个重复,每重复60个薯块,将处理好的薯块装盒放在阴凉通风处(贮藏温度为18~24 ℃,相对湿度为85%~98%)。固定3个重复在处理后每天观察出芽并记录,另外,3个重复在处理后0、14、28、42、56、70和84 d进行取样测定碳氮代谢动态变化,105 ℃杀青整薯30 min,80 ℃烘干至恒 量后粉碎过100目筛后备用于碳氮代谢物质含量的测定。

1.3 测定项目与方法 1.3.1 各处理出芽动态相关指标的定义及计算方法

参考蒲建刚等[13, 14]的方法,测定各处理马铃薯块茎的出芽动态,计算相关指标。

发芽率:以块茎第一个芽长达2 mm为发芽标准,用游标卡尺测量芽长及芽粗,发芽率/%=$\frac{发芽块茎数}{块茎总数}$×100;

萌发期:块茎从收获到发芽率为10%的时间,d;

休眠期:将50%马铃薯发芽的日期定为该处理的发芽期,休眠期为从收获到发芽期的时间,d;

休眠强度:块茎从收获到发芽率为90%的时间,d;

休眠幅度:发芽率从10%~90%所需的时间,d.

1.3.2 块茎主要碳氮代谢物质含量的测定方法

可溶性糖和淀粉含量采用硫酸-蒽酮法[15]测定,粗蛋白质含量采用凯氏定氮法测定,可溶性蛋白质含量采用考马斯亮蓝G-250法测定,块茎碳氮比(C/N)=可溶性糖含量/可溶性蛋白质含量[16]

1.4 数据处理

试验数据用Excel 2007、SPSS 20和Sigma Plot 10.0进行作图和分析。

2 结果与分析 2.1 不同生长调节剂处理对马铃薯贮藏期出芽率的影响

不同生长调节剂处理对马铃薯贮藏过程中出芽动态的影响列于表1,从表中可以看出,GA3有明显的打破休眠的作用,处理后的块茎萌发期较对照提前13 d,休眠期提前20 d,而休眠强度缩短20 d,休眠幅度缩短11 d。表明GA3可以打破休眠,缩短休眠期,并在一定程度上提高发芽的集中度和整齐度。与GA3相反,ABA有一定延长休眠的作用,萌发期和休眠期分别较对照推迟约15 d和4 d,休眠强度延长6 d,但休眠幅度较对照则缩短11 d,表明ABA具有显著的抑芽效果,可适当地延长马铃薯的休眠,且可较大幅度提高发芽的整齐度。而CIPC的抑芽效果更显著,处理后的块茎70 d才开始发芽,处理84 d发芽率仍不足5%,萌发期较对照至少延迟40 d以上。

表1 不同生长调节剂对“川芋117”出芽动态的影响Table 1 Effects of different growth regulators on germination dynamics of “Chuanyu-117”
点击放大

3种生长调节剂处理对马铃薯块茎的萌发过程亦有显著影响,从图1可以看出,GA3和CK处理的马铃薯块茎萌芽进程为慢—快—慢,符合逻辑斯蒂函数,发芽率(y)与处理后时间(x,以观察到开始发芽的前1次观察时间为起点)的回归方程分别为yGA3=97.67/(1+e-0.199 3x+8.520)(R2=0.995 8**)和yCK=118.22/(1+e-0.092 9x+6.048)(R2=0.979 1**),而ABA处理芽的萌发进程则更符合线性关系,回归方程为yABA=3.547 6x-193.66(R2=0.979 4**)。

图1 生长调节剂处理后马铃薯发芽率动态变化 Fig.1 Germination percentage of potato after treated with different growth regulators
2.2 不同生长调节剂处理对马铃薯贮藏期芽长和芽粗动态变化的影响

图2可看出马铃薯萌芽即开始迅速生长,萌芽块茎的平均芽长(y)与处理后时间(x,以观察到开始发芽的前1次观察时间为起点)之间呈二次函数关系,GA3、CK和ABA处理的回归方程分别为yGA3=0.002 8x2-0.091x+0.51(R2=0.996 3**)、yCK=0.002 8x2-0.210x+3.83(R2=0.989 1**) 和yABA=0.004 3x2-0.440x+11.14(R2=0.986 8*)。GA3、CIPC和ABA不仅影响块茎的萌芽动态,还显著影响芽的生长。 GA3和ABA处理各发芽阶段芽长的平均增长率均高于对照,发芽率从10%~50%、50%~90%和90%~100%的3个阶段芽长平均增长率,GA3处理分别为0.122 mm/d、0.188 mm/d和0.288 mm/d,CK分别为0.089 mm/d、0.183 mm/d和0.255 mm/d,ABA分别为0.120 mm/d、0.207 mm/d和0.272 mm/d。虽然GA3和ABA处理的芽长平均增长率均高于CK,但由于GA3处理发芽率从10%~90%和ABA处理发芽率从10%~100%阶段的发芽时间较对照短,因此这2个处理该期间的平均芽长约低于对照,而GA3处理发芽率从90%~100%阶段的发芽时间较对照长,因此至100%发芽时其芽长比对照长3 mm左右。

图2 生长调节剂处理后马铃薯芽长动态变化 Fig.2 Shoot length of potato after treated with different growth regulators

芽粗生长与芽长的生长不同(图3),块茎发芽后芽粗呈直线生长,GA3、CK和ABA处理块茎的平均芽粗(y)与处理后时间(x,以观察到开始发芽的前1次观察时间为起点)之间的回归方程分别为yGA3=0.057 4x-1.63(R2=0.988 5**)、yCK=0.050 3x-1.35(R2=0.950 1**)和yABA=0.098 9x-5.38(R2=0.980 5**),GA3、CK和ABA处理的芽粗平均增长率分别为0.057 4 mm/d、0.050 3 mm/d和0.098 9 mm/d,GA3处理和CK差异不大,而ABA芽粗增长较快,但由于其出芽速度迅速,因此至100%发芽时其芽粗仍小于CK和GA3处理。

图3 生长调节剂处理后马铃薯芽粗动态变化 Fig.3 Shoot diameter of potato after treated with different growth regulators
2.3 不同生长调节剂处理对马铃薯贮藏期主要碳代谢物质含量变化的影响

图4可见,各处理块茎贮藏期淀粉含量以萌发期为界限总体呈先增加后减少的趋势。GA3、CIPC和ABA处理的块茎淀粉含量分别在处理后14 d、56 d和28 d左右升至最高,分别比刚处理时高4.6%、5.1%和2.3%。此后开始下降,各处理降低的幅度不同,GA3、CIPC和ABA处理的块茎淀粉含量在处理84 d后分别比刚处理时低13.36%、5.93%和11.30%。在贮藏前期,各处理间块茎淀粉含量差异不显著,在处理42 d后才开始出现显著差异;在贮藏后期,GA3处理和对照处理间以及CIPC处理和ABA处理间的差异均不显著,但GA3和对照处理的块茎淀粉含量显著低于CIPC和ABA处理。各处理块茎可溶性糖含量在贮藏期的变化规律不同(图5),GA3、CIPC和对照处理呈逐渐减少的趋势,而ABA处理呈先降低后升高再降低的变化趋势。各处理块茎可溶性糖含量的降低幅度也不同,在处理84 d后,GA3、CK、CIPC和ABA处理的可溶性糖含量,分别比刚处理时降低48.3%、57.5%、58.9%和59.1%。

柱状图上不同小写字母表示同一贮藏时间不同处理的淀粉含量在P<0.05水平下差异有统计学意义。
Different lowercase letters above the columns show significant differences of starch content among treatments under the same storage period at the 0.05 probability level.
图4 各处理块茎贮藏期淀粉含量的变化 Fig.4 Change of starch content of different treatments during storage

柱状图上不同小写字母表示同一贮藏时间不同处理的可溶性糖含量在P<0.05水平下差异有统计学意义。
Different lowercase letters above the columns show significant differences of soluble sugar content among treatments under the same storage period at the 0.05 probability level.
图5 各处理块茎贮藏期可溶性糖含量的变化 Fig.5 Change of soluble sugar content of different treatments during storage
2.4 不同生长调节剂处理对马铃薯贮藏期主要氮代谢物质含量变化的影响

图6所示,在整个贮藏期各处理的马铃薯块茎可溶性蛋白质含量均呈现先升高后降低的变化趋势,同一时期各处理之间的差异不显著,但促芽剂处理的含量较抑芽剂处理的提前降低,在萌发期左右时含量达到最大值。在贮藏前期,促芽剂GA3处理块茎的可溶性蛋白质含量整体处于较高水平,升高幅度小;抑芽剂CIPC和ABA处理块茎的可溶性蛋白质含量一直处于较低水平,ABA处理升高幅度大于CIPC处理。各处理的可溶性蛋白质含量的升高幅度表现为ABA(39.68%)>CK(35.58%)>CIPC(31.32%)>GA3(25.73%)。在贮藏后期含量降低幅度表现为ABA(33.22%)>CK(32.72%)>GA3(19.17%)>CIPC(17.74%)。

柱状图上不同小写字母表示同一贮藏时间不同处理的可溶性蛋白质含量在P<0.05水平下差异有统计学意义。
Different lowercase letters above the columns show significant differences of soluble protein content among treatments under the same storage period at the 0.05 probability level.
图6 各处理块茎贮藏期可溶性蛋白质含量的变化 Fig.6 Change of soluble protein content of different treatments during storage

处理后的马铃薯块茎在贮藏期粗蛋白质含量的变化规律与可溶性蛋白质相似,亦均呈现先升高后降低的趋势,但其含量变化幅度较小(图7)。各处理块茎的粗蛋白质含量在萌发期(处理后28 d左右)升至最高,在生理休眠期CIPC处理粗蛋白质含量升高最多,含量显著高于其他处理。处理14 d后促芽剂处理与抑芽剂处理差异达显著水平,但抑芽剂处理之间差异不显著。此后随着贮藏时间的延长,GA3处理与ABA处理差异不显著,但与CIPC处理差异显著。在贮藏前期各处理粗蛋白质含量的升高幅度表现为CIPC(12.8%)>ABA(12.5%)>CK(8.2%)>GA3(4.77%);在贮藏后期含量降低幅度表现为ABA(18.02%)>CK(12.5%)>GA3(11.37%)>CIPC(8.71%)。表明在整个贮藏期,CIPC处理块茎积累的粗蛋白质含量高,GA3和ABA 处理萌发后粗蛋白质含量降低。

柱状图上不同小写字母表示同一贮藏时间不同处理的粗蛋白质含量在P<0.05水平下差异有统计学意义。
Different lowercase letters above the columns show significant differences of crude protein content among treatments under the same storage period at the 0.05 probability level.
图7 各处理块茎贮藏期粗蛋白质含量的变化 Fig.7 Change of crude protein content of different treatments during storage
2.5 不同生长调节剂处理对马铃薯贮藏期碳氮比的影响

不同生长调节剂处理的马铃薯块茎在贮藏过程中,其碳氮比除ABA处理在处理后42 d左右有所上升随后逐渐降低外,其余均呈现逐渐降低的变化趋势(图8)。不同生长调节剂处理对马铃薯块茎的碳氮比影响不一致,在整个贮藏过程中GA3处理的块茎碳氮比整体水平较高,而抑芽剂处理的块茎碳氮比较低,在整个贮藏期各处理块茎碳氮比降低幅度表现为CIPC(60.44%)>CK(58.40%)>ABA(55.31%)>GA3(48.99%)。但ABA处理在萌发期左右块茎的碳氮比突然增加,而发芽后碳氮比降低幅度低导致在贮藏后期碳氮比较CIPC处理和CK高,从而导致ABA处理的块茎碳氮比整体降低幅度小。

图8 各处理块茎贮藏期碳氮比变化 Fig.8 Change of carbon-nitrogen ratio of different treatments during storage
3 讨论

马铃薯块茎在收获后不能立即发芽,需要经历一段时间的后熟和生理休眠期[17]。现普遍认为马铃薯块茎的休眠开始于块茎形成期,内源激素一直参与了休眠过程的调控[18, 19],适宜的植物生长调节剂可以调控马铃薯块茎的休眠。本试验结果表明GA3有明显的打破休眠促进萌发的作用,休眠期和休眠强度分别较对照缩短20 d和17 d,而且芽在萌发后生长迅速,但幼芽(苗)比较纤细,芽长和芽粗的比值较大。因此,在实际生产应用中应注意炼苗,并及时播种,适当增加底肥用量以培育壮苗。与GA3的作用相反,ABA则有一定延长休眠的作用,处理后马铃薯块茎的休眠期和休眠强度分别较对照增加4 d和6 d,但发芽比较集中,发芽的整齐度较高,同时芽长与芽粗的比值较小,幼芽(苗)比较粗壮,有利于培育壮苗。虽然CIPC处理后的块茎在试验时间内有萌发,但无明显芽生长迹象,表明CIPC具有强烈抑制块茎发芽的作用。CORSINI等[20]的研究表明由于处理后CIPC挥发或分解等因素,块茎表皮中的CIPC含量会逐渐降低,当含量低于20 mg/L时马铃薯就会发芽,如果在CIPC含量低于20 mg/L之前重新用CIPC处理,块茎将继续保持休眠状态。KIM等[21]通过将不同浓度CIPC处理后的马铃薯块茎进行播种,发现播种后的块茎都有不同程度的发芽,而相同处理不进行栽种的块茎则不发芽,且CIPC处理浓度越高,处理后的块茎田间出苗越缓慢,出苗率也低,但最终都有萌发,表明不同质量浓度的CIPC处理马铃薯块茎最终均能发芽。因此在实际生产中,生产者应该根据自身需要合理选择相应剂量的CIPC处理薯块。

马铃薯块茎休眠和萌芽期间内部的生理活动和物质转化会发生一系列变化。收获后的马铃薯块茎会先木栓化,阻止病菌的入侵及减少氧气的进入,此时块茎作为“库”其生理活动主要表现为可溶性营养物质如小分子糖类和氨基酸由于合成作用转变为不溶状态的淀粉和蛋白质。大分子的营养物质可以起到脱水保护剂的作用,结合束缚水以有利于薯块顺利度过休眠期[22]。休眠解除后,块茎转化为“源”,各种代谢活动开始加强[23],淀粉和蛋白质开始分解为可溶性糖和可溶性蛋白质,前者为主要的供能物质,同时也是重要的渗透调节物质和信号传递物质[24];后者为一些代谢酶的组分,同时因其亲水性强,可增强细胞的持水力[25]。因此,块茎的非结构性碳氮化合物是重要的代谢和能源物质,块茎的碳氮比可衡量生理活动的强弱及协调程度[26, 27]。本试验中,供试品种“川芋117”块茎的淀粉、粗蛋白质和可溶蛋白质含量均呈先增加后减少的变化趋势,在处理后14~56 d含量达到最大,但出现最大值的时间因处理不同而异。GA3处理后块茎的生理活性增强,淀粉开始分解的时间早,降解速度快,可溶糖含量高,碳氮比值大。而ABA处理则有相反趋势,淀粉、蛋白质开始分解的时间较晚,贮藏前期碳氮比较低。杨建昌[28]的研究表明:GA3诱导产生或激活α-淀粉酶等水解酶不利于淀粉和蛋白质的合成和累积,而ABA则可调节或抑制一些水解酶的活性而有利于淀粉和蛋白质的合成。本试验结果与他们的研究结果相一致,表明碳氮是GA3和ABA打破或延长块茎休眠、促进或延迟萌发的物质基础。因此GA3和ABA处理的块茎发芽后应及时栽种,避免营养物质消耗过多造成种薯老化,栽培质量降低。CIPC处理后块茎的生理活性一直处于较低状态,淀粉、蛋白质等营养物质含量比较稳定,消耗比较少,因此可以作为商品薯的贮藏保鲜剂使用。

参考文献
[1] 陈彦云.马铃薯贮藏期间干物质、还原糖、淀粉含量的变化.中国农学通报,2006,22(4):84-87.
CHEN Y Y. Research of the content change of dry matter, reducing sugar and starch in potato in the storage period.Chinese Agricultural Science Bulletin, 2006,22(4):84-87(in Chinese with English abstract)
[2] 张威,白艳菊,李学湛,等.马铃薯种薯质量控制现状与发展趋势.中国马铃薯,2010,24(3):186-189.
ZHANG W, BAI Y J, LI X Z, et al.Status quo and development trend of seed potato quality control. Chinese Potato Journal, 2010,24(3):186-189(in Chinese with English abstract)
[3] KNUTSON K W. Implication of new technologies for seed potato certification programs and seed growers. American Potato Journal, 1988,65(4):229-235.
[4] 尹江,张希近,籍立杰,等.如何实现我国的马铃薯安全贮藏与产品增值.农业工程技术(农产品加工业),2009,11:42-44.
YI J, ZHANG X J, JI L J, et al.Ways to achieve potato’s safe storage and appreciation of production in our country. Agriculture Engineering Technology (Agricultural Product Processing Industry), 2009,11:42-44(in Chinese)
[5] 郑许华.不同贮藏方式对马铃薯微型薯活力及生理生化特性的影响.兰州:甘肃农业大学,2010:4-11.
ZHENG X H. Study on mini potato different storage method on seed vigor and physical and chemical properties.Lanzhou: Gansu Agriculture University, 2010:4-11(in Chinese with English abstract)
[6] 邓春凌.马铃薯块茎休眠及其打破的方法.中国马铃薯,2010,24(3):151-152.
DENG C L. Potato dormancy and its breaking methods.Chinese Potato Journal, 2010,24(3):151-152(in Chinese with English abstract)
[7] 杨万林,隋启君.马铃薯不同育种材料微型薯的休眠特性及调控试验研究.西南农业学报,2004,17(1):84-87.
YANG W L, SUI Q J. The dormancy characteristics of different gene type mini-tuber stuffs in potato breeding and their controlling.Southwest China Journal of Agricultural Sciences, 2004,17(1):84-87(in Chinese with English abstract)
[8] 李佩华.赤霉素处理马铃薯整薯休眠效应的研究.贵州农业科学,2008,36(3):34-36.
LI P H. Effects of different GA3 concentration on potato dormancy.Guizhou Agricultural Sciences, 2008,36(3):34-36(in Chinese with English abstract)
[9] 李守强,李梅,葛霞,等.抑芽剂对马铃薯的效果试验.甘肃科技,2008,24(23):159-161.
LI S Q, LI M, GE X, et al.Effect experiments of sprouting-inhibitor to potato. Gansu Science and Technology, 2008,24(23):159-161(in Chinese)
[10] KLEINKOPF G E, OBERG N A, OLSEN N L. Sprout inhibition in storage: current status, new chemistries and natural compounds. American Journal of Potato Research, 2003,80:317-327.
[11] SCHRAMM E C, NELSON S K, KIDWELL K K. et al. Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar ‘Zak’. Theoretical and Applied Genetics, 2013,126:791-803.
[12] 陈沁滨,侯喜林,王建军,等.外源脱落酸对洋葱鳞茎休眠的影响.南京农业大学学报,2007,30(1):30-33.
CHEN Q B, HOU X L, WANG J J, et al.Effect of exogenous abscisic acid on the dormancy of onion (Allium cepa). Journal of Nanjing Agricultural University, 2007,30(1):30-33(in Chinese with English abstract)
[13] 蒲建刚,孙林祥,裴建文,等.脱毒马铃薯微型薯原原种打破休眠试验研究初报.甘肃农业科技,1999,7:13-14.
PU J G, SUN L X, PEI J W, et al.A preliminary report on the study of the dormancy breaking of the mini-potatos breeders seed of virus-free potato. Gansu Agricultural Sciences and Technology, 1999,7:13-14(in Chinese)
[14] 刘芳,杨元军,董道峰,等.马铃薯不同代数和块茎大小休眠特性的研究.山东农业科学,2011,11:32-34.
LIU F, YANG Y J, DONG D F, et al.Study on dormancy characteristics of potato with different generations and weight. Shandong Agricultural Sciences, 2011,11:32-34(in Chinese with English abstract)
[15] 熊庆娥.植物生理学实验教程.成都:四川科学技术出版社,2003:81-82.
XIONG Q E. Plant Physiology. Chendu: Sichuan Science and Technology Press, 2003:81-82. (in Chinese)
[16] 周卫霞,董鹏飞,王秀萍,等.弱光胁迫对不同基因型玉米籽粒发育和碳氮代谢的影响.作物学报,2013,39(10):1826-1834.
ZHOU W X, DONG P F, WANG X P, et al.Effect of low-light stress on kernel setting and metabolism of carbon and nitrogen in different maize (Zea mays L.) genotypes. Acta Agronomica Sinica, 2013,39(10):1826-1834(in Chinese with English abstract)
[17] 吴道攀,宋明,刘万勃.保持和提高种子活力处理技术的研究进展.种子,2006,25(6):55-59.
WU D P, SONG M, LIU W B. Advance in study on methods of maintaining and improving seed vigor.Seed, 2006,25(6):55-59(in Chinese with English abstract)
[18] 张丽莉,陈伊里,连勇.马铃薯块茎休眠及休眠调控研究进展.中国马铃薯,2003,17(3):352-356.
ZHANG L L, CHEN Y L, LIAN Y. Developments in potato dormancy characteristics and control of sprout.Chinese Potato Journal, 2003,17(3):352-356(in Chinese)
[19] BELTRAN L D, KNAUBER D, HUCKLE L, et al. Effects of postharvest storage and dormancy status on ABA content, metabolism and expression of genes involved in ABA biosynthesis and metabolism in potato tuber tissues. Plant Molecular Biology, 2006,61:687-697.
[20] CORSINI D, STALLKNECHT G, SPARK W. Changes in chlorpropham residues in stored potatoes. American Potato Journal.1979,56(1):43-50.
[21] KIM M S L, EWING E E, SIECZKA J B. Effects of chlorpropham (CIPC) on sprouting of individual potato eyes and on plant emergence. American Potato Journal, 1972,49(11):420-431.
[22] 刘玲玲,李军,李长辉,等.马铃薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究.中国马铃薯,2004,18(4):201-204.
LIU L L, LI J, LI C H, et al.Evaluation of resistance level to late blight in the populations derived from the horizontal resistant crosses of potatoes. Chinese Potato Journal, 2004,18(4):201-204(in Chinese with English abstract)
[23] 孙茂林,杨万林,李树莲,等.马铃薯的休眠特性及其生理调控研究.中国农学通报,2004,20(6):81-84.
SUN M L, YANG W L, LI S L, et al. Study on potato dormancy characteristics and control of sprout. Chinese Agricultural Science Bulletin, 2004,20(6):81-84. (in Chinese with English abstract)
[24] DAMON S, HEWITT J, NIEDER M, et al. Sink metabolism in tomato fruit. Plant Physiol, 1988,87:731-736.
[25] 朱政,蒋家月,江昌俊,等.低温胁迫对茶树叶片SOD、可溶性蛋白和可溶性糖含量的影响.安徽农业大学学报,2011,38(1):24-26.
ZHU Z, JIANG J Y, JIANG C J, et al.Effects of low temperature stress on SOD activity, soluble protein content and soluble sugar content in Camellia sinensis leaves. Journal of Anhui Agricultural University, 2011,38(1):24-26(in Chinese with English abstract)
[26] 江志坚,黄小平,张景平.环境胁迫对海草非结构性碳水化合物储存和转移的影响.生态学报,2012,32(19):6242-6250.
JIANG Z J, HUANG X P, ZHANG J P. Effect of environmental stress on non-structural carbohydrates reserves and transfer in seagrasses.Acta Ecological Sinica, 2012,32(19):6242-6250(in Chinese with English abstract)
[27] 阳剑,时亚文,李宙炜,等.水稻碳氮代谢研究进展.作物研究,2011,25(4):383-387.
YANG J, SHI Y W, LI Z W, et al.Developments in the study on carbon and nitrogen metabolism of rice. Crop Research, 2011,25(4):383-387(in Chinese)
[28] 杨建昌,王志琴,朱庆森,等.ABA与GA对水稻籽粒灌浆的调控.作物学报,1999,25(3):341-346.
YANG J C, WANG Z Q, ZHU Q S, et al.Regulation of ABA and GA to the grain filling of rice. Acta Agronomica Sinica, 1999,25(3):341-346(in Chinese with English abstract)