浙江大学学报(农业与生命科学版)  2016, Vol. 42 Issue (1): 63-73
文章快速检索     高级检索
成都平原稻作区施氮量和栽插密度对粳稻D46产量及品质的影响[PDF全文]
兰艳1, 黄鹏1, 江谷驰弘1, 雷小波1, 丁春邦2, 李天1, 3     
1.四川农业大学农学院, 成都 611130;
2.四川农业大学生命科学学院, 四川 雅安 625014;
3.四川农业大学水利水电学院, 四川 雅安 625014
摘要: 为探明成都平原稻作区粳稻产量和品质与施氮量、栽插密度及其互作的关系,实现水稻高产优质生产.以粳稻D46为供试品种,采用二因素裂区试验设计,设置3个氮水平(N 150、225、300 kg/hm2)和3个栽插密度(20×104、26.67×104、40×104 穴/hm2),研究其对粳稻D46产量和品质的影响。结果表明,施氮量和栽插密度均显著影响粳稻D46产量及其构成因素(P<0.05)。在施氮量为225 kg/hm2和栽插密度为26.67×104穴/hm2时,水稻产量最高(7.58×103 kg/hm2),显著高于其他处理(P<0.05)。施氮量和栽插密度对稻米品质均有不同程度的影响,其中施氮量的影响最为显著。在施氮量<225 kg/hm2时,随着氮肥施用量的增加,稻米的加工品质提高,垩白率和蛋白质含量增加,垩白度和食味品质降低;而当施氮量>225 kg/hm2时稻米品质随氮肥用量的增加而降低。提高栽插密度不利于稻米品质形成。本试验研究认为,实现成都平原稻作区粳稻D46高产与优质的适宜施氮量为225 kg/hm2,栽插密度为26.67×104穴/hm2
关键词: 成都平原    施氮量    栽插密度    粳稻D46    产量    品质    
Effect of nitrogen application and planting density on grain yield and quality of japonica rice cultivar D46 in the planting area of Chengdu plain.
LAN Yan1, HUANG Peng1, JIANG Guchihong1, LEI Xiaobo1, DING Chunbang2, LI Tian1, 3     
1.Agricultural College, Sichuan Agricultural University, Chengdu 611130, China;
2.College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, Sichuan, China;
3.College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya’an 625014, Sichuan, China
Summary: Rice is one of the most important crops in the world, especially in Asia, where more than 90% of the world’s rice is grown and consumed. In recent years, with the increase of living quality, the requirement for rice improvement is not only limited to yield, but also to its quality. During rice development, genetic and environmental factors significantly affect both of the yield and quality. Among the environmental factors, fertilizer management and planting density are considered as the main factors affecting rice growth and development. Data from the previous studies on the impact of nitrogen application rate and planting density on rice yield and quality have been inconsistent due to the differences in regional ecological conditions. Therefore, it is necessary to continue exploring the influence of nitrogen application rate and planting density on rice yield and quality.
Chengdu plain, the main rice cropping region in the southwest of China, has the unique light, heat and water resources. In order to promote the planting of a japonica rice variety (identified in our previous research) in this area, we investigated how nitrogen (N) application rate and planting density and their interactions affect grain yield and quality. Data from this study would provide information for japonica rice cultivation in the area for high yield and good quality.
To investigate the effect of nitrogen application rate and planting density on rice grain yield and quality characteristics, we used japonica rice cultivar D46 as the test material in this study. Split plot experiments with N application rate (N 150, 225 and 300 kg/hm2) as main plot and planting density (20×104, 26.67×104 and 40×104 seedlings/hm2) as sub-plot were carried out. The experiment was conducted on sandy loam in 2013 at the experimental farm of Sichuan Agricultural University in Wenjiang, China.
The results showed that both N application rate and planting density had significant effects on the yield of the japonica rice cultivar D46 (P<0.05). The combination of N application rate of 225 kg/hm2 and planting density of 26.67×104 seedlings/hm2 led to the highest yield (7.58×103 kg/hm2), and which was significantly higher than other treatments (P<0.05). Dry matter accumulation tended to increase with the increase of N application rate during the whole growth period, whereas, for planting density, it reached the maximum at 26.67×104 seedlings/hm2 rather than at 20×104 and 40×104 seedlings/hm2. Furthermore, N application rate and planting density were shown to have different degrees of influence on the rice quality. The processing quality, chalky rate and protein content increased as the N application increased from 150 to 225 kg/hm2 and then declined with any further increases in N supply. In contrast, increasing planting density was not conducive to improving rice quality.
Based on the results, and considering the importance of improving both rice yield and quality, the optimal combination of N application rate and planting density for japonica rice cultivar D46 in the planting area of Chengdu plain is N 225 kg/hm2 and 26.67×104 seedlings/hm2, respectively.
Key words: Chengdu plain    nitrogen application rate    planting density     japonica rice cultivar D46    grain yield    grain quality    

水稻产量和品质形成主要受遗传因子和环境因素的调控[1, 2, 3, 4, 5, 6]。在诸多环境因素中,种植密度和肥料运筹是影响水稻生长发育的重要因素[7, 8, 9]。随着农业用地日益紧张和不合理施肥导致的面源污染加剧,以优化栽培密度和高效利用肥料的水稻高产优质技术研究得到广泛的关注[3, 10, 11, 12, 13, 14]

已有研究表明,在一定范围内施氮量与产量呈抛物线关系,适当增施氮肥量有利于植株生长,可以提高水稻产量[15];但过量氮肥施用不利于水稻营养器官中的碳水化合物形成和氮素向籽粒转移,最终导致产量降低和土壤中氮素积累[16]。近年来,如何提高稻米品质成为研究的核心,其中施氮量和栽插密度对稻米品质的影响成为研究的焦点[17, 18, 19, 20]。徐春梅等[19]研究认为增施氮肥能够提高稻米的碾磨和外观品质以及蛋白质含量;而栽插密度对稻米品质影响不明显。谢黎虹等[21]研究认为增大种植密度可以提高整精米率,降低RVA的消减值、回复值和米饭质地的硬度。众多研究一致认为,整精米率和蛋白质含量随施氮量提高而增加,而垩白性状和直链淀粉含量对氮肥用量的响应则不一致[22]

本课题组多年来致力于粳稻品种选育和推广种植,筛选出了米饭食味独特,产量高,适宜在成都平原种植的粳稻品种D46。为进一步加快该品种在成都平原稻作区的推广,本试验在前人已研究证明施氮量和栽插密度是影响水稻产量和品质形成的主要因素的基础上,以施氮量和栽插密度为因素,研究其对粳稻D46品质的影响,对在成都平原稻作区生态条件下推广种植粳稻具有重要的现实生产意义和理论意义。

1 材料与方法 1.1 供试材料

田间试验于2013年在四川农业大学成都校区试验农场进行。试验田耕层土壤质地为沙质壤土,有机质含量25.09 g/kg,全氮1.53 g/kg,全磷0.38 g/kg,全钾14.23 g/kg,碱解氮150.20 mg/kg,速效磷58.64 mg/kg,速效钾108.52 mg/kg,pH 6.79。供试水稻品种为粳稻D46,该品种株型适中,产量高,品质优,稳产,全生育期为140 d左右。

1.2 试验设计

采用二因素裂区设计,主区为栽插密度(D),设3个水平,分别为20×104穴/hm2(25 cm×20 cm,D1),26.67×104穴/hm2(25 cm×15 cm,D2)和40×104穴/hm2(25 cm×10 cm,D3);副区为施氮量,分别为无氮对照(N0)、低氮(N 150 kg/hm2,N1)、中氮(N 225 kg/hm2,N2)和高氮(N 300 kg/hm2,N3)。共12个处理,每个处理3次重复。每个小区面积 24 m2。小区间筑埂并用塑料薄膜包裹(高35 cm,宽30 cm),以防止串水串肥,小区四周设置保护行。4月2日播种,地膜育秧,5月7日移栽,叶龄为五叶一心,每穴双苗。

试验以尿素(N≥46.4%)为氮肥,作为基肥与蘖肥施入,比例为7∶3;以过磷酸钙(含P2O5 12.0%)为磷肥,施用量为120 kg/hm2,全部以基肥一次性施入;以氯化钾(含K2O 60%)为钾肥,施用量为180 kg/hm2,作为基肥和穗肥施入,比例为1∶1。其余田间管理措施与一般大田水稻生产相同。

1.3 测定项目与方法 1.3.1 产量及其构成因素

成熟前每小区选取30株调查有效穗数;并各取具有代表性植株5株进行考种,调查每穗粒数、结实率、千粒质量等指标,然后分区收获,脱粒后晒干称量。

1.3.2 干物质质量的测定

分别于水稻分蘖盛期、拔节期、抽穗期、灌浆中期、成熟期按平均数法对每个处理随机选取3穴取样,将根剪除后按叶片、茎鞘、穗(抽穗后)分开,洗净后在105 ℃下杀青30 min,75 ℃烘干至恒量,测定各器官的干物质质量。

1.3.3 稻米品质的测定

各处理稻谷收获后自然阴干、存放3个月使其理化性质稳定后测定其加工、外观、蒸煮及营养品质。垩白率和垩白度根据《GB/T 17891—1999》,糙米率根据《GB/T 5495—2008》,整精米率根据《GB 1350—2009》,直链淀粉含量依据《GB 15683—2008》,蛋白质含量根据《NY/T 3—1982》的方法测定。

稻米淀粉黏滞性使用澳大利亚Newport Scientific仪器公司生产的3-D型RVA仪测定,并用TCW(thermal cycle for Windows)配套软件进行分析。按照AACC操作规程[23],测定稻米RVA谱特性;用峰值黏度、热浆黏度、冷胶黏度、崩解值(峰值黏度与热浆黏度之差)、消减值(冷胶黏度与峰值黏度之差)、回复值(冷胶黏度与热浆黏度之差)表示,单位为RVU (rapid visco units)表示。

1.4 数据处理

所有数据利用SPSS 19.0统计软件进行数据分析,结果均为3次重复的平均值,利用最小显著差数法(LSD)在P<0.05水平上做多重比较。

2 结果 2.1 施氮量和栽插密度对D46产量的影响

表1 可知,施氮量和栽插密度不同,粳稻D46籽粒产量均有差异。与对照N0 (5.86×103 kg/hm2)相比,N1、N2和N3处理的籽粒产量分别增产14.61%、25.01%和19.27%,达到显著差异水平(P<0.05)。但N2和N3处理间的籽粒产量差异不显著(P>0.05),表明施氮量达到225 kg/hm2时,继续增加氮肥用量对产量增加不明显。而不同密度间稻谷产量差异不明显(P>0.05)。

表1 施氮量和栽插密度对粳稻D46产量及其构成因素的影响Table 1 Effect of N application amount and planting density on the grain yield and its components of japonica rice cultivar D46
点击放大

从粳稻D46产量构成因素分析(表1)可知,施氮量对有效穗数影响达到显著水平(P<0.05),穗数随着施氮量的增加而增加,但在N2和N3处理间的有效穗数差异不明显(P>0.05),表明在田间生产中施氮量为225 kg/hm2时就可保证高产的足够有效穗数;而施氮量对每穗粒数和结实率影响均未达到显著差异水平(P>0.05),说明粳稻D46的每穗粒数和结实率对氮肥响应不敏感;施氮量对千粒质量影响达到显著水平(P<0.05),千粒质量随着氮肥用量的增加而下降。栽插密度对粳稻D46产量构成因素均达到显著或极显著影响(千粒质量除外);有效穗数随栽插密度增加而增加,但在中密度D2和高密度D3处理间差异不显著;而每穗粒数、结实率和千粒质量则随着栽插密度的增加总体上呈下降的趋势。

2.2 施氮量和栽插密度对D46干物质质量的影响

氮肥运筹对粳稻D46主要生育期干物质积累量的影响达极显著水平(P<0.01);不同栽插密度对粳稻D46主要生育期干物质积累量的影响达显著或极显著水平(分蘖期除外);而两者交互效应对粳稻D46干物质积累量主要体现在分蘖期、拔节期和灌浆期(表2)。

表2 施氮量和栽插密度对粳稻D46不同生育阶段干物质量的影响Table 2 Effect of N application amount and planting density on the biomass of japonica rice cultivar D46 in different growth stages
点击放大

在粳稻D46生育前期(分蘖期和拔节期),干物质积累量以高密度D3处理最大;而在其生育后期(拔节期至成熟期)则以中密度D2处理最大。这是由于随着生育期推进,水稻生长旺盛,在低密度D1处理下,穴数少导致干物质积累量也少;而在高密度D3处理下,植株生长拥挤,生长环境变差导致干物质积累量降低。而氮肥运筹对粳稻D46各生育期干物质积累量的影响明显高于栽插密度运筹,且对中后期的影响程度明显高于生育前期,以拔节期影响最明显。随着氮肥施用量的增加,水稻各生育期干物质积累量逐渐增加,以氮水平225 kg/hm2时达到最大值;再继续增施氮肥会使水稻干物质积累量呈现不同程度降低趋势。这是由于高氮处理导致水稻贪青徒长,不利于干物质的积累和产量的形成。

2.3 施氮量和栽插密度对D46稻米品质的影响 2.3.1 加工品质

施氮量显著影响粳稻D46籽粒糙米率(图1A)和整精米率(图1B)。籽粒糙米率和整精米率均随氮肥用量的增加而增加,以氮水平225 kg/hm2时达到最大值;再继续增施氮肥会使水稻加工品质呈现不同程度降低趋势。与未施氮(N0)处理比较,高氮(N3)、中氮(N2)和低氮(N1)处理的籽粒糙米率和整精米率分别提高了1.04%、1.95%、1.44%和1.38%、4.37%、3.94%,且差异达到显著水平,表明增施氮肥对提高水稻加工和外观品质具有重要作用。不同栽插密度处理间的籽粒糙米率在D2处理下最大,D3最小,这表明增加基本苗不利于提高水稻糙米率。而稻米的整精米率随栽插密度的增加而降低,在栽插植密度最小(D1) 时整精米率最低。D1与D3间的整精米率差异均达显著水平(P<0.05,图1B)。

N0、N1、N2和N3分别为施氮量0 kg/hm2、150 kg/hm2、225 kg/hm2和300 kg/hm2,D1、D2和D3分别为栽插密度20×104、26.67×104和40×104穴/hm2。不同大写字母表示同一栽培密度不同施氮量在P<0.05水平下差异有统计学意义;不同小写字母表示同一施氮量不同栽培密度在P<0.05水平下差异有统计学意义。
(N0-N3): N application amount were 0 kg/hm2,150 kg/hm2,225 kg/hm2 and 300 kg/hm2,respectively; (D1-D3): planting density were 20×104,26.67×104 and 40×104 seeding/hm2,respectively. Different capital letters indicate the significant difference of the same planting density among different N application levels at the 0.05 probability level. Different lowercase letters indicate the significant difference of the same N application levels among different planting density at the 0.05 probability level.
图1 施氮量和栽插密度对粳稻D46稻米品质的影响 Fig.1 Effect of N application amount and planting density on the quality of japonica rice cultivar D46
2.3.2 垩白率和垩白度

与未施氮(N0)处理相比,垩白率随施氮量的增加而增加,尤其是当施氮量为300 kg/hm2时,垩白率明显高于其他处理,且处理间的差异达到了显著水平(P<0.05,图1C)。与未施氮(N0)处理相比,垩白度整体上呈现随施氮量的增加而减少的趋势,以氮水平为225 kg/hm2时垩白度最低,较未施氮水平降低了18.96%(图1D)。而垩白率和垩白度均随着栽插密度的增加而增加,在高密度D3时显著高于D1和D2处理(P<0.05),这表明增加栽插密度不利于提高水稻的外观品质。

2.2.3 直链淀粉和可溶性蛋白质含量

图1E图1F显示施氮量和栽插密度对粳稻D46的直链淀粉和可溶性蛋白质含量有一定的影响。增加氮肥施用量有利于提高粳稻D46的直链淀粉和可溶性蛋白质含量,特别是在高氮处理(N3,300 kg/hm2)与低氮处理(N1,150 kg/hm2)间的直链淀粉含量差异达显著水平(P<0.05)。而可溶性蛋白质含量在中氮处理(N2,225 kg/hm2)时最高,明显高于未施氮处理。栽插密度对直链淀粉和可溶性蛋白质含量的影响较小。

2.2.4 淀粉RVA谱特性

稻米的RVA谱特性是评价稻米品质的重要指标,也是优质水稻品种的选育和栽培的参考指标。本研究的结果(表3)表明,施氮量极显著地影响了粳稻D46的RVA谱特性(P<0.01)。随着施氮量的增加,粳稻D46的峰值黏度、热浆黏度、冷胶黏度、崩解值、回复值等特性逐渐减低,而消减值呈现上升趋势。可见,稻米淀粉的 RVA 谱特性受氮肥水平的影响并不一致,但整体上主要表现为负向的影响即提高氮肥用量,稻米的黏性有变差的趋势。

表3 施氮量和栽插密度对稻米淀粉RVA谱特性的影响Table 3 Effect of N application amount and planting density on the starch RVA profile characteristics of japonica rice cultivar D46
点击放大

在不同栽培密度下,粳稻D46的RVA谱特性也表现出一定的差异,它极显著地影响了稻米的峰值黏度(P<0.01),而对其余RVA谱特性指标影响不明显(P>0.05)。在同一施氮水平条件下,提高栽插密度,粳稻D46的峰值黏度、热浆黏度、冷胶黏度、崩解值等特性呈现先增加后减少的趋势,而回复值和消减值呈上升趋势。由以上可知,稻米淀粉的 RVA 谱特性受栽培密度影响较大,移栽的密度过大或过小均影响稻米的黏性,从而使稻米的品质变差。

3 讨论 3.1 施氮量和栽插密度对D46产量及干物质积累的影响

水稻产量形成是一个物质生产、转运和积累的过程;而干物质生产是水稻产量形成的基础,干物质的积累、分配和转运对水稻获得高产具有重要意义[24, 25]。有研究表明,适当的氮肥施用量和栽插密度可以有效地提高叶绿素含量,进而有利于干物质的生产、积累和转运,从而有利于水稻高产的形成[26]。本研究结果表明,在氮用量0~225 kg/hm2范围内增施氮肥,有效地促进了水稻的生长,增加了干物质的积累,有利于有效穗数、每穗粒数和结实率的增加;且各时期干物质积累量与产量密切相关(图2)。然而在高氮肥水平下(>225 kg/hm2),水稻贪青徒长,无效分蘖和低效分蘖也随之增多而导致成穗率下降;且水稻各生育期的干物质质量和分配也降低,不利于植株干物质向籽粒的转运,影响产量构成因素协调发展,不利于水稻高产的形成,还造成了氮肥的浪费以及对环境的污染,这与徐春梅等[19]的研究结果一致。

图2 水稻不同生育期干物质质量与产量的关系 Fig.2 Correlation between the biomass yield and grain yield of japonica rice cultivar D46 at different stages

增加栽插密度,水稻植株间生长空间逐渐缩小,叶片重叠加剧,叶面积指数下降,通风透光性降低,从而光合作用减弱[12]。本实验条件下,低密度20×104穴/hm2栽培植株间光合作用最强,结实率最好.然而,群体有效穗数和每穗粒数少,干物质积累量较低,不利于水稻高产的形成(表1表2);相反,在高密度40×104穴/hm2栽培下,虽有效穗数有增加,但植株紧凑,生长环境恶化,且加之四川盆地高温高湿的环境,加剧了植株间病虫害的发生,叶片早衰现象严重,导致干物质积累量在生育后期转运受阻;而每穗粒数和结实率也最低,不利于水稻高产的形成。而在中等密度26.67×104穴/hm2栽培下,植株光合作用较强,使得干物质积累较大,群体有效穗数较高,每穗粒数和结实率最大,因此产量最高。这与樊红柱等[27]在四川盆地稻作区的研究结果基本一致。

施氮量和栽插密度的交互作用也会对产量、产量构成因素及干物质形成产生不同的影响,只有协调产量构成因素之间的关系,才能实现优质高产[19]。在本试验中,施氮量和栽插密度的增加,水稻分蘖和群体穴数增加,从而使得群体有效穗数增加,然而大量分蘖又不能有效成穗,使得成穗率降低,这限制了产量的增加。在施氮量N2(225 kg/hm2)处理下,每穗粒数最大,且每穗粒数随栽插密度增加而下降;结实率随施氮量增加而增加,且在密度D2(26.67×104穴/hm2)处理下最大;而千粒质量随施氮量的增加而不断减小,受密度的影响则不明显。综上所述,在施氮量225 kg/hm2与栽插密度26.67×104穴/hm2的组合(D2N2)下产量和干物质积累量最大,是实现高产栽培的最优组合。

3.2 施氮量和栽插密度对D46品质的影响

稻米品质形成与水稻生长发育过程密切相关,是多种物质共同完成了一系列积累、转化等过程而形成的[28]。本试验研究结果表明,在施氮量0~225 kg/hm2的范围内增施氮肥,干物质积累量增加,糙米率和整精米率增加;而在高施氮量300 kg/hm2处理下,干物质积累分配下降,灌浆受阻,不饱满籽粒增多,糙米率和整精米率下降。在栽培密度上,中密度(26.67×104穴/hm2)比低密度和高密度栽培下糙米率和整精米率都较高。可见,在施氮量225 kg/hm2和栽插密度为26.67×104穴/hm2的组合下,稻米的加工品质最好。

垩白率和垩白度体现了稻米的外观品质。在本试验中,栽培密度由20.00×104穴/hm2提高至40.00×104穴/hm2时,水稻植株间紧凑、叶片重叠加剧、通风透气性下降,植株光合作用减弱,使垩白率和垩白度增加。这与已有报道关于氮肥用量对稻米垩白性质影响的结果不一致。有研究认为施氮量与垩白呈负相关[29];而许仁良等[30]的研究指出氮肥用量与垩白呈正相关;也有研究者发现稻米垩白性质不受施氮量的影响[31]。在本研究中,垩白率随施氮量增加而增加。这是由于增施氮肥虽促进植株的生长,但成穗率降低,晚生分蘖增多,穗部的干物质和氮素分配减少,淀粉体排列疏松使得垩白率增加[17, 19, 22];此外,施氮量的增加会导致水稻光合作用增强,物质的积累和转运增强,使垩白面积减小,从而降低了垩白度;但在高施氮量300 kg/hm2处理下,物质的积累和转运受阻,垩白面积增大,从而使垩白度有所增加(图1D),这与程效义等[32]的研究结果基本一致。

已有研究表明,直链淀粉含量和淀粉RVA谱特性与稻米的蒸煮食味品质具有密切联系,对判断稻米蒸煮食味品质的优劣具有重要参考价值[18, 20, 21, 24]。王玉文等[33]研究指出淀粉RVA谱特性的消减值<0时,崩解值越大、消减值越低或消减值>0时,崩解值越小、消减值越大,稻米的黏度就越大,口感越好。本试验研究表明,氮肥用量对淀粉RVA谱特性的影响最大,各处理间差异达显著水平;而栽插密度对淀粉RVA谱特性的影响较小,各处理间差异不显著。同时,本研究中粳稻D46淀粉RVA谱特性中的消减值均为负值(表3),表明增加崩解值和减小消减值可以提高稻米的口感。而崩解值和消减值受施氮量的影响较大,氮肥用量增加,崩解值减小、消减值增加,稻米的口感降低,表明减少施氮量有助于稻米蒸煮食味品质的提高。栽插密度对粳稻D46淀粉RVA谱特性的影响较小。在中低密度栽培(<26.67×104穴/hm2)时稻米的口感优于高密度栽培(>40.00×104穴/hm2),这与叶全宝等[24]对粳稻“常优1号”和“武运粳7号”的研究结果基本一致。有研究表明,稻米直链淀粉含量与淀粉RVA谱特性之间存在一定的关系[34, 35]。在本试验中,直链淀粉含量与崩解值呈极显著负相关(-0.809),而与消减值呈极显著正相关(0.769)。结果(表4)表明,直链淀粉含量降低,崩解值增大、消减值减小,米饭适口性好,稻米的蒸煮食味品质提高,这与隋炯明等[34]的研究结果基本一致。

表4 RVA谱特征值与稻米直连淀粉的相关性分析Table 4 Coefficients of correlation between RVA profile characteristics and amylose content of japonica rice cultivar D46
点击放大

本试验研究表明,稻米可溶性蛋白质含量主要受施氮量的影响比较明显,而受栽插密度的影响不明显。施氮量在0~225 kg/hm2范围内增加时,植株氮素积累量和转运增强,故蛋白质含量增加;而在高氮300 kg/hm2水平条件下,植株氮素积累量增加,但转运却有所下降.因此,氮素向籽粒的转运受阻导致蛋白质含量降低。可见,适宜的氮肥用量才有利于提高稻米可溶性蛋白质含量,提高其营养品质。

4 结论

在本试验条件下,施氮量和栽插密度对产量、产量构成因素及干物质积累量有显著影响,且存在明显交互效应,产量提高主要是通过增加有效穗数实现的。在施氮量<225 kg/hm2时,增加栽插密度可显著提高水稻籽粒产量;而在施氮量>225 kg/hm2时,继续增施氮肥不能提高水稻产量和干物质积累量,这表明通过增施氮肥来提高水稻产量是不现实的。而施氮量和栽插密度对粳稻D46品质有不同程度的影响,其中以施氮量的影响最为显著。在低氮肥条件下,随着施氮量的增加,稻米的加工品质、外观品质、食味品质均趋好;而当氮肥用量>225 kg/hm2时稻米品质有所降低;提高栽插密度对稻米品质形成无利。以上所述,成都平原稻作区粳稻D46高产与优质的适宜施氮量为225 kg/hm2,栽插密度为26.67×104穴/hm2

参考文献
[1] GRIGLIONE A, LIBERTO E, CORDERO C, et al. High-quality Italian rice cultivars: chemical indices of ageing and aroma quality. Food Chemistry, 2015,172:305-313.
[2] 闵捷,汤圣祥,施建华,等.中国20世纪80年代以来育成糯稻品种的品质及其优质达标率分析.中国农业科学,2010,43(1):12-19.
MIN J, TANG S X, SHI J H, et al. Analysis of grain quality and superior quality rate of glutinous rice cultivars bred since the 1980s of the 20th century in China.Scientia Agricultura Sinica, 2010,43(1):12-19. (in Chinese with English abstract)
[3] 孙永健,杨志远,孙园园,等.成都平原两熟区水氮管理模式与磷钾肥配施对杂交稻冈优725产量及品质的影响.植物营养与肥料学报,2014,20(1):17-28.
SUN Y J, YANG Z Y, SUN Y Y, et al. Effects of water-nitrogen management patterns and phosphorus and potassium fertilizer combined application on grain yield and quality of hybrid rice Gangyou 725 in rapeseed (wheat)-rice planting area of Chengdu plain.Journal of Plant Nutrition and Fertilizer, 2014,20(1):17-28. (in Chinese with English abstract)
[4] 李凌,田麟,王涛涛,等.优质稻米“青香软粳”低直链淀粉含量形成分子机制的初步研究.植物生理学报,2012,48(2):147-155.
LI L, TIAN L, WANG T T, et al. Preliminary study for the molecular mechanism of low amylose content in high-quality rice (Oryza sativa L.) variety “Qingxiangruanjing”.Plant Physiology Journal, 2012,48(2):147-155. (in Chinese with English abstract)
[5] DONG W, CHEN J, WANG L, et al. Impacts of nighttime post-anthesis warming on rice productivity and grain quality in East China. The Crop Journal, 2014,2(1):63-69.
[6] REHMANI M I A, WEI G, HUSSAIN N, et al. Yield and quality responses of two indica rice hybrids to post-anthesis asymmetric day and night open-field warming in lower reaches of Yangtze River delta. Field Crops Research, 2014,156:231-241.
[7] HUANG M, YANG C, JI Q, et al. Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of southern China. Field Crops Research, 2013,149:187-192.
[8] 吕腾飞,周伟,孙永健,等.不同秧龄和氮肥运筹对杂交籼稻株型的影响.浙江大学学报(农业与生命科学版),2015,41(2):169-178.
LYU T F, ZHOU W, SUN Y J, et al. Effects of different transplanting seedling ages and nitrogen managements on plant type of indica hybrid rice.Journal of Zhejiang University (Agric. & Life Sci.), 2015,41(2):169-178. (in Chinese with English abstract)
[9] 严奉君,孙永健,马均,等. 秸秆覆盖与氮肥运筹对杂交稻根系生长及氮素利用的影响.植物营养与肥料学报,2015,21(1):23-35.
YAN F J, SUN Y J, MA J, et al. Effects of straw mulch and nitrogen management on root growth and nitrogen utilization characteristics of hybrid rice.Journal of Plant Nutrition and Fertilizer, 2015,21(1):23-35. (in Chinese with English abstract)
[10] VIJAYALAKSHMI P, VISHNUKIRAN T, KUMARI B R, et al. Biochemical and physiological characterization for nitrogen use efficiency in aromatic rice genotypes. Field Crops Research, 2015,179:132-143.
[11] DENG F, WANG L, REN W, et al. Enhancing nitrogen utilization and soil nitrogen balance in paddy fields by optimizing nitrogen management and using polyaspartic acid urea. Field Crops Research, 2014,169:30-38.
[12] 陈海飞,冯洋,蔡红梅,等.氮肥与移栽密度互作对低产田水稻群体结构及产量的影响.植物营养与肥料学报,2014,20(6):1319-1328.
CHENG H F, FENG Y, CAI H M, et al. Effect of the interaction of nitrogen and transplanting density on the rice population structure and grain yield in low-yield paddy fields.Journal of Plant Nutrition and Fertilizer, 2014,20(6):1319-1328. (in Chinese with English abstract)
[13] 胡雅杰,朱大伟,邢志鹏,等.改进施氮运筹对水稻产量和氮素吸收利用的影响.植物营养与肥料学报,2015,21(1):12-22.
HU Y J, ZHU D W, XING Z P, et al. Modifying nitrogen fertilization ratio to increase the yield and nitrogen uptake of super japonica rice.Journal of Plant Nutrition and Fertilizer, 2015,21(1):12-22. (in Chinese with English abstract)
[14] 刘彦伶,来庆,徐旱增,等.不同氮肥类型对黄泥田双季稻产量及氮素利用的影响.浙江大学学报(农业与生命科学版),2013,39(4):403-412.
LIU Y L, LAI Q, XU H Z, et al. Effects of different types of nitrogen fertilizers on grain field and utilization of double-cropping rice in the yellow clayey soil.Journal of Zhejiang University (Agric. & Life Sci.), 2013,39(4):403-412. (in Chinese with English abstract)
[15] 冯洋,陈海飞,胡孝明,等.高、中、低产田水稻适宜施氮量和氮肥利用率的研究.植物营养与肥料学报,2014,20(1):7-16.
FENG Y, CHEN H F, HU X M, et al. Optimal nitrogen application rates on rice grain yield and nitrogen use efficiency in high, middle and low-yield paddy fields.Journal of Plant Nutrition and Fertilizer, 2014,20(1):7-16. (in Chinese with English abstract)
[16] 巨晓棠,谷保静.我国农田氮肥施用现状、问题及趋势.植物营养与肥料学报,2014,20(4):783-795.
JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China.Journal of Plant Nutrition and Fertilizer, 2014,20(4):783-795. (in Chinese with English abstract)
[17] 于晓慧,王广元,李广信,等.不同施氮量和栽插密度对晋稻8号产量及品质的影响.中国稻米,2011,17(4):45-47.
YU X H, WANG G Y, LI G X, et al. Effects of N application rate and planting density on the yield and quality of Jindao 8.China Rice, 2011,17(4):45-47. (in Chinese with English abstract)
[18] 金军,徐大勇,蔡一霞,等.施氮量对水稻主要米质性状及RVA谱特征参数的影响.作物学报,2004,30(2):154-158.
JIN J, XU D Y, CAI Y X, et al. Effect of N-fertilizer on main quality characters of rice and RVA profile parameters.Acta Agronomica Sinica, 2004,30(2):154-158. (in Chinese with English abstract)
[19] 徐春梅,王丹英,邵国胜,等.施氮量和栽插密度对超高产水稻中早22产量和品质的影响.中国水稻科学, 2008,22(5):507-512.
XU C M, WANG D Y, SHAO G S, et al. Effects of transplanting density and nitrogen fertilizer rate on yield formation and grain quality of super high yielding rice Zhongzao 22.Chinese Journal of Rice Science, 2008,22(5):507-512. (in Chinese with English abstract)
[20] 赵国珍,陈于敏,苏振喜,等.施氮量和栽插密度对云粳30号淀粉RVA谱特性影响.中国稻米, 2013,19(5):33-35.
ZHAO G Z, CHENG Y M, SU Z X, et al. Effects of nitrogen fertilizer amount and transplanting density on RVA profile characteristics of Yunjing 30.China Rice, 2013,19(5):33-35. (in Chinese with English abstract)
[21] 谢黎虹,叶定池,陈能,等.播期和种植密度对水稻“中浙优1号”RVA特征值和米饭质地的影响.江西农业学报, 2007,19(10):1-4.
XIE L H, YE D C, CHEN N, et al. Effect of sowing date and plant density on starch RVA and texture properties in rice “Zhongzheyou 1”.Acta Agriculture Jiangxi, 2007,19(10):1-4. (in Chinese with English abstract)
[22] 张自常,李鸿伟,曹转勤,等.施氮量和灌溉方式的交互作用对水稻产量和品质影响.作物学报,2013,39(1):84-92.
ZHANG Z C, LI H W, CAO Z Q, et al. Effect of interaction between nitrogen rate and irrigation regime on grain yield and quality of rice.Acta Agronomica Sinica, 2013,39(1):84-92. (in Chinese with English abstract)
[23] American Association of Cereal Chemist (AACC). Approved Methods of the American Association of Cereal Chemists. 9th ed. Methods for RVA, The association: St. Paul, MN. 1995.
[24] 叶全宝,张洪程,李华,等.施氮水平和栽插密度对粳稻淀粉RVA谱特性的影响.作物学报,2005,31(1):124-130.
YE Q B, ZHANG H C, LI H, et al. Effects of amount of nitrogen applied and planting density on RVA profile characteristic of japonica rice.Acta Agronomica Sinica, 2005,31(1):124-130. (in Chinese with English abstract)
[25] 董桂春,李进前,于小凤,等.不同库容量常规籼稻品种物质生产与分配的基本特征.中国水稻科学,2009,23(6):639-644.
DONG G C, LI J Q, YU X F, et al. Characteristics of dry matter accumulation and distribution in conventional indica rice cultivars with different sink potentials.Chinese Journal of Rice Science, 2009,23(6):639-644. (in Chinese with English abstract)
[26] 张洪程,许轲,张军,等.双季晚粳生产力及相关生态生理特征.作物学报,2014,40(2):283-300.
ZHANG H C, XU K, ZHANG J, et al. Productivity and eco-physiological characteristics of late japonica rice in double-cropping system.Acta Agronomica Sinica, 2014,40(2):283-300. (in Chinese with English abstract)
[27] 樊红柱,曾祥忠,张冀,等.移栽密度与供氮水平对水稻产量、氮素利用影响. 西南农业学报,2010,23(4):1137-1141.
FAN H Z, ZENG X Z, ZHANG J, et al. Effects of transplanting density and nitrogen management on rice grain and nitrogen utilization efficiency.Southwest China Journal of Agricultural Sciences, 2010,23(4):1137-1141. (in Chinese with English abstract)
[28] 殷春渊,王书玉,薛应征,等.氮肥处理对水稻穗部性状和品质的影响.天津农业科学,2013,19(1):15-19.
YIN C Y, WANG S Y, XUE Y Z, et al. Effects of nitrogen treatment on the rice characteristics and quality.Tianjin Agricultural Sciences, 2013,19(1):15-19. (in Chinese with English abstract)
[29] 熊飞,王忠,顾蕴洁,等. 施氮时期对扬稻6号颖果发育及稻米品质的影响.中国水稻科学,2007,21(6):637-642.
XIONG F, WANG Z, GU Y J, et al. Effects of nitrogen application time on caryopsis development and grain quality of rice variety of Yangdao 6.Chinese Journal of Rice Science, 2007,21(6):637-642. (in Chinese with English abstract)
[30] 许仁良,戴其根,霍中洋,等.施氮量对水稻不同品种类型稻米品质的影响. 扬州大学学报(农业与生命科学版), 2005,26(1):66-68.
XU R L, DAI Q G, HUO Z Y, et al. Effects of nitrogen fertilizer quality on different rice variety quality.Journal of Yangzhou University (Agricultural and Life Science Edition), 2005,26(1):66-68. (in Chinese with English abstract)
[31] 李世峰,刘蓉蓉,张岳芳.施氮量对机插稻主要米质性状的影响.北方水稻,2012,42(3):9-12,16.
LI S F, LIU R R, ZHANG Y F. Effects of nitrogen application rate on rice quality of mechanical transplanting rice.Northern Rice, 2012,42(3):9-12,16. (in Chinese with English abstract)
[32] 程效义,徐海,马作斌,等.施氮量与栽插密度对粳稻稻米品质的影响.杂交水稻,2011,26(5):77-80.
CHENG X Y, XU H, MA Z B, et al. Effects of nitrogen rate and transplanting density on grain quality of japonica rice.Hybrid Rice, 2011,26(5):77-80. (in Chinese with English abstract)
[33] 王玉文,李会霞,田岗,等.小米外观品质及淀粉RVA谱特征与米饭适口性的关系.山西农业科学,2008,36(7):34-39.
WANG Y W, LI H X, TIAN G, et al. Relationship between cooked millet palatability and both visual quality and RVA profile character of starch.Journal of Shanxi Agricultural Sciences, 2008,36(7):34-39. (in Chinese with English abstract)
[34] 隋炯明,李欣,严松,等.稻米淀粉RVA谱特征与品质性状相关性研究.中国农业科学,2005,38(4):657-663.
SUI J M, LI X, YAN S, et al. Studies on the rice RVA profile characteristics and its correlation with the quality.Scientia Agricultura Sinica, 2005,38(4):657-663. (in Chinese with English abstract)
[35] 李刚,邓其明,李双成,等.稻米淀粉RVA谱特征与品质性状的相关性.中国水稻科学,2009,23(1):99-102.
LI G, DENG Q M, LI S C, et al. Correlation analysis between RVA profile characteristics and quality in rice.Chinese Journal of Rice Science, 2009,23(1):99-102. (in Chinese with English abstract)