浙江大学学报(农业与生命科学版)  2016, Vol. 42 Issue (1): 74-80
文章快速检索     高级检索
薯玉轮作对马铃薯根区土壤养分及酶活效应分析[PDF全文]
万年鑫, 郑顺林 , 周少猛, 张琴, 彭彬, 袁继超    
四川农业大学农学院/农业部西南作物生理生态与耕作重点实验室, 成都 611130
摘要: 在连续2年定位盆栽试验基础上,对马铃薯连作与轮作下根区土壤养分及酶活性进行测定,研究马铃薯玉米(薯玉)轮作对土壤根区养分及酶活性的效应,为解决马铃薯连作障碍提供理论依据。结果表明:在马铃薯连作下,成熟期时土壤养分含量较播种前均降低; 成熟期时薯玉轮作下仅全磷含量增加3.32%;而玉米马铃薯(玉薯)轮作下土壤全氮、全磷、速效磷、全钾和速效钾分别升高6.84%、32.67%、4.13%、3.77和10.81%。 而在玉薯轮作下土壤氮素、速效钾和薯玉轮作下碱解氮含量则降低,但其降低幅度低于马铃薯连作。由此表明,马铃薯连作对土壤养分的消耗较大,特别是对速效养分的消耗,降低幅度高于轮作。对于根区土壤的酶活性,除多酚氧化酶活性外,土壤脲酶活性、过氧化氢酶活性、蔗糖酶活性在成熟时均呈升高趋势,玉薯轮作与薯玉轮作较播种前分别升高了5.71%、2.19%、4.85%和52.07%、32.23%、11.62%。虽然马铃薯连作下土壤酶活性也升高,但是增幅显著低于轮作,说明薯玉轮作能够较快提高土壤酶活性,加速根区土壤生理生化反应。
关键词: 薯玉轮作    连作障碍    土壤养分    土壤酶活性    
Analysis of potato-maize rotation on rhizosphere soil nutrient and enzyme activity for potato.
WAN Nianxin, ZHENG Shunlin , ZHOU Shaomeng, ZHANG Qin, PENG Bin, YUAN Jichao    
College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Physiology, Ecology and Cultivation in Southwest, Ministry of Agriculture, Chengdu 611130, China
Summary: As the fourth major food crop, potato growing area increased year by year, which was an important mainstay industry in some provinces of China. In recent years, continuous cropping became common in potato growing areas. However, continuous cropping obstacle is one of the main factors limiting potato industry, which can lead to yield and quality losses, diseases spreading, and unbalanced soil ecology system. Therefore, it is an urgent task to explore effective ways to reduce the continuous cropping obstacle of potato and improve the yield and quality.

Crop rotation is an effective practice to overcome the continuous cropping obstacle. Many scientific researchers have demonstrated that the crop rotation can relieve soil sickness by improving soil quality, ecological microclimate and crop productivity. Therefore, the crop rotation practice can partly eliminate the continuous cropping obstacle, but the selection of appropriate companion crops is the key. In this study, maize was selected as a rotation successive crop, which is widely planted in mountainous area of southwest China. A short term (2 years) pot experiment with potato-maize rotation, maize-potato rotation compared with potato successive cropping was conducted to study the changes in soil nutrients and enzyme activities of rhizosphere soils. Meanwhile, the effects of potato-maize rotation on rhizosphere soil nutrient and enzyme activity were also discussed.

The results showed that, in mature period, rhizosphere soil nutrient contents of potato continuous cropping were decreased compared with those before seeding. Only total phosphorus of the rhizosphere soils in potato-maize crop rotation were increased by 3.32%, respectively. Total nitrogen, total phosphorus, and available phosphorus, total potassium and available potassium compared with those before seeding, maize-potato crop rotation were increased by 6.84%, 32.67%, 4.13%, 3.77% and 10.81%, respectively. The total nitrogen, alkali-hydrolyzable nitrogen in maize-potato rotation and the alkaline hydrolysis nitrogen in potato-maize rotation were decreased in the mature period, which were still higher than those in the potato continuous cropping. It was showed that soil nutrients, especially the available nutrients were over used in potato continuous cropping, compared with those in the rotation cropping.

Polyphenol oxidase activity had a significant difference in tuber bulking. For other soil enzyme activities of rhizosphere, in the mature stage of the maize-potato crop rotation, the activities of rhizosphere soil urease, catalase, invertase were increased by 5.71%, 2.19% and 4.85%, respectively, and also increased by 52.07%, 32.23% and 11.62% in potato-maize rotation, which were significantly higher than those in the potato continuous cropping system.

In summary, potato-maize crop rotation system can effectively relieve the potato continuous cropping obstacle by improving soil enzyme activities, and accelerating physiological and biochemical reactions of rhizosphere soils. Furthermore, the rotation system can relieve the potato continuous cropping obstacle effectively, and provide a theoretical basis for solving the problem of potato continuous cropping obstacle.

Key words: potato-maize rotation    continuous cropping obstacle    soil nutrient    soil enzyme activity    

马铃薯(Solanum tuberosum L.)是我国重要的粮经典型作物之一,成为继玉米、水稻、小麦之后我国将大力发展的第四大粮食作物。内蒙古与贵州、甘肃、四川、云南、重庆等西部省区是我国马铃薯主产区,其总种植面积逐年增加, 面积占全国马铃薯种植面积的65%[1],是部分地区的重要支柱产业,并占据着重要的地位。近年来,马铃薯连作问题较为严重,存在着连作障碍及茬口选择问题[2],严重影响马铃薯产业化的发展。作物长期连作会造成同一病虫草害肆虐,作物生育状况恶化,产量下降和品质变劣,更有甚者会致使作物死亡[3, 5]。因此,作物连作障碍问题目前已经成为农作物生产和农业发展中亟待解决的问题。有研究表明,连作使马铃薯产量和质量均下降[6, 7],对连作障碍机制的研究表明,连作导致土壤理化特性恶化,酶活性降低,微生物多样性减少[8, 10]。因此,探索如何有效地降低马铃薯连作障碍,提高马铃薯产品品质和产量已刻不容缓[11]

本研究采用盆栽试验,取马铃薯连作和马铃薯玉米(薯玉)、玉米马铃薯(玉薯)轮作的根区土壤,并对其根区土壤养分含量和土壤酶活性进行分析,研究连作和轮作根区土壤养分含量和酶活性差异,探讨轮作对马铃薯土壤养分的消耗机制、酶活性效应,为生产实践中解决马铃薯连作障碍提供理论依据与技术支持。

1 材料与方法 1.1 材料

供试马铃薯品种为川芋117,玉米品种为正红6号。

1.2 试验设计

试验在四川农业大学农场试验地进行,土壤类型为紫色壤土,前茬为马铃薯,供试土壤基础肥力(0~20 cm)为全氮2.68 g/kg,全磷0.58 g/kg,全钾13.00 g/kg,碱解氮138.68 mg/kg,有效磷18.72 mg/kg,速效钾126.31 mg/kg,pH 4.94。于2012年取试验地土层深度20 cm土壤,混匀后,装入长、宽、高为0.6 m×0.4 m×0.35 m 的盆栽(竹筐)中,2013年在盆栽中分别种植马铃薯、玉米和马铃薯。2014年,在盆栽中分别种植马铃薯、马铃薯和玉米,试验处理见表1。每个处理种植8盆,每盆玉米种植4株,马铃薯种植6株。取样时期分别为播种前、苗期、块茎膨大期和成熟期。取样方法为每个处理3次重复,每次重复为随机3株马铃薯根际土、2株玉米根际土分别混匀,将植株四周带土拔出,用刷子轻轻将根区周围的土壤刷出,用塑封带装后放入实验室备用。一部分在室内自然风干、磨细,过孔径1.0 mm筛,用于土壤酶活性的测定;另一部分土壤风干,用于土壤养分指标测定分析。

表1 试验处理Table 1 Experimental treatments *
点击放大
1.3 土壤各指标的测定方法

土壤养分含量的测定参照土壤农化分析的方法[12]。其中,土壤全氮采用凯氏定氮法,土壤全磷采用磷钼蓝比色法,土壤全钾测定采用(NaOH 熔融-火焰光度计法),碱解氮测定采用碱解扩散法,速效磷采用NH4F-HCl法测定,速效钾测定采用NH4OAc浸提后的火焰分光光度法,有机质采用重铬酸钾容量法—稀释热法。

土壤酶活性的测定参照土壤酶学的方法[13]。其中,脲酶采用苯酚钠-次氯酸钠比色法测定,以每1 g土壤在37 ℃下24 h内酶解尿素释放的NH3-N的毫克数来表示;多酚氧化酶测定采用邻苯三酚比色法,以2 h后1 g干土紫色没食子素的含量表示;蔗糖酶采用3,5-二硝基水杨酸比色法测定,以24 h后1 g土壤葡萄糖的毫克数表示;过氧化氢酶采用高锰酸钾滴定法测定,以每1 g土所消耗的0.02 mol/L KMnO4的毫升数表示。

1.4 数据处理与分析

试验数据采用Excel 2007进行统计,DPS 7.05进行方差分析。

2 结果与分析 2.1 土壤养分分析 2.1.1 薯玉轮作下土壤氮素含量变化

与播种前比较,在成熟期,玉薯轮作下根区土壤全氮升高6.84%,薯玉轮作降低4.14%,而马铃薯连作下根区土壤全氮含量显著低于轮作处理,与播种前比较降低14.55%,差异达显著水平,其他时期全氮含量无显著差异(表2)。碱解氮随生长期而逐渐减少,播种前,玉薯轮作下碱解氮含量显著低于马铃薯连作和薯玉轮作下碱解氮含量,随生长期差异逐渐变小。与播种前土壤碱解氮含量相比较,成熟期的碱解氮含量分别减少26.10%、13.36%和22.93%。马铃薯连作所消耗的全氮、碱解氮含量最高,无论是薯玉轮作还是玉薯轮作,土壤氮素含量降低均比马铃薯连作少。说明轮作能够减缓对土壤氮素的消耗。

表2 根区土壤氮素含量变化Table 2 Nitrogen contents of rhizosphere soils *
点击放大
2.1.2 薯玉轮作下土壤磷素含量变化

整个生育期,根区土壤的全磷含量在小范围内呈小幅度波动(表3)。在马铃薯连作下全磷含量呈下降趋势;薯玉、玉薯轮作在块茎膨大期时,全磷含量为最低,与播种前比较,成熟期时马铃薯连作下降15.49%,玉薯轮作和薯玉轮作分别增加32.67%和3.32%。根区土壤有效磷含量变化幅度大于全磷,成熟期马铃薯连作和薯玉轮作分别降低了35.96%和46.99%,玉薯轮作反而升高4.13%。本研究中,根区土壤的全磷值受作物种类影响较大,而速效磷在生育期内其含量变化差异很大,与土壤全磷含量变化结果相差较大,说明植株与根区土壤速效磷之间交换快,反应剧烈。

表3 根区土壤磷素含量变化Table 3 Phosphorus contents of rhizosphere soils *
点击放大
2.1.3 薯玉轮作下土壤钾素含量变化

整个生育期,全钾含量变化幅度小(表4)。与播种前比较,成熟期玉薯轮作下全钾升高3.77%,马铃薯连作和薯玉轮作分别降低1.83%和5.41%。对于根区速效钾含量变化,马铃薯连作呈下降趋势,玉薯轮作则缓慢上升,薯玉轮作在不同时期变化很大。直至成熟期,马铃薯连作下降23.91%,玉薯轮作升高10.81%,薯玉轮作降低5.55%。说明不管是连作还是轮作,不同时期,对钾需求大,尤其对速效钾。

表4 根区土壤钾素含量Table 4 Kalium contents of rhizosphere soils *
点击放大
2.1.4 薯玉轮作下土壤有机质含量变化

在各处理下有机质含量均呈缓慢下降趋势(表5)。与播种前比较,成熟期的有机质含量分别下降25.22%、29.37%和36.20%。尽管马铃薯是不耐连作型作物,但本试验中,马铃薯连作下有机质含量却比轮作高,下降幅度低于玉薯、薯玉轮作。

表5 根区土壤有机质含量Table 5 Organic matter contents of rhizosphere soils *
点击放大
2.2 土壤酶活性分析

蔗糖酶活性在块茎膨大期和成熟期各处理间均出现显著性差异,在各处理下蔗糖酶活性呈上升趋势,尤以薯玉轮作下蔗糖酶活性升高得最快(表6)。与播种前比较,成熟期马铃薯连作、玉薯轮作和薯玉轮作,其蔗糖酶活性依次升高7.65%、35.71%和52.07%。脲酶活性与蔗糖酶活性变化趋势相似。除玉薯轮作呈平稳的趋势外,其他处理呈缓慢上升趋势。与播种前比较,成熟期脲酶活性分别升高18.84%、2.19%和32.23%。对于多酚氧化酶活性,除在块茎膨大期不同处理间存在显著差异外,在整个时间段内,各处理间多酚氧化酶活性差异不显著。除薯玉轮作下多酚氧化酶活性升高3.21%外,其他处理分别降低3.5%和7.10%。过氧化氢酶主要来源于细菌、真菌以及植物根系的分泌物。它能解除过氧化氢的毒害作用。整个生育期,过氧化氢酶的活性变化很大,尤其以块茎膨大期和成熟期为典型,块茎膨大期内连作均显著高于轮作的过氧化氢酶活性,而成熟期,结果正好相反,与播种前比较,除马铃薯连作降低10.83%,轮作处理分别升高4.85%和11.62%。说明,在播种前与苗期,根区土壤的酶活性变化差异不明显,而后块茎膨大期与成熟期时,根区土壤的酶活性发生剧烈改变。这时植株与土壤的作用强烈,以块茎膨大期最为明显,是影响马铃薯生长发育的重要时期。

表6 根区土壤酶活性Table 6 Enzyme activities of Rhizosphere soils *
点击放大
3 讨论与结论

在马铃薯连作下土壤全氮、全磷、全钾均呈下降趋势,与轮作处理比较,差异显著。除薯玉轮作下全氮含量降低外,在薯玉、玉薯轮作下成熟期全氮、全磷、全钾含量均升高,但两者升高程度不同。玉薯轮作后全效养分高于薯玉轮作。这说明,在不同连作、轮作系统中,不同作物根系养分含量,及其根系分泌物产生自毒作用[14]和残茬对土壤全效养分影响有所差异。速效养分变化与全效养分变化未表现出一致性,仅玉薯轮作下速效磷和薯玉轮作下速效钾出现小幅升高,其他处理均急速下降,且马铃薯连作下降幅度高于其他处理。整个试验时期内,土壤速效养分比全效养分变化快,全效养分更趋向稳定状态。造成这种现象,可能是因为试验取样为根区土壤。经研究发现,根区土壤与非根区土壤养分存在差异[15]。根系是植株与土壤进行物质交换的活动中心,反应速度快,也更剧烈,从而影响土壤养分含量,产生差异。因而在生产实践中,可考虑采用玉薯轮作方式解决马铃薯连作障碍问题。

土壤有机质是评价土壤肥力水平的一项重要指标。有机质含量高低影响土壤的结构性和保肥、供肥能力。此次试验结果表明,不管是薯玉轮作还是玉薯轮作,其有机质消耗均高于马铃薯连作。这与前人的研究不一致[16, 17],原因可能是在轮作系统中,其总生育时期均长于马铃薯连作,消耗的有机质多,同时马铃薯连作对土壤肥力消耗不大,对有机质含量影响较小。

土壤酶活性反映土壤中多种生物化学过程的强度和土壤养分转化的强弱[18, 19]。在营养物质转化、能量代谢、污染物质净化和温室气体排放等过程中都发挥着十分重要的作用,因此土壤酶被认为是土壤生态过程的中心[15, 18, 20]。在对设施蔬菜轮作的研究中发现轮作土壤的脲酶、过氧化氢酶的活性显著提高,有助于土壤分解有机化合物从而提高土壤肥力[21]。本研究中,除马铃薯连作下过氧化氢酶活性降低,其他处理下蔗糖酶、脲酶和过氧化氢酶活性均升高,且轮作下根区土壤酶活性升高程度高于马铃薯连作。轮作系统下根区土壤酶活性均高于马铃薯连作下根区土壤酶活性。同时,在块茎膨大期,各处理间根区酶活性差异明显 ,造成这种现象的原因可能是不同作物种类对养分消耗量不同导致土壤残留养分的差异,从而引起土壤各种酶活性的差异。且在生长旺盛期,土壤根系活动旺盛,与根区土壤养分作用剧烈,从而影响根区土壤酶活性大小。与连作系统相比,土壤酶活性对轮作系统效果更敏感[16, 22, 23],轮作向土壤中输入的物质种类和数量要多,同时更有利于土壤的良性发育。

土壤多酚氧化酶能把土壤中芳香族化合物氧化成醌,醌与土壤中蛋白质、氨基酸、糖类、矿物等物质反应生成大小分子质量不等有机质和色素,完成土壤芳香族化合物循环。多酚氧化酶(polyphenol oxidase,PPO)是由植物根系分泌、土壤微生物活动及动植物残体分解等释放的复合性酶,可降解土壤中酚类物质,减缓植物间的化感作用,也因此为优势植物扩大其生境创造条件[24, 25]。在本研究中,多酚氧化酶与其他酶活性变化趋势不同。块茎膨大期各个处理差异显著,而其他时期差异不显著。造成这种差异的原因可能是,在生长旺盛期,为减缓植物间的化感作用,根系分泌旺盛;同时可能玉米对化感物质不敏感,酶活性高,而马铃薯对化感物质敏感,酶活性低。在成熟期时,薯玉轮作的多酚氧化酶活性升高,马铃薯连作的多酚氧化酶活性降低幅度高于玉薯轮作。连作下土壤酶活性主要考虑与土壤肥力有关的蔗糖酶、脲酶、过氧化氢酶,对多酚氧化酶研究较少[8]。本研究中发现,连作、轮作系统下多酚氧化酶活性存在差异,且差异显著。因此,可考虑将土壤多酚氧化酶作为马铃薯连作障碍的指标之一,但这需要做进一步的验证。

参考文献
[1] 龙蔚,金璟,张德亮,等.云南省马铃薯生产与市场行情分析.云南农业大学学报(社会科学版),2013(2):15-17.
LONG W, JIN J, ZHANG D L, et al. The analysis for potato production and market quotation of Yunnan Province.Journal of Yunnan Agricultural University (Social Sciences), 2013(2):15-17.(in Chinese with English abstract)
[2] 韩丽梅,王树起,鞠会艳,等.大豆根茬腐解产物的鉴定及化感作用的初步研究.生态学报,2000,20(5):771-778.
HAN L M, WANG S Q, JU H Y, et al. Identification and allelopathy on the decomposition products from soybean stubs.Acta Ecologica Sinica, 2000,20(5):771-778. (in Chinese with English abstract)
[3] 黄承彪.设施园艺中的土壤生态问题分析及清洁生产对策.农业与技术,2012,32(7):17-18.
HUANG C B. Horticultural facilities in the soil ecological problem analysis and countermeasures of cleaner production.Agriculture and Technology, 2012,32(7):17-18. (in Chinese)
[4] Zhang X H, Lang D Y, Zhang E H, et al. Effect of autotoxicity and soil microbes in continuous cropping soil on angelica sinensis seedling growth and rhizosphere soil microbial population.Chinese Herbal Medicines, 2015,7(2):88-93.
[5] XIAO X M, CHENG Z H, MENG H W, et al. Intercropping with garlic alleviated continuous cropping obstacle of cucumber in plastic tunnel.Soil and Plant Science, 2012,62:696-705.
[6] 胡宇,郭天文,张绪成.旱地马铃薯连作对土壤养分的影响.安徽农业科学,2009,37(12):5436-5439.
HU Y, GUO T W, ZHANG X C. Effect of potato continuous cropping on soil nutrients in dry land.Journal of Anhui Agricultural Science, 2009,37(12):5436-5439. (in Chinese with English abstract)
[7] 裴国平,王蒂,张俊莲.马铃薯连作障碍产生的原因与防治措施.广东农业科学,2010(6):30-32.
PEI G P, WANG D, ZHANG J L. Study on the occurring reasons and controls of continuous cropping obstacle in potato.Guangdong Agricultural Sciences, 2010(6):30-32. (in Chinese with English abstract)
[8] 孙秀山,封海胜,万书波,等.连作花生田主要微生物类群与土壤酶活性变化及其交互作用.作物学报,2001,27(5):617-621.
SUN X S, FENG H S, WAN S B, et al. Changes of main microbial strains and enzymes activities in peanut continuous cropping soil and their interactions.Acta Agronomica Sinica, 2001,27(5):617-621. (in Chinese with English abstract)
[9] 王树起,韩晓增,乔云发,等.寒地黑土大豆轮作与连作不同年限土壤酶活性及相关肥力因子的变化.大豆科学,2009,28(4):611-615.
WANG S Q, HAN X Z, QIAO Y F, et al. Variation of soil enzymes activity and relevant nutrients at different years of soybean rotation, alternant and continuous cropping.Soybean Science, 2009,28(4):611-615. (in Chinese with English abstract)
[10] 高扬,高小丽,马瑞瑞,等.轮作连作荞麦田主要微生物类群及土壤酶活性变化.中国农业大学学报,2014,19(4):47-53.
GAO Y, GAO X L, MA R R, et al. Changes of main microbial strains and enzymes activities in buckwheat rotation and continuous cropping soil.Journal of China Agricultural University, 2014,19(4):47-53. (in Chinese with English abstract)
[11] 曹莉,秦舒浩,张俊莲,等.轮作豆科牧草对连作马铃薯田土壤微生物菌群及酶活性的影响.草业学报,2013,22(3):139-145.
CAO L, QIN S H, ZHANG J L, et al. Effect of leguminous forage rotations on soil microbe consortiums and enzyme activity in continuously cropped potato fields.Acta Prataculturae Sinica, 2013,22(3):139-145. (in Chinese with English abstract)
[12] 鲍士旦.土壤农化分析.北京:中国农业出版社,2005:30-107.
BAO S D. Soil and Agricultural Chemistry Analysis. Beijing: China Agricultural Press, 2005:30-107. (in Chinese)
[13] 关松荫.土壤酶及其研究法.北京:农业出版社,1989:260-340.
GUAN S Y. Soil Enzyme and its Research Methods. Beijing: Agricultural Press, 1989:260-340. (in Chinese)
[14] 甄文超,曹克强,代丽,等.连作草莓根系分泌物自毒作用的模拟研究.植物生态学报,2008,28(6):828-832.
ZHEN W C, CAO K Q, DAI L, et al. Simulation of auto-toxicity of strawberry root excreta under continuous cropping.Chinese Journal of Plant Ecology, 2008,28(6):828-832. (in Chinese with English abstract)
[15] 张桂玲. 秸秆和生草覆盖对桃园土壤养分含量、微生物数量及土壤酶活性的影响.植物生态学报,2011,35(12):1236-1244.
ZHANG G L. Effects of straw and living grass mulching on soil nutrients, soil microbial quantities and soil enzyme activities in a peach orchard.Chinese Journal of Plant Ecology, 2011,35(12):1236-1244. (in Chinese with English abstract)
[16] 刘沛松,贾志宽,李军,等.宁南旱区不同草粮轮作方式中前茬对春小麦产量和土壤性状的影响.水土保持学报,2008,22(5):146-152.
LIU P S, JIA Z K, LI J, et al. Effects of different alfalfa-grains rotation patterns on Spring wheat yield and soil properties in dry area of Southern Ningxia.Journal of Soil and Water Conservation, 2008,22(5):146-152. (in Chinese with English abstract)
[17] 赵索,周传余,周超,等.蔬菜不同轮作方式对温室甜瓜产量及根区土壤酶活性的影响.黑龙江农业科学,2014(1):73-76.
ZHAO S, ZHOU C Y, ZHOU C, et al. Effects of different vegetable crop rotation patterns on the yield and rhizosphere soil enzyme activities of muskmelon in greenhouse.Heilongjiang Agricultural Sciences, 2014(1):73-76. (in Chinese with English abstract)
[18] 虎德钰,毛桂莲,许兴.不同草田轮作方式对土壤微生物和土壤酶活性的影响.西北农业学报,2014,23(9):106-113.
HU D Y, MAO G L, XU X. Effects of different grass-crop rotation on edaphon and enzyme activity in soil.Acta Agriculturae Boreali-occidentalis Sinica, 2014,23(9):106-113. (in Chinese with English abstract)
[19] 孙瑞莲,赵秉强,朱鲁生,等.长定位施肥期田土壤酶活性的动态特征变化.生态环境,2008,17(5):2059-2061.
SUN R L, ZHAO B Q, ZHU L S, et al. Dynamic changes of soil enzyme activities in long-term fertilization soil.Ecology and Environment, 2008,17(5):2059-2063. (in Chinese with English abstract)
[20] 周礼恺.土壤酶学.北京:科学出版社,1987:112-123.
ZHOU L K. Soil Enzymology. Beijing: Science Press, 1987:112-123. (in Chinese)
[21] 吴凤芝,周新刚.黄瓜连作障碍研究进展.大豆科学,2013(6):805.
WU F Z, ZHOU X G. Reviewed of cucumber continuous cropping obstacle.Soybean Science, 2013(6):805. (in Chinese with English abstract)
[22] 郜翻身,崔志祥,樊润威,等.有机物料对盐碱化土壤的改良作用.土壤通报,1997,28(1):10-12.
GAO F S, CUI Z X, FAN R W, et al. Organic materials for the amelioration of soil salinization.Chinese Journal of Soil Science, 1997,28(1):10-12. (in Chinese)
[23] 刘恩科,赵秉强,李秀英,等.长期施肥对土壤微生物量及土壤酶活性的影响.植物生态学报,2008,32(1):176-182.
LIU E K, ZHAO B Q, LI X Y, et al. Biological properties and enzymatic activity of arable soils affected by long-term different fertilization systems.Chinese Journal of Plant Ecology, 2008,32(1):176-182. (in Chinese with English abstract)
[24] 杨梅,谭玲,叶绍明,等.桉树连作对土壤多酚氧化酶活性及酚类物质含量的影响.水土保持学报,2012,26(2):166-174.
YANG M, TAN L, YE S M, et al. Effects of continuous eucalyptus plantation on activity of polyphenol oxidase and phenol contents in soil.Journal of Soil and Water Conservation, 2012,26(2):166-174. (in Chinese with English abstract)
[25] 郝建朝,吴沿友,连宾,等.土壤多酚氧化酶性质研究及意义.土壤通报,2006,37(3):470-474.
HAO J C, WU Y Y, LIAN B, et al. Properties of polyphenol oxidase in soil and its significance.Chinese Journal of Soil Science, 2006,37(3):470-474. (in Chinese with English abstract)