浙江大学学报(农业与生命科学版)  2016, Vol. 42 Issue (1): 23-29
文章快速检索     高级检索
栗蓬抗菌成分提取工艺的优化与联合测定[PDF全文]
刘淑萍 , 王蕾    
华北理工大学化学工程学院,河北 唐山 063009
摘要: 正交试验优化栗蓬抗菌成分的提取工艺,进一步对提取液进行分级醇沉及去除蛋白操作后,采用反相高效液相色谱(reversed-phase high-performance liquid chromatography,RP-HPLC)法对所提抗菌成分进行定性及联合定量测定。结果表明,在最优条件下,一次的提取率可达88.2%。采用Lichrospher C18色谱柱(150 mm×4.6 mm,5 μm),以甲醇0.1%的磷酸水溶液为流动相,梯度洗脱程序,检测波长为280 nm,流速1 mL/min,柱温30 ℃可较好地测定栗蓬中没食子酸、原儿茶酸、槲皮素的含量。各成分质量浓度与峰面积在测定范围内均呈良好的线性关系(r>0.999),平均加样回收率(n=9)分别为98.9%、96.0%和97.1%,相对标准偏差(relative standard deviation,RSD)分别为2.36%、0.77%和4.73%。
关键词: 栗蓬    抗菌成分    提取    联合测定    
Optimization of the extraction process and combined determination of antibacterial ingredients of Li Peng。
LIU Shuping , WANG Lei    
College of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, Hebei, China
Summary: Li Peng is the Chaetomium of chestnut (involucre of plant chestnut), also called the involucre of chestnut, thorn shell of chestnut, or Sarg. of chestnut etc. In the areas rich in Chinese chestnut, large amounts of waste Li Peng was produced, besides a small amount of which can be used for firewood, the rest will be discarded to rot or burned; however, it is not only a waste of resources, but also cause serious environmental pollution. Reports showed that Li Peng could be used as a raw material to cultivate chestnut mushrooms, but it was only an accessory ingredient, and the main ingredient was cotton seed shell of chestnut tree, so Li Peng has yet to be fully used. In some areas, the phenomenon of hyphae overgrowth occurred in chestnut mushrooms cultivated by Li Peng, the reason was due to its antibacterial effect.
The purpose of this paper was to establish a simple and low-cost technique for extraction of antibacterial components from Li Peng. At the same time, a high sensitive, good repeatable and stable, simple and rapid method was used to determine the antibacterial ingredients of Li Peng.
This paper used the single factor experiment and the orthogonal experiment optimization for the extraction process of antibacterial components in Li Peng. Furthermore, polysaccharide in the samples was precipitated by ethanol and the qualitative and quantitative combined determination of antibacterial components were carried out using reversed-phase high-performance liquid chromatography (RP-HPLC) method after protein removal.
The results showed that the best way to extract the antibacterial composition of the 60-mesh fine slag in Li Peng was under 1∶40 material liquid ratio, 70 W ultrasonic reflux 20 min. Using Lichrospher C18 column (150 mm × 4.6 mm, 5 μm), methanol-0.1% phosphoric acid solution as the mobile phase, the flow rate of 1 mL/min, the detection wavelength at 280 nm, column temperature of 30 ℃ with the gradient elution program, the gallic acid, protocatechuic acid, and quercetin content in Li Peng could be better determined. The quality concentrations of each component with peak area showed a good linear relationship (r>0.999) in the measurement range. The average sample recovery (n=9) rate were 98.9%, 96.0%, 97.1%. The relative standard deviation (RSD) were 2.36%, 0.77%, 4.73%.
We optimized the extraction of antibacterial ingredients in Li Peng. By simple operation, low energy consumption and high extract efficiency method increased the feasibility of this technology, and provides theoretical basis of mass industrial production for the extraction of antibacterial ingredients in Li Peng. Under the optimum conditions, we can extract 88.2% antibacterial components from chestnut at one time. The antibacterial component of gallic acid, protocatechuic acid, quercetin content in Li Peng was 0.176 0 mg/g (RSD=0.23%), 0.053 7 mg/g (RSD=0.16%), 0.019 6 mg/g (RSD=0.21%), respectively. The RP-HPLC is a high sensitive, good repeatable and stable method, which is also simple, convenient and accurate. This paper enriched the reference basis for the combined determination of the antibacterial components of Li Peng.
Key words: Li Peng    antibacterial constituents    extraction    combined determination    

栗蓬为板栗毛壳(植物栗的总苞),又称板栗总苞等。据焦启扬等[1]报道栗蓬含有大量抗菌成分,具有很高的药用价值。现代药理研究表明:栗蓬的水煎液、醇溶物、乙酸乙酯提取物等均有不同程度的抗菌活性[2, 3, 4]。其中没食子酸(gallic acid)、原儿茶酸(protocatechuic acid)作为有机酸中的主要有效成分,以及黄酮类化合物槲皮素(quercetin),都具有抗真菌、抗感染、抗病毒、抗肿瘤等药理活性及药用价值[1, 5, 6]。因此,对其提取测定具有实际意义并可代表抗菌成分的提取效果。对以上3种物质现有测定的方法有流动注射化学发光法、高效液相色谱法、紫外分光光度法等[7, 8, 9, 10, 11, 12];然而对于在栗蓬中这3种物质的同时测定方法还未见报道。因此,本试验采用反相高效液相色谱(reversed-phase high-performance liquid chromatography,RP-HPLC)法,以梯度洗脱程序对栗蓬中没食子酸、原儿茶酸、槲皮素的含量进行测定。RP-HPLC具有分析速度快、分辨率和灵敏度高、分离效果好等特点,而且样品经过色谱柱后不被破坏,可以为栗蓬的进一步研究提供基础数据。

在盛产板栗的地区,会产生大量的栗蓬废弃物,除少量用作烧柴外,其余则被丢弃腐烂,这样不仅浪费资源,还造成严重的环境污染。据报道未处理的栗蓬可作为原料培育栗蘑,但其仅为配料,主料仍是栗树枝棉籽壳等[13],栗蓬仍未得到充分利用。因此,研究对栗蓬中抗菌成分提取的优化工艺和测定是必要的。根据现有的板栗总苞化学成分的提取方法[14, 15, 16, 17, 18, 19],本文采用正交试验法对栗蓬中抗菌成分的提取进行了优化。

1 材料与方法 1.1 试验材料与试剂

试验材料:栗蓬采集于2014年唐山市迁西县,板栗收获采集后,风干栗蓬,破碎过60目筛.

试剂:甲醇(色谱纯,天津市四有精细化学品有限公司),乙醇(河北建宁医药化工厂),原儿茶酸对照品(上海如吉生物科技发展有限公司,纯度≥98%),没食子酸(分析纯,天津市科密欧化学试剂有限公司),槲皮素对照品(纯度98%,上海如吉生物科技发展有限公司),磷酸(分析纯),超纯水。

1.2 主要仪器设备

JY99-2D超声波细胞粉碎机(宁波新芝生物科技股份有限公司);日立L-2000型高效液相色谱仪(包括L-2130高通量泵,L-2200自动进样器,L-2300柱温箱,L-2455二极管阵列检测器)。

1.3 栗蓬抗菌成分的提取与优化

取60目的板栗总苞,至圆底烧瓶内,加入一定体积的甲醇溶液,在一定的超声波功率下提取一定时间,过滤残渣,定容于容量瓶中备用。按此步骤,研究各条件对栗蓬中抗菌成分提取率的影响。

通过4因素3水平[L9(34)]正交试验,以提取率为考核指标,进行优化提取。

1.4 提取液中多糖和蛋白质的去除

提取液浓缩后,以90%乙醇对其醇沉12 h。取多次醇沉后的样液按体积4∶1加入Sevage试剂,剧烈振荡后离心,收集上清液,重复多次,直到没有乳白色变性蛋白质析出。

1.5 3种抗菌成分的定性及定量技术 1.5.1 色谱条件的确定

在1.3节中所确定的最优提取条件下,并经过1.4节步骤去除多糖和蛋白质后,得到待测提取液。

C18填料与硅胶基质相比,具有更强的疏水性,反相色谱的流动相需选择极性较强的溶液,因此本试验选用Lichrospher C18色谱柱,以甲醇0.1%的磷酸水溶液为流动相对没食子酸、原儿茶酸、槲皮素的标准品进行波长扫描,结果显示均在280 nm附近有最大吸收,故选择280 nm为3个成分的检测波长。

比较了3种流速,结果显示流速为0.5 mL/min时,各峰之间可以完全分离,但耗时太长;流速为1.5 mL/min及以上时,没食子酸、原儿茶酸、槲皮素分离度较低;流速为1 mL/min时,12 min以内3种成分可得到分离,且分离度较好。

柱温较低时,由于采集时间长,后面洗脱出来的峰漂移严重;柱温太高,长时间操作容易对柱子造成损伤。所以选择柱温为30 ℃,既解决了漂移问题,又延长了柱子的寿命。

3种成分由于结构上的差异,选择多种单一体系的流动相试验,均不能将这3种成分同时分开,且干扰严重,分离度不能满足测定需求。根据没食子酸的极性最强,原儿茶酸次之,槲皮素极性最弱的性质,选择梯度洗脱程序,先用甲醇0.1%的磷酸水溶液(15∶85),再将流动相比例线性改变至55∶45,将栗蓬中极性较小的物质全部洗脱出来,使3种成分得到满意的分离,兼顾了分离度和较好的出峰时间。

以此确定色谱条件为Lichrospher C18色谱柱(150 mm×4.6 mm,5 μm);甲醇0.1%的磷酸水溶液为流动相;梯度洗脱程序(表1);检测波长为280 nm;流速1 mL/min;柱温30 ℃;进样量10 μL对提取液中没食子酸、原儿茶酸、槲皮素进行测定。

表1 流动相梯度洗脱程序Table 1 Mobile phase gradient elution program
点击放大
1.5.2 标准曲线的绘制

在1.5.1节色谱条件下,分别精密量取系列质量浓度的混合对照品溶液10 μL,注入液相色谱仪,记录色谱图。以峰面积为纵坐标(y),对照品质量为横坐标(x),进行线性回归。

1.5.3 精密度、稳定性、重复性、加样回收率试验

1)精密度:精密量取供试样品溶液,测定没食子酸、原儿茶酸和槲皮素的峰面积,分别计算3种成分的相对标准偏差(relative standard deviation,RSD)(n=6)。

2)稳定性:精密量取供试品溶液,在常温下放置24 h,在0、3、6、9、12、24 h分别进样10 μL,测定没食子酸、原儿茶酸和槲皮素的峰面积,分别计算3种成分的RSD(n=6)。

3)重复性:精密称取栗蓬样品6份,制备供试样品溶液,测定没食子酸、原儿茶酸和槲皮素的峰面积,分别计算3种成分的RSD。

4)加样回收率:取栗蓬样品9份,每份1 g,精密称量,每3份1组,按高、中、低3个水平分别精密加入对照品溶液,制备供试样品溶液,按1.4节去除多糖和蛋白质后,分别测定没食子酸、原儿茶酸和槲皮素的峰面积,计算平均回收率。

1.5.4 样品测定

取栗蓬样品3份,按1.3节所确定的最优提取条件制备供试样品溶液,进样测定,每份平行测定9次,以外标法计算没食子酸、原儿茶酸、槲皮素的含量。

2 结果与分析 2.1 栗蓬抗菌成分的提取技术 2.1.1 栗蓬粒度对抗菌成分提取效果的影响

按1.3节试验方法与步骤,改变栗蓬的目数,考察其对抗菌成分(均以原儿茶酸为例)提取效率的影响。试验结果(图1)表明,当粒度大于50目时,抗菌成分提取率达到最大值(61.2%),这是由于随着颗粒度的减小,比表面积增大,与提取剂接触面增大,有利于抗菌成分溶胀浸出。选择栗蓬最佳粒度值为60目。

图1 粒度对抗菌成分提取效果的影响 Fig.1 Effects of particle size on extraction of antibacterial components
2.1.2 提取剂的选择对抗菌成分提取效果的影响

按1.3节的试验方法与步骤,改变栗蓬的提取剂种类,考察其对抗菌成分提取效率的影响。试验结果见表2

表2 不同提取剂对抗菌成分提取效果的影响Table2 Effects of different extracting agents on extraction of antibacterial components
点击放大

表2数据可得,不同提取剂的提取率有较大差别。以水提取时杂质较多,出峰复杂,分离较繁琐,不利于定量分析,根据提取率的大小优选甲醇。

2.1.3 助提方法效果对比

按改变栗蓬的助提方法,考察其对抗菌成分提取效率的影响。试验结果(表3)表明,在相同的试验时间内热回流提取的抗菌成分较冷浸、温浸高,而超声波助提法在短时间内能达到与热回流相当的量,提取时间却减少了72 min,效率明显提高。这是由于超声波的机械效应、空化效应与热效应等,使细胞壁上的有效成分更快地溶解于溶剂之中。以上所述,确定最佳提取方法为超声波助提。

表3 不同提取方法对抗菌成分提取效果的影响Table 3 Effects of different extraction methods on extraction of antibacterial components
点击放大
2.1.4 提取工艺的正交试验优化

表4的试验数据表明,4因素均对抗菌成分提取有不同程度的影响,各因素影响的主次顺序为D>A>C>B。由正交试验结果RD最大可知,时间的改变对试验结果的影响最大,而甲醇浓度对提取率的影响最小;根据K值确定出最佳提取方案为A2B2C2D3。该条件可作为栗蓬中抗菌成分超声波提取的最佳工艺条件。

表4 L9(34)正交试验结果与分析表Table 4 Results and analysis of L9(34) orthogonal experiment
点击放大

在优化条件下以提取4次的总和为抗菌成分含量,一次提取的提取率可达88.2%。

2.2 3种抗菌成分的定性及定量结果 2.2.1 标准曲线的制备

按1.5.2节的试验步骤和方法,绘制峰面积与质量的工作曲线,得3种成分的回归方程(表5)。

表5 3种成分的线性关系Table 5 Linear relationship of the three components
点击放大
2.2.2 精密度、稳定性、重复性、加样回收率试验结果

按1.5.3节试验步骤测得结果(表6)表明,该工艺精密度与重复性良好,平均加样回收率在96.0%~98.9%之间,供试品溶液在24 h内相对稳定。此方法准确可靠,可作为栗蓬中抗菌成分测定的参考依据。

表6 精密度、稳定性、重复性、加样回收率试验结果Table 6 Results of precision,stability,repeatability and recovery of experiments
点击放大
2.2.3 抗菌成分测定结果

没食子酸、原儿茶酸、槲皮素的混合对照品与栗蓬提取液的色谱图(图2)显示, 没食子酸、原儿茶酸、槲皮素标准品的出峰时间分别为5.86、9.70和11.51 min,而样液的出峰时间5.88、9.79和11.53 min,与标准品一致,据此可判断各成分含量,试验结果见表7

图2 混合对照品(A)、栗蓬提取液(B)的HPLC色谱图 Fig. 2 HPLC chromatogram of mixed reference (A) and Li Peng extracts (B)

表7 栗蓬中3种成分的测定结果Table 7 Determination of the three components in Li Peng
点击放大
3 结论

1)栗蓬中抗菌成分在最优提取条件下,以提取4次的总和为抗菌成分含量,在最优条件下提取一次,能将88.2%的抗菌成分提取出来。

2)RP-HPLC方法,梯度洗脱程序,同时联合测定栗蓬中抗菌成分(没食子酸、原儿茶酸、槲皮素成分)的含量。抗菌成分没食子酸、原儿茶酸、槲皮素含量分别为0.176 0 mg/g(RSD=0.23%)、0.053 7 mg/g(RSD=0.16%)、0.019 6 mg/g(RSD=0.21%),此方法灵敏度高,重复性和稳定性良好,测定简便、快速,结果准确,丰富了栗蓬抗菌成分联合测定的参考依据。

参考文献
[1] 焦启扬,吴立军,黄建,等.板栗总苞化学成分的分离与鉴定.沈阳药科大学学报,2009,26(1):23-26.
JIAO Q Y, WU L J, HUANG J, et al. Chemical constituents from the involucre of Castanea mollissima Blume. Journal of Shenyang Pharmaceutical University,2009,26(1):23-26. (in Chinese with English abstract)
[2] 张琳,高慧媛,马场正树,等.板栗总苞中的抗糖尿病活性成分.沈阳药科大学学报,2010,27(7):530-532.
ZHANG L, GAO H Y, MASAKI B, et al. Constituents with anti-diabetic activity from the involucre of Castanea mollissima Blume. Journal of Shenyang Pharmaceutical University, 2010,27(7):530-532. (in Chinese with English abstract)
[3] 刘淑萍,陈立棉.HPLC法同时测定板栗总苞中3种黄酮苷元含量.天然产物研究与开发,2013,25(11):1541-1544.
LIU S P, CHEN L M. Simultaneous determination of three flavone glycosides in chestnut involucre by HPLC. Natural Product Research and Development,2013,25(11):1541-1544. (in Chinese with English abstract)
[4] 石恩慧,李红,谷明灿,等.板栗总苞多酚纯化工艺优化及其对细胞活力的影响.中国食品学报,2013,13(6):134-140.
SHI E H, LI H, GU M C, et al. Purification technology of polyphenols from Castanea mollissima Blume with macroporous absorbent resin. Journal of Chinese Institute of Food Science and Technology, 2013,13(6):134-140. (in Chinese with English abstract)
[5] 周家驹,谢桂荣,严建新. 中药原植物化学成分手册. 北京:高等教育出版社,2004:9.
ZHOU J J, XIE G R, YAN J X. Traditional Chinese Medicines Molecular Structures, Natural Sources and Applications. Beijing: Higher Education Press, 2004:9. (in Chinese)
[6] 张连茹,陈喀林,林路,等. 锌(Ⅱ)没食子酸的配位行为及其与 DNA的相互作用.武汉大学学报(理学版),2004,50(2):234-238.
ZHANG L R, CHEN K L, LIN L, et al. Study on the complexes of gallic acid-Zn (Ⅱ) and the interaction with DNA. Journal of Wuhan University (Natural Science Edition), 2004,50(2):234-238. (in Chinese with English abstract)
[7] PHAKTHONG W, LIAWRUANGRATH B, LIAWRUANGRATH S. Determination of gallic acid with rhodanine by reverse flow injection analysis using simplex optimization. Talanta, 2014,130(1):577-584.
[8] DENDERZ N, LEHOTAY J. Using of molecularly imprinted polymers for determination of gallic and protocatechuic acids in red wines by high performance liquid chromatography. Journal of Chromatography A, 2014,1372:72-80.
[9] YAO Y Y, ZHANG L, WANG Z F, et al. Electrochemical determination of quercetin by self-assembled platinum nanoparticles poly(hydroxy-methylated-3,4-ethylenedioxythiophene) nanocomposite modified glassy carbon electrode. Chinese Chemical Letters, 2014,25(4):505-510.
[10] 郭增军,孙启时,龙丽辉,等.九牛造中总鞣质提取方法和没食子酸含量测定研究.中药材,2007,30(11):1398-1401.
GUO Z J, SUN Q S, LONG L H, et al. Studies on the methods of extract and determination of total tannins and gallic acids of the root of Euphorbia hylonoma. Journal of Chinese Medicinal Materials, 2007,30(11):1398-1401. (in Chinese with English abstract)
[11] 颜流水,温振东,黄智敏,等.毛细管电泳法测定金银花中绿原酸、芦丁和槲皮素.药物分析杂志,2007,27(3):367-370.
YAN L S, WEN Z D, HUANG Z M, et al. CE determination of chlorogenic acid, rutin and quercetin in Flos lonicerae. Chinese Journal of Pharmaceutical Analysis, 2007,27(3):367-370. (in Chinese with English abstract)
[12] 张淑蓉,裴香萍,裴妙荣,等. 不同采收期紫丁香叶中原儿茶酸、原儿茶醛和酪醇的含量测定. 中国现代应用药学杂志,2009,26(6):457-460.
ZHANG S R, PEI X P, PEI M R, et al. Determination of protocatechuic acid, protocatechuic aldehyde and tyrosol in different seasons collections of syringa oblate leaves. Chinese Journal of Modern Applied Pharmacy, 2009,26(6):457-460. (in Chinese with English abstract)
[13] 隗永青,曹均,曹庆昌.北京郊区板栗林下栗蘑栽培技术及效益分析.中国食用菌,2010,29(2):21-23,53.
WEI Y Q, CAO J, CAO Q C. Analysis of chestnut mushroom cultivation technique and benefit of Beijing suburb of chestnut under forest. Edible Fungi of China, 2010,29(2):21-23,53. (in Chinese)
[14] 贾陆,席芳,王娜,等.板栗壳化学成分研究.中国医药工业杂志,2010,41(2):98-102.
JIA L, XI F, WANG N, et al. Chemical constituents of Castanea mollissima Blume shell. Chinese Journal of Pharmaceuticals, 2010,41(2):98-102. (in Chinese with English abstract)
[15] 席芳.板栗壳化学成分的研究.河南:郑州大学,2007:1-60.
XI F. Study on chemical constituents of Castanea mollissima Blume shell. Henan: Zhengzhou University, 2007:1-60. (in Chinese with English abstract)
[16] 石恩慧,李红,谷明灿,等.响应面法优化超声提取板栗总苞多酚工艺条件.中国食品学报,2013,5(13):69-76.
SHI E H, LI H, GU M C, et al. Optimization of technology for polyphenols extraction of Castanea mollissima Blume using response surface analysis. Journal of Chinese Institute of Food Science and Technology, 2013,5(13):69-76. (in Chinese with English abstract)
[17] 金秀梅,吴迪,黄健,等.板栗总苞化学成分的分离与鉴定(Ⅱ).沈阳药科大学学报,2009,1(26):23-26.
JIN X M, WU D, HUANG J, et al. Isolation and identification of chemical constituents of Castanea mollissima Blume (Ⅱ). Journal of Shenyang Pharmaceutical University, 2009,1(26):23-26. (in Chinese with English abstract)
[18] 石恩慧,郭凯军,李红,等.板栗总苞多酚提取工艺优化及其抗氧化性研究.动物营养学报,2013,25(2):406-414SHI E H, GUO K J, LI H, et al. Castanea mollissima Blume polyphenols: extraction technology optimization and its antioxidant activity. Chinese Journal of Animal Nutrition, 2013,25(2):406-414. (in Chinese with English abstract)
[19] 叶君,孙博航,黄健,等.板栗总苞中总黄酮提取工艺及含量测定.现代中医药,2010,6(30):102-104.
YE J, SUN B H, HUANG J, et al. The extraction and determination of total flavonoids in Chestnut involucre. Modern Traditional Chinese Medicine, 2010,6(30):102-104. (in Chinese)