浙江大学学报(农业与生命科学版)  2017, Vol. 43 Issue (6): 747-756
文章快速检索     高级检索
矿质营养元素阻控植物镉积累:从机制到应用[PDF全文]
何小林1, 关美艳2, 范士凯2, 何虎3, 金崇伟2    
1. 江西省土壤肥料技术推广站,南昌 330046;
2. 浙江大学环境与资源学院,教育部环境修复与生态健康重点实验室,杭州 310058;
3. 江西省农业科学院水稻研究所,南昌 330200
摘要: 许多矿质营养元素能通过沉淀和吸附作用降低土壤中镉的有效性,同时也能与镉竞争细胞质膜上的转运体从而降低植物对镉的吸收。因此,通过合理的养分管理正确处理矿质营养元素和镉之间的关系,实现阻控作物对镉的吸收,被认为是一种费用低、周期短、效率高的技术措施。此外,通过其他农艺措施或分子育种手段调控矿质营养元素与镉之间的相互作用,也可能是2种降低作物镉积累的有效措施。本文主要根据近年来相关的研究进展,综述了矿质养分元素和镉之间的关系如何影响土壤中镉的有效性以及植物对镉的吸收。同时,以这些交互关系为基础,探讨了减控作物可食部位镉积累的策略。
关键词: 矿质营养元素        阻控机制    
Prevention of cadmium accumulation in plants by mineral nutrients: From mechanisms to applications
HE Xiaolin1, GUAN Meiyan2, FAN Shikai2, HE Hu3, JIN Chongwei2    
1. Soil and Fertilizer Technique Popularization Station of Jiangxi Province, Nanchang 330046, China;
2. Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China;
3. Institute of Rice, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
Summary: Several mineral nutrient elements of plants can reduce cadmium (Cd) availability in soil by precipitation and adsorption, and decrease Cd absorption of plants by the competition between Cd and plant nutrients for the same membrane transporters. Nutrient management is one of the most important agronomic practices for better crop growth. Accordingly, it is regarded as a low cost, short period and high efficient way to alleviate Cd accumulation in crops by proper management of nutrients and proper treatment of the interactions between Cd and plant nutrients. In addition, other agronomic measures and molecular plant breeding, which could modulate the interactions between Cd and plant nutrients, might also be two relatively inexpensive and effective strategies to minimize Cd contamination in crops. The main objective of this review is to highlight how the interactions between mineral nutrient elements and Cd affect the availability of Cd in soil, and the Cd absorption of plants. Examples include that the competition between Fe, Ca, Zn, Mn and Cd uptake by root can decrease Cd levels in plants, and iron supply prevents Cd uptake by inhibiting iron-regulated transporter 1 (IRT1) expression. The strategies of using these interactions to minimize Cd accumulation in the edible parts of crops were also focused in this review. For example, the application of P fertilizer can precipitate with Cd to reduce Cd uptake by plants. In addition, Si and Se fertilizer foliage application can decrease Cd translocation from roots to shoots in plants, thus reducing Cd accumulation in edible organs and improving food safety.
Key words: mineral nutrient elements    cadmium    resistance mechanism    

镉(Cd)是一种高毒性有害重金属[1],但在土壤中自然含量通常较低,不会对动植物造成毒害。然而,许多城市近郊的土壤因社会的飞速发展和工业废水、废气、固体废弃物的不合理排放而受到了不同程度的重金属污染[2-4]。2014年《全国土壤污染状况调查公报》显示,我国土壤镉污染的点位超标率达到7.0%[5]。土壤镉污染还给农产品生产带来了严重的安全问题[6]。例如,湖南省因采矿和冶炼致使农田土壤被镉污染[7-8],乐清的菜地受到镉污染导致蔬菜中镉含量超标[9]。植物根系生长和光合作用因土壤遭受严重镉污染而受阻,植物体内水分和营养元素代谢也会因镉的毒害而失衡,从而使作物生长发育不良,其产量和品质同时下降[10]。尤其令人担忧的是,植物体内能富集一定量的镉,但是镉毒害却通常无明显的肉眼可见症状,致使受污染农作物中的镉经食物链富集作用,危害人类健康[11-12]。镉会对肾、肝、骨骼以及神经、血液等带来严重危害[13]。20世纪70年代,日本居民因食用镉米而得的“痛痛病”给日本造成了严重的伤害[14-15]。所以,如何确保我国耕地质量,在中轻度镉污染的土壤上实现农业安全生产,保证粮食安全和人类健康,是农业发展面临的重大挑战。

目前常用物理、化学等传统方法来修复和治理重金属污染的土壤。虽然它们的治理效果较为理想,所需周期也不长,但缺点是费用昂贵,不容易管理,易带来二次污染[16]。而植物修复技术因其绿色、经济和环保而逐渐成为研究热点。然而,由于超积累植物生物量小、生长缓慢,严重制约了镉污染耕地的农业生产[17]。近年来,许多学者尝试利用以植物生理过程为原理的农艺技术调控来阻控土壤中的镉进入农作物中,以达到保障农产品质量安全的目的。例如,近年来我们课题组研究发现,外源应用脱落酸(abscisic acid, ABA)可显著降低植物体内的镉积累并减少镉对植物的毒害[18]。此外,近年来还有许多学者关注并研究了矿质营养元素对植物镉积累的影响及机制[19]。在农业生产中,农民通常依靠增加施肥量来获得较高的作物产量。而许多养分元素和镉的有效性以及植物对镉的吸收之间存在密切的相互影响。因此,若能在施肥过程中正确处理矿质元素和镉之间的互作关系,将能够有效阻控植物对镉的吸收。本文主要根据近年来相关研究进展,综述了各种植物营养元素对镉吸收和耐性的影响机制,并探讨了其可能在农业生产中的应用价值。

1 铁

由于Cd2+与Fe2+的水合离子半径高度相似,铁营养与镉在植物体内的关系十分密切[20-21]。铁营养不足会导致植物体中的镉含量上升[22];相反,增加外源供铁可显著降低植物的镉含量[11, 18, 23]。在双子叶植物中,Fe2+吸收转运体(iron-regulated transporter 1, IRT1)已被证明是根系吸收Cd2+的关键转运蛋白之一[24],我们在此基础上发现,铵、脱落酸和增加外源供铁处理主要是通过抑制IRT1表达从而阻控植物对镉的吸收[11, 18, 25-26]。此外,虽然韧皮部卸载Fe2+的转运体OPT3(oligopeptide transporter 3)不直接参与Cd2+的转运,但OPT3突变后因减少了铁在种子中的贮存而间接地增加了镉的积累[27]。这些结果表明,Cd2+与Fe2+的吸收和转运在双子叶植物中均存在直接或间接的关系。在禾本科植物水稻中,尽管Mn2+转运蛋白OsNRAMP5(natural resistance-associated macrophage protein 5)被认为是根系吸收Cd2+的主要途径[28-31],但研究发现水稻的铁转运蛋白OsIRT1和OsNRAMP1也参与根系的镉吸收过程,过表达OsIRT1和OsNRAMP1均可使水稻的镉含量显著提高[32-33]。此外,在生理学层面也有研究发现,缺铁胁迫会显著促进水稻根系对Cd2+的吸收[34],而增加铁素营养的供应则降低了水稻的镉含量并缓解了镉的毒害[35]。这些结果表明,水稻体内Cd2+与Fe2+也存在密切的互作关系。由于Cd2+和Fe2+在化学性质上的相似性,含铁蛋白中的铁极易被Cd2+所替换,从而导致植物发生生理性缺铁[36]。对此,我们与其他研究小组在拟南芥和水稻中均发现镉胁迫也能引起正常供铁的植物出现缺铁的症状,并诱导许多铁吸收和铁稳态相关基因的表达[37-39]。这些结果表明,虽然缺铁和镉毒是2种截然不同的胁迫,但植物对这2种胁迫的响应存在部分交叉重叠。植物缺铁胁迫的响应在增强根系铁吸收和改善体内铁稳态中均发挥着重要的作用[40]。理论上,也正是由于Fe2+和Cd2+在化学性质上的相似性,植物体内的铁也可通过竞争作用阻止Cd2+吸收和转运以及Cd2+对含铁蛋白中铁的替换作用。另外,供铁水平与水稻镉含量、毒害程度呈负相关的研究结果在生理水平上也支持了这一结论[35]。因此,我们认为“缺铁胁迫响应”和“镉毒胁迫响应”的交叉重叠过程极有可能是植物控制镉吸收、转运和耐性等过程的重要机制。

综上,在农业生产中若能有效改善根际土壤环境中铁的有效性,比如,施用持久高效的铁肥或利用促铁吸收的微生物菌剂[41],可起到防治作物缺铁、减控作物镉污染的目的。

2 磷

磷(P)元素对植物的生长发育极其重要[42]。磷既是各种重要化合物的组分,又是作物高产及保持品种优良特性的重要保障[43]。人们普遍依靠长期增施磷肥以达到作物增产的目的,但与此同时也面临着严重的问题。因为磷矿石中本身含有重金属成分,所以施用磷肥极有可能会造成土壤重金属(镉、铜、锰、镍、铅和锌)污染[44-45]。因此,因磷肥的大量施用可能带来的镉污染问题也倍受关注。大量研究发现,磷和镉之间彼此影响的关系十分复杂[46-48]。例如:土壤溶液中的镉离子可以被难溶性磷酸盐直接吸附,同时磷酸根离子能增加溶液中阴离子含量,形成磷-镉沉淀物使镉钝化[49];此外,供磷增产显著带来的稀释效应可以使玉米和小麦茎叶及根系中镉含量降低[50];相反,也有研究发现,植物对镉的吸收量因施用磷肥提高了镉的溶解度及活性而上升[51]。因此,磷和镉之间在植物生理过程和土壤化学过程中均存在极其复杂的交互关系。鉴于上述原因,需要合理地设计水培试验以减少或避免根际土壤环境中磷和镉之间的相互影响,来阐明磷和镉在植物生理层面的相互关系。为此,有学者通过水培试验发现水稻地上部镉含量随着磷浓度的增加而增加[52];同样也有水培试验发现缺磷会降低植物对镉的吸收[53]。这些结果表明,植物体内磷营养状况对镉的积累存在负调控作用。ZHENG等[54]研究表明,植物体内磷和铁之间存在较强的拮抗作用,缺磷会显著提升植物体内铁的可利用能力,而铁转运蛋白基因IRT1的表达受植物体内铁营养状况的负调控。鉴于IRT1蛋白是植物吸收Cd的关键转运蛋白之一,因此,我们推测磷可能通过调控IRT1的表达来影响植物对镉的吸收和积累。

鉴于施用磷肥是最为频繁的一项农艺管理措施,所以有必要开展大量研究以系统阐明土壤环境中以及植物体内的磷与镉的关系,从而为合理进行磷素养分管理、降低作物镉积累提供理论依据。

3 氮

铵态氮和硝态氮是植物从土壤环境中吸收利用的2种主要氮形态。植物获取硝态氮时,会伴随H+的获取,使根际pH上升;植物吸收铵态氮时,会伴随H+的释放,导致根际pH降低[55]。由于土壤镉的有效性受pH的影响极大[56],多年来,许多学者一直认为以铵态氮作为氮源,可以通过酸化根际土壤来增加重金属的生物有效性,从而促进植物对重金属镉的吸收。这一推测也得到了一些试验证据的支撑。例如,施用铵态氮酸化土壤,增加土壤中活性镉的含量,增强植物对镉的获取[19]。然而,国内外也有许多研究得出了相反的结果,有研究发现供应硝态氮反而会增加植物对镉的吸收[57]。我们课题组在对小白菜盆栽试验的研究中发现,之所以出现这样截然不同的结果可能与土壤pH的缓冲性密切相关,即:当土壤pH缓冲性差时,与供应铵态氮肥相比,供应硝态氮处理使小白菜体内的镉含量显著降低;而当土壤pH缓冲性较强时,与供应铵态氮肥相比,供应硝态氮反而使小白菜体内的镉含量显著增加[58]。这一结果可能是在pH缓冲性强的土壤中,氮素形态对根际pH的影响较弱的缘故。同时,也说明氮素形态本身可能直接影响根系细胞对镉的吸收。我们还以番茄植物为材料,采用2-吗啉乙磺酸(2-morpholinoeethanesulfonic acid, MES)缓冲的水培试验证实了这一推测,即供应硝态氮能促进根系细胞对镉的吸收[25]。此外,我们还对硝态氮影响植物对镉吸收的机制进行了探究,结果发现,供应硝态氮的番茄根系铁转运体基因LeIRT1的表达和铁吸收量远高于供铵植物。鉴于IRT1转运体也是负责植物吸收镉的主要途径之一,我们以调控铁吸收相关的FER番茄突变体为材料,发现供氮形态对LeIRT1的表达和对镉的吸收都没有影响[25],这表明供应硝态氮可以通过诱导根系细胞质膜上的铁吸收系统来促进镉的吸收。

上述结果表明,合理的氮素养分管理可有效降低作物体内的镉积累,如在pH缓冲性较弱的土壤中施用硝态氮,在pH缓冲性较强的土壤中施用铵态氮,从而降低作物的镉积累。然而在现实条件下,铵态氮和尿素均是我国当前主要的氮肥形态,因此需要探讨在缓冲性弱的土壤中能更好地降低镉积累的方法。在理论上,土壤中铵态氮的硝化反应比植物吸收铵态氮所产生的酸化效应明显。通过盆栽试验发现,在pH缓冲性较弱的土壤中,铵态氮和尿素的分次施肥或使用缓释肥可减少施入土壤中铵的硝化比例,从而减轻硝化反应产生的酸化效应,同时也减少土壤中硝酸盐的含量,减弱硝酸盐促进植物根系细胞吸收镉的作用,实现降低作物镉含量的目标[59]

既然外源硝酸盐能调控植物对镉的吸收,我们课题组还进一步研究了植物自身的硝酸盐吸收系统对镉的吸收是否也具有调控作用,结果发现镉胁迫自身也可显著抑制植物根系中NRT1.1(nitrate transporter 1.1)基因和NRT1.1蛋白的表达量,这一过程不仅抑制了根系对硝酸盐的吸收,而且也可减少植物对镉的吸收和减轻镉毒害程度。因此,镉胁迫引起的NRT1.1活性抑制是植物体内一种重要的耐镉毒机制[39]。为此,我们进一步研究了NRT1.1调控镉吸收的内在机制,发现NRT1.1活性受镉抑制可减少根际中伴随硝酸盐吸收的质子消耗[60],说明根际pH变化并非是NRT1.1活性受抑导致镉吸收降低的原因;通过转录组测序研究发现,NRT1.1功能缺失后,在植物根系中所有编码二价阳离子转运体的基因中,仅IRT1的表达显著下调;运用IRT1NRT1.1双基因缺失手段,进一步揭示了IRT1活性下降是NRT1.1活性受抑制导致镉吸收减少的一个重要过程,但不是唯一途径。上述结果说明,利用生物技术手段调控作物自身的硝酸盐吸收将是减控作物镉污染的新策略[61]

4 钙

钙在植物体内具有十分重要的生理生化功能,密切关系到植物生长[62]。研究表明:钙能增强植物抵抗环境胁迫的能力,如减轻水分胁迫、低温胁迫、盐胁迫等逆境对植物造成的伤害[63];钙也能增强植物对重金属镉胁迫的耐性,缓解镉的毒害[64],其机制主要有以下几个方面。

4.1 抑制土壤镉的有效性

pH值会改变土壤中镉的活性。石灰施入土壤中使土壤pH值升高,不仅可以降低镉的有效性,还可以增加土壤中的钙含量,促进植物体内矿质营养元素的吸收。土壤中镉的有效性随土壤pH值的升高而下降[65];在玉米地施用石灰后会使土壤镉的浓度下降,减少玉米镉含量[66]。因此,钙可以通过抑制镉的活性,缓解镉毒。

4.2 降低镉的运输

为了满足植物生长需求,植物营养元素一般经主动运输进入植物体内。重金属离子大多数通过离子通道进入植物体内[67]。植物吸收重金属镉的其中一条途径就是通过钙离子通道,所以施钙会减少通过钙通道进入植物体内镉的含量[68]。另外,因为钙离子和镉离子的离子半径相近和电荷相同,所以,钙、镉之间存在拮抗作用,两者可以竞争植物根系上的吸收位点。研究表明,尤其在较高的钙离子浓度下,镉的吸收会显著受到抑制[69-70]。如菜豆在幼苗期及成熟期处于镉胁迫时,供钙充足可以缓解镉毒,缺钙反而加剧镉毒,说明钙可以通过竞争作用减少植物对镉的吸收与利用[71]。在土壤中含钙矿物与镉会生成复合物,减弱镉的活性;同时钙与镉会发生竞争作用,减少细胞镉积累量[72]。因此,钙可以阻控镉的运输,缓解植物镉毒。

4.3 增强植物的抗氧化胁迫能力、光合作用和呼吸作用

植物需要钙参与调节抗氧化酶的活性,而且钙能稳定细胞膜的结构和功能[73]。其具体作用可归纳为以下2个方面:1)钙能降低植物细胞内活性物质的含量,使抗氧化系统中的保护酶及抗氧化物维持较高的水平;2)钙能使植物细胞的结构更加稳固,使活性氧代谢保持平衡。因此,钙能通过提高植物的抗氧化胁迫能力,增强其抵抗镉毒的能力。

钙是植物光合作用所必需的元素之一,同时能调控与光合作用密切相关的气孔运动,是保障光合作用顺利进行的关键因素[74]。研究表明,施用钙肥后能显著提高镉处理下玉米的叶绿素含量和酶的活性,降低丙二醛含量,从而改善玉米的生长状况[75]。蔡妙珍等[76]也认为,在镉胁迫下施钙可能是通过改善了细胞中酶的“生态环境”,提高了酶的活性,改善了植物的呼吸作用。

综上所述,钙可以缓解植物镉胁迫,因此,通过施用钙养分来阻控植物镉积累是一种可行的农艺措施。

5 其他矿质元素

养分元素锌(Zn)与植物的生理代谢、激素调节、抗逆性等功能都密切相关。我国耕地土壤缺锌严重,施用锌肥作物产量和品质得到显著提高。由于锌离子和镉离子都是二价离子,离子半径相似,土壤中施用锌肥可增强锌与镉的膜结合位点和运输系统的竞争作用,从而限制镉由韧皮部转运到籽粒[77]。相关研究表明:在缺锌土壤中,在一定范围内,随着施用锌肥量的增加,植物中镉的积累量减少更加明显[78];土壤严重缺锌时,施用锌肥可减少小麦体内镉的含量[79];施用锌肥可通过减少莴苣和菠菜根部对镉的吸收,阻止镉向茎叶迁移[80];运用同位素示踪法研究锌肥对小麦体内镉转运的影响,发现在较高锌浓度下,镉的转运受到显著阻止[81]。因此,锌可通过拮抗作用缓解植物镉胁迫。

硅(Si)是土壤中含量第二丰富的元素,为大多数植物所必需的有益元素,对植物的生长发育起重要作用[82]。植物体内镉含量随土壤中硅的增加而下降。例如:在一定的硅浓度条件下,施用硅肥能减少植物对镉的吸收量[83];增施硅肥会减少水稻体内镉的含量[84]。此外,增加细胞壁对镉的截留量,阻止植物根系中的镉向地上部转移,也是一种硅缓解植物镉毒的机制。比如,施用硅肥可以增加根的生物量,使根中镉的截留量增加,减少镉向地上部的迁移[85-86]。然而,在低镉浓度下,施用硅肥能阻止镉向地上部转移;相反,在高镉浓度下,施用硅肥反而促进镉向地上部迁移[87]。另外,一些研究发现,在叶面施用硅肥可抑制镉由水稻叶片向籽粒运输,防治农作物镉污染[88-89]。除此之外,施用硅肥还可以增强植物抗生物和非生物胁迫。例如,施用硅肥可以提高植物体内超氧化物歧化酶、抗坏血酸过氧化物酶、谷胱甘肽还原酶、脱氢抗坏血酸还原酶等的活性,提高植物对镉胁迫的抵抗力[90-91]。然而,硅浓度过高会造成中毒,因此,应适当利用硅肥才能达到理想效果。

硒(Se)是动植物体必需的有益元素[92-93]。施用硒肥能增强植物缓解镉毒能力。例如:施用硒肥能减少植物对镉的吸收量[94-95];也能有效调节油菜和小麦体内的镉元素含量,改善植物体生理状况,缓解镉胁迫引起的氧化损伤[96-97];叶面喷施硒肥可阻控水稻对镉的吸收[98]。关于硒可以缓解植物镉毒的可能机制包括:1)硒、镉复合物的产生;2)硒可增强植物的抗氧化酶活性;3)硒可能参与植物新陈代谢,可以同其他元素相互作用,缓解镉毒[99]

锰(Mn)是植物必需的微量元素。由于锰离子和镉离子都是二价离子,同时它们的离子半径也相似,所以锰、镉之间存在显著的拮抗作用[100]。例如,增施锰肥可能通过竞争膜转运蛋白减少植物对镉的积累[101]。另外,锰还可以通过其他途径缓解植物镉毒。如施用锰肥可以通过促进植物的生长缓解植物镉毒[102];施用锰肥能阻止谷物中镉的转移和积累[103];此外,施用锰肥也可以恢复镉中毒的叶绿体结构,改善植物光合作用,缓解植物镉毒[104]。至于锰是否还可以通过其他途径缓解植物镉毒还需要进一步的研究。

6 小结

人体健康因镉经食物链的富集作用而受到严重威胁。因此,在中轻度镉污染土壤上实现农产品的安全生产,是一个亟待解决的现实问题。由表 1可知养分元素对植物镉吸收的影响及可能的原因。而且,研究认为,植物养分元素对植物的镉积累和镉毒害具有显著影响。因此,在农业生产中,利用养分元素与镉之间的互作关系,合理地实施养分管理有望成为一种费用低、历时短、效率高的阻控作物镉积累的农艺措施。但是,目前关于植物养分元素在镉吸收、转运和耐性中的作用及机制仍不完全清楚。所以,仍需对此进行大量的研究,以期为通过养分管理实现镉污染土壤的作物安全生产提供全面的理论依据。

表1 不同矿质营养元素对镉吸收的影响及可能的原因 Table 1 Effects of different mineral nutrient elements on Cd absorption and its possible reasons
点击放大
参考文献
[1] PAN K, WANG W X. Trace metal contamination in estuarine and coastal environments in China. Science of the Total Environment, 2012, 421/422: 3-16. DOI:10.1016/j.scitotenv.2011.03.013
[2] WEI B, YANG L S. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 2010, 94(2): 99-107. DOI:10.1016/j.microc.2009.09.014
[3] ZHAO F J, MA Y, ZHU Y G, et al. Soil contamination in China: Current status and mitigation strategies. Environmental Science & Technology, 2014, 49(2): 750-759.
[4] 陈涛, 吴燕玉, 张学询, 等. 张士灌区镉土改良和水稻镉污染防治研究. 环境科学, 1980(5): 9-13.
CHEN T, WU Y Y, ZHANG X X, et al. Improvement of cadmium soil and control of rice cadmium pollution in Zhangshi irrigation area. Environmental Science, 1980(5): 9-13. (in Chinese with English abstract)
[5] 环境保护部, 国土资源部. 全国土壤污染情况调查公报. [2014-04-17]. http://www.mlr.gov.cn/xwdt/jrxw/201404/t20140417_1312998.htm.
Ministry of Environment Protection and Ministry of Land and Resources of the People's Republic of China. Nationwide Soil Pollution Survey Report. [2014-04-17]. http://www.mlr.gov.cn/xwdt/jrxw/201404/t20140417_1312998.htm.
[6] 欧阳燕莎, 刘爱玉, 李瑞莲, 等. 镉对作物的影响及作物对镉毒害响应研究进展. 作物研究, 2016, 30(1): 105-110.
OUYANG Y S, LIU A Y, LI R L, et al. Research progress on effects of cadmium on crops and the response of crops to cadmium. Crop Research, 2016, 30(1): 105-110. (in Chinese with English abstract)
[7] 雷鸣, 曾敏, 郑袁明, 等. 湖南采矿区和冶炼区水稻土重金属污染及其潜在风险评价. 环境科学学报, 2008, 28(6): 1212-1220.
LEI M, ZENG M, ZHENG Y M, et al. Heavy metals pollution and potential ecological risk in paddy soils around mine areas and smelting areas in Hunan Province. Acta Scientiae Circumstantiae, 2008, 28(6): 1212-1220. (in Chinese with English abstract)
[8] 陈艳. 湖南省土壤污染现状与修复. 湖南农业科学, 2002(6): 31-33.
CHEN Y. The present conditions and remediation of soil pollution in Hunan. Hunan Agricultural Sciences, 2002(6): 31-33. (in Chinese with English abstract)
[9] 赵丽芳, 黄鹏武, 张作选, 等. 乐清市菜地土壤养分及重金属污染状况调查研究. 浙江农业科学, 2001(3): 124-126.
ZHAO L F, HUANG P W, ZHANG Z X, et al. Investigation study on soil nutrients and pollution of heavy metal elements in vegetable gardens in Yueqing City. Journal of Zhejiang Agricultural Sciences, 2001(3): 124-126. (in Chinese with English abstract)
[10] RANA S. Plant response towards cadmium toxicity: An overview. Annals of Plant Sciences, 2015, 4(7): 1162-1072.
[11] HE Z L, YANG X E, STOFFELLA P J. Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 2005, 19(2/3): 125-140.
[12] SHENTU J, HE Z, YANG X E, et al. Accumulation properties of cadmium in a selected vegetable-rotation system of southeastern China. Journal of Agricultural and Food Chemistry, 2008, 56(15): 6382-6388. DOI:10.1021/jf800882q
[13] 丁鸿, 杨杏芬. 环境镉危害早期健康效应风险评估的研究进展. 国外医学卫生学分册, 2007, 34(5): 279-282.
DING H, YANG X F. Research progress on risk assessment of early health effects caused by environmental cadmium. Foreign Medical Sciences Section Hygiene, 2007, 34(5): 279-282. (in Chinese with English abstract)
[14] GALLEGO S M, PENA L B, BARCIA R A, et al. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environmental and Experimental Botany, 2012, 83: 33-46. DOI:10.1016/j.envexpbot.2012.04.006
[15] IKE A, SRIPRANG R, ONO H, et al. Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere, 2007, 66(9): 1670-1676. DOI:10.1016/j.chemosphere.2006.07.058
[16] 王海慧, 郇恒福, 罗瑛, 等. 土壤重金属污染及植物修复技术. 中国农学通报, 2009, 25(11): 102-104.
WANG H H, XUN H F, LUO Y, et al. Soil contaminated by heavy metals and its phytoremediation technology. Chinese Agricultural Science Bulletin, 2009, 25(11): 102-104. (in Chinese with English abstract)
[17] MEERS E, QADIR M, DE CARITAT P, et al. EDTA-assisted Pb phytoextraction. Chemosphere, 2009, 74(10): 1279-1291. DOI:10.1016/j.chemosphere.2008.11.007
[18] FAN S K, FANG X Z, GUAN M Y, et al. Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake. Frontiers in Plant Science, 2014, 5: 721.
[19] SARWAR N, MALHI S S, ZIA M H, et al. Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 2010, 90(6): 925-937.
[20] 黄益宗, 朱永官, 黄凤堂, 等. 镉和铁及其交互作用对植物生长的影响. 生态环境, 2004, 13(3): 406-409.
HUANG Y Z, ZHU Y G, HUANG F T, et al. Effects of cadmium and iron and their interaction on plant growth: A review. Ecology and Environment, 2004, 13(3): 406-409. (in Chinese with English abstract)
[21] NIGHTINGSLE Jr E R. Phenomenological theory of ion solvation. Effective radii of hydrated ions. The Journal of Physical Chemistry, 1959, 63(9): 1381-1387. DOI:10.1021/j150579a011
[22] 安志装, 王校常, 施卫明, 等. 重金属与营养元素交互作用的植物生理效应. 土壤与环境, 2002, 11(4): 392-396.
AN Z Z, WANG X C, SHI W M, et al. Plant physiological responses to the interactions between heavy metal and nutrients. Soil and Environmental Sciences, 2002, 11(4): 392-396. (in Chinese with English abstract)
[23] SLAMET-LOEDIN I H, JOHNSON-BEEBOUT S E, IMPA S, et al. Enriching rice with Zn and Fe while minimizing Cd risk. Frontiers in Plant Science, 2015, 6: 121.
[24] VERT G, GROTZ N, DÉDALDÉCHAMP F, et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell, 2002, 14(6): 1223-1233. DOI:10.1105/tpc.001388
[25] LUO B F, DU S T, LU K X, et al. Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants. Journal of Experimental Botany, 2012, 63(8): 3127-3136. DOI:10.1093/jxb/ers036
[26] HE X L, FAN S K, ZHU J, et al. Iron supply prevents Cd uptake in Arabidopsis by inhibiting IRT1 expression and favoring competition between Fe and Cd uptake. Plant and Soil, 2017, 416(1/2): 453-462.
[27] ZHAI Z, GAYOMBA S R, JUNG H, et al. OPT3 is a phloemspecific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis. The Plant Cell, 2014, 26(5): 2249-2264. DOI:10.1105/tpc.114.123737
[28] ISHIKAWA S, ISHIMARU Y, IGURA M, et al. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proceedings of the National Academy of Sciences of the USA, 2012, 109(47): 19166-19171. DOI:10.1073/pnas.1211132109
[29] SASAKI A, YAMAJI N, YOKOSHO K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. The Plant Cell, 2012, 24(5): 2155-2167. DOI:10.1105/tpc.112.096925
[30] YANG M, ZHANG Y Y, ZHANG L J, et al. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots. Journal of Experimental Botany, 2014, 65(17): 4849-4861. DOI:10.1093/jxb/eru259
[31] CLEMENS S, MA J F. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annual Review of Plant Biology, 2016, 67: 489-512. DOI:10.1146/annurev-arplant-043015-112301
[32] LEE S, AN G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant, Cell & Environment, 2009, 32(4): 408-416.
[33] TAKAHASHI R, ISHIMARU Y, SENOURA T, et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. Journal of Experimental Botany, 2011, 62(14): 4843-4850. DOI:10.1093/jxb/err136
[34] NAKANISHI H, OGAWA I, ISHIMARU Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Science and Plant Nutrition, 2006, 52(4): 464-469. DOI:10.1111/j.1747-0765.2006.00055.x
[35] SHAO G, CHEN M, WANG W, et al. Iron nutrition affects cadmium accumulation and toxicity in rice plants. Plant Growth Regulation, 2007, 53(1): 33-42. DOI:10.1007/s10725-007-9201-3
[36] DALCORSO G, FARINATI S, MAISTRI S, et al. How plants cope with cadmium: Staking all on metabolism and gene expression. Journal of Integrative Plant Biology, 2008, 50(10): 1268-1280. DOI:10.1111/jipb.2008.50.issue-10
[37] WU H L, CHEN C L, DU J, et al. Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiology, 2012, 158(2): 790-800. DOI:10.1104/pp.111.190983
[38] OGO Y, KAKEIY, ITAI R N, et al. Spatial transcriptomes of iron-deficient and cadmium-stressed rice. New Phytologist, 2014, 201(3): 781-794. DOI:10.1111/nph.12577
[39] MAO Q Q, GUAN M Y, LU K X, et al. Inhibition of nitrate transporter 1.1-controlled nitrate uptake reduces cadmium uptake in Arabidopsis. Plant Physiology, 2014, 166(1): 934-944.
[40] MORRISSEY J, GUERINOT M L. Iron uptake and transport in plants: The good, the bad, and the ionome. Chemical Reviews, 2009, 109(10): 4553-4567. DOI:10.1021/cr900112r
[41] 金崇伟, 俞雪辉, 郑绍建. 微生物在植物铁营养中的潜在作用. 植物营养与肥料学报, 2005, 11(5): 688-695.
JIN C W, YU X H, ZHENG S J. Latent function of microorganisms on plant iron acquisition. Plant Nutrition and Fertilizer Science, 2005, 11(5): 688-695. (in Chinese with English abstract) DOI:10.11674/zwyf.2005.0520
[42] 刘昭兵, 纪雄辉, 彭华, 等. 磷肥对土壤中镉的植物有效性影响及其机制. 应用生态学报, 2012, 23(6): 1585-1590.
LIU Z B, JI X H, PENG H, et al. Effects of phosphorus fertilizers on phytoavailability of cadmium in its contaminated soil. Chinese Journal of Applied Ecology, 2012, 23(6): 1585-1590. (in Chinese with English abstract)
[43] RAGHOTHAMA K G. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 665-693. DOI:10.1146/annurev.arplant.50.1.665
[44] CHANEY R L, OLIVER D P. Sources, potential adverse effects and remediation of agricultural soil contaminants//NAIDU R, KOOKANA R S, OLIVER D P. Contaminants and the Soil Environment in the Australasia-Pacific Region. Dordrecht, Netherlands: Springer, 1996: 323-359. https://link.springer.com/chapter/10.1007%2F978-94-009-1626-5_11
[45] CHIEN S H, PROCHNOW L I, TU S, et al. Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: An update review. Nutrient Cycling in Agroecosystems, 2011, 89(2): 229-255. DOI:10.1007/s10705-010-9390-4
[46] DU J N, YAN C L, LI Z D. Phosphorus and cadmium interactions in Kandelia obovata (S. L.) in relation to cadmium tolerance. Environmental Science and Pollution Research, 2014, 21(1): 355-365. DOI:10.1007/s11356-013-1910-8
[47] SAJWAN K S, PARAMASIVAM S, RICHARDSON J P, et al. Phosphorus alleviation of cadmium phytotoxicity. Journal of Plant Nutrition, 2002, 25(9): 2027-2034. DOI:10.1081/PLN-120013292
[48] QIU Q, WANGY, YANG Z, et al. Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Food and Chemical Toxicology, 2011, 49(9): 2260-2267. DOI:10.1016/j.fct.2011.06.024
[49] 周世伟, 徐明岗. 磷酸盐修复重金属污染土壤的研究进展. 生态学报, 2007, 27(7): 3043-3050.
ZHOU S W, XU M G. The progress in phosphate remediation of heavy metal-contaminated soils. Acta Ecologica Sinica, 2007, 27(7): 3043-3050. (in Chinese with English abstract)
[50] 杨志敏, 郑绍健, 胡霭堂. 不同磷水平和介质pH对玉米和小麦镉积累的影响. 南京农业大学学报, 1999, 22(1): 46-50.
YANG Z M, ZHENG S J, HU A T. Effects of different levels of P supply and pH on the content of cadmium in corn and wheat plants. Journal of Nanjing Agricultural University, 1999, 22(1): 46-50. (in Chinese with English abstract)
[51] 张宏彦, 刘全清, 张福锁. 养分管理与农作物品质. 北京: 中国农业大学出版社, 2009: 216-230.
ZHANG H Y, LIU Q Q, ZHANG F S. Nutrient Management and Crop Quality. Beijing: China Agricultural University Press, 2009: 216-230. (in Chinese with English abstract)
[52] 刘文菊, 张西科, 谭俊璞, 等. 磷营养对苗期水稻地上部累积镉的影响. 河北农业大学学报, 1998, 21(4): 28-31.
LIU W J, ZHAGN X K, TANG J P, et al. Effects of phosphorus on cadmium accumulation in shot of rice seedlings. Journal of Agricultural University of Hebei, 1998, 21(4): 28-31. (in Chinese with English abstract)
[53] YANG Y J, CHEN R J, FU G F, et al. Phosphate deprivation decreases cadmium (Cd) uptake but enhances sensitivity to Cd by increasing iron (Fe) uptake and inhibiting phytochelatins synthesis in rice (Oryza sativa). Acta Physiologiae Plantarum, 2016, 38(1): 28. DOI:10.1007/s11738-015-2055-9
[54] ZHENG L, HUANG F, NARSAI R, et al. Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiology, 2009, 151(1): 262-274. DOI:10.1104/pp.109.141051
[55] STRACZEK A, HHINSINGER P. Zinc mobilisation from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH. Plant and Soil, 2004, 260(1/2): 19-32. DOI:10.1023/B:PLSO.0000030173.71500.e1
[56] GRANT C A, BAILEY L D, MCLAUGHLIN M J, et al. Management factors which influence cadmium concentrations in crops//MCLAUGHLIN M J, SINGH B R. Cadmium in Soils and Plants. Dordrecht, Netherlands: Springer, 1999: 151-198. https://link.springer.com/chapter/10.1007/978-94-011-4473-5_7
[57] XIE H L, JIANG R F, ZHANG F S, et al. Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 2009, 318(1/2): 205-215.
[58] 范士凯. 脱落酸应用和氮素形态降低植物镉积累的研究. 杭州: 浙江大学, 2015: 38-41.
FANG S K. Abscisic acid and nitrogen forms reduce cadmium accumulation of plant. Hangzhou: Zhejiang University, 2015: 38-41. (in Chinese with English abstract) http://cdmd.cnki.com.cn/Article/CDMD-10335-1015319181.htm
[59] ZHANG R R, LIU Y, XUE W L, et al. Slow-release nitrogen fertilizers can improve yield and reduce Cd concentration in pakchoi (Brassica chinensis L.) grown in Cd-contaminated soil.. Environmental Science and Pollution Research, 2016, 23(24): 25074-25083. DOI:10.1007/s11356-016-7742-6
[60] FANG X Z, TIAN W H, LIU X X, et al. Alleviation of proton toxicity by nitrate uptake specifically depends on nitrate transporter 1.1 in Arabidopsis. New Phytologist, 2016, 21(1): 149-158.
[61] GUAN M Y, FAN S K, FANG X Z, et al. Modification of nitrate uptake pathway in plants affects the cadmium uptake by roots. Plant Signaling & Behavior, 2015, 10(3): e990794.
[62] HEPLER P K. Calcium: A central regulator of plant growth and development. The Plant Cell, 2005, 17(8): 2142-2155. DOI:10.1105/tpc.105.032508
[63] 李美如, 刘鸿先, 王以柔, 等. 钙对水稻幼苗抗冷性的影响. 植物生理学报, 1996, 22(4): 379-384.
LI M R, LIU H X, WANG Y R, et al. Effects of calcium on the cold resistance in rice seedlings. Acta Phytophysiologica Sinica, 1996, 22(4): 379-384. (in Chinese with English abstract)
[64] 陈晓玲, 余土元, 秦华明, 等. 钙对铬胁迫下玉米幼苗生长及生理特性的影响. 玉米科学, 2009, 17(4): 74-78.
CHEN X L, YU S Y, QIN H M, et al. The effect of calcium on corn seedling growth and physiological characteristics under chromium stress. Maize Science, 2009, 17(4): 74-78. (in Chinese with English abstract)
[65] 陈晓婷, 王果, 梁志超, 等. 钙镁磷肥和硅肥对Cd, Pb, Zn污染土壤上小白菜生长和元素吸收的影响. 福建农林大学学报(自然科学版), 2002, 31(1): 109-112.
CHEN X T, WANG G, LIANG Z C, et al. Effects of calcium magnesium phosphate and silicon fertilizer on the growth and element uptake of pakchoi in Cd, Pb, Zn contaminated soil. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2002, 31(1): 109-112. (in Chinese with English abstract)
[66] 周卫, 汪洪, 李春花, 等. 添加碳酸钙对土壤中镉形态转化与玉米叶片镉组分的影响. 土壤学报, 2001, 38(2): 219-225.
ZHOU W, WANG H, LI C H, et al. Effects of adding calcium carbonate on the transformation of Cd forms in soil and cadmium components in maize leaves. Acta Pedologica Sinica, 2001, 38(2): 219-225. (in Chinese with English abstract) DOI:10.11766/trxb199909140210
[67] 刘素纯, 萧浪涛, 王惠群, 等. 植物对重金属的吸收机制与植物修复技术. 湖南农业大学学报(自然科学版), 2004, 30(5): 493-498.
LIU S C, XIAO L T, WANG H Q, et al. The mechanism of heavy metals uptake by plant and phytoremediation. Journal of Hunan Agricultural University (Natural Science Edition), 2004, 30(5): 493-498. (in Chinese with English abstract)
[68] TESTER M. Tansley review No. 21 plant ion channels: Wholecell and single channel studies. New Phytologist, 1990, 114(3): 305-340. DOI:10.1111/nph.1990.114.issue-3
[69] ANDERSSON A, NILSSON K O. Influence of lime and soil pH on Cd availability to plants. AMBIO, 1974, 3(5): 198-200.
[70] FARZADFAR S, ZARINKAMAR F, MODARRES-SANAVY S A M, et al. Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L. plants. Environmental Science and Pollution Research, 2013, 20(3): 1413-1422. DOI:10.1007/s11356-012-1181-9
[71] SKORZYNSKA-POLIT E, TUKENDORF A, SELSTAM E, et al. Calcium modifies Cd effect on runner bean plants. Environmental and Experimental Botany, 1998, 40(3): 275-286. DOI:10.1016/S0098-8472(98)00045-8
[72] 李三暑, 雷锦桂, 陈惠成. 镉, 磷, 钙在姬松茸细胞内的积累和分布特征及其交互作用. 食用菌学报, 2001, 8(4): 24-27.
LI S H, LEI J G, CHEN H C. Accumulation and distribution of cadmium, phosphorus and calcium and their interaction in Agaricus blazei cells. Acta Edulis Fungi, 2001, 8(4): 24-27. (in Chinese with English abstract)
[73] AHMAD P, LATEF A A A, ABD_ALLAH E F, et al. Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Frontiers in Plant Science, 2016, 7: 513.
[74] 杨根平, 高向阳, 荆家海. 水分胁迫下钙对大豆叶片光合作用的改善效应. 作物学报, 1995, 21(6): 711-716.
YANG G P, GAO X Y, JING J H. Calcium can improve photosynthesis of soybean leaves under water stress. Acta Agronomica Sinica, 1995, 21(6): 711-716. (in Chinese with English abstract)
[75] EDERLI L, REALE L, FERRANTI F, et al. Responses induced by high concentration of cadmium in Phragmites australis roots. Physiologia Plantarum, 2004, 121(1): 66-74. DOI:10.1111/ppl.2004.121.issue-1
[76] 蔡妙珍, 罗安程, 林咸永, 等. Ca2+对过量Fe2+胁迫下水稻保护酶活性及膜脂过氧化的影响. 作物学报, 2003, 29(3): 447-451.
CAI M Z, LUO A C, LIN X Y, et al. Effect of Ca2+ on antioxidant enzymes and lipid peroxidation in rice under excessive Fe2+ stress. Acta Agronomica Sinica, 2003, 29(3): 447-451. (in Chinese with English abstract)
[77] ZHAO Z Q, ZHU Y G, CAI Y L. Effects of zinc on cadmium uptake by spring wheat (Triticum aestivum L.): Long-time hydroponic study and short-time 109Cd tracing study. Journal of Zhejiang University Science A, 2005, 6(7): 643-648. DOI:10.1631/jzus.2005.A0643
[78] ADILOGLU A. The effect of zinc (Zn) application on uptake of cadmium (Cd) in some cereal species. Archives of Agronomy and Soil Science, 2002, 48(6): 553-556. DOI:10.1080/0365034021000071837
[79] OLIVER D P, HANNAM R, TILLER K G, et al. The effects of zinc fertilization on cadmium concentration in wheat grain. Journal of Environmental Quality, 1994, 23(4): 705-711.
[80] MCKENNA I M, CHANEY R L, WILLIAMS F M. The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach. Environmental Pollution, 1993, 79(2): 113-120. DOI:10.1016/0269-7491(93)90060-2
[81] CAKMAK I, WELCH R M, ERENOGLU B, et al. Influence of varied zinc supply on re-translocation of cadmium (109Cd) and rubidium (86Rb) applied on mature leaf of durum wheat seedlings. Plant and Soil, 2000, 219(1/2): 279-284. DOI:10.1023/A:1004777631452
[82] LIANG Y C, SUN W C, ZHU Y G, et al. Mechanisms of siliconmediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution, 2007, 147(2): 422-428. DOI:10.1016/j.envpol.2006.06.008
[83] NEUMANN D, ZUR NIEDEN U. Silicon and heavy metal tolerance of higher plants. Phytochemistry, 2001, 56(7): 685-692. DOI:10.1016/S0031-9422(00)00472-6
[84] 许建光, 李淑仪, 王荣萍. 硅肥抑制作物吸收重金属的研究进展. 中国农学通报, 2006, 22(7): 495-499.
XU J G, LI S Y, WANG R P. The research progress of siliconfertilizer controlling the absorption of heavy metal in plant. Chinese Agricultural Science Bulletin, 2006, 22(7): 495-499. (in Chinese with English abstract)
[85] 蔡德龙, 陈常友, 小林均. 硅肥对水稻镉吸收影响初探. 地域研究与开发, 2000, 19(4): 69-71.
CAI D L, CHEN C Y, XIAO L J. The influence of the silicon fertilizer on the Cd absorption by paddy. Areal Research and Development, 2000, 19(4): 69-71. (in Chinese with English abstract)
[86] WANG L J, WANG Y H, CHEN Q, et al. Silicon induced cadmium tolerance of rice seedlings. Journal of Plant Nutrition, 2000, 23(10): 1397-1406. DOI:10.1080/01904160009382110
[87] ZHANG C C, WANG L J, NEI Q, et al. Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environmental and Experimental Botany, 2008, 62(3): 300-307. DOI:10.1016/j.envexpbot.2007.10.024
[88] 陈秀芳, 赵秀兰, 夏章菊, 等. 硅缓解小麦镉毒害的效应研究. 西南农业大学学报(自然科学版), 2005, 27(4): 447-450.
CHEN X F, ZHAO X L, XIA Z J, et al. Alleviation of Cd toxicity of wheat plants by silicon. Journal of Southwest Agricultural University (Natural Science), 2005, 27(4): 447-450. (in Chinese with English abstract)
[89] 刘杰. 一种新型叶面阻隔剂. 湖南农业, 2015(4): 9.
LIU J. A new type of foliar barrier agent. Hunan Agriculture, 2015(4): 9. (in Chinese with English abstract)
[90] 徐奕, 李剑睿, 黄青青, 等. 坡缕石钝化与喷施叶面硅肥联合对水稻吸收累积镉效应影响研究. 农业环境科学学报, 2016, 35(9): 1633-1641.
XU Y, LI J R, HUANG Q Q, et al. Effect of palygorskite immobilization combined with foliar silicon fertilizer application on Cd accumulation in rice. Journal of Agro-Environment Science, 2016, 35(9): 1633-1641. (in Chinese with English abstract) DOI:10.11654/jaes.2016-0838
[91] LIANG Y C, CHEN Q I N, LIU Q, et al. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology, 2003, 160(10): 1157-1164. DOI:10.1078/0176-1617-01065
[92] DRASCH G, SCHÖPFER J, SCHRAUZER G N. Selenium/cadmium ratios in human prostates. Biological Trace Element Research, 2005, 103(2): 103. DOI:10.1385/BTER:103:2
[93] EL-SHARAKY A S, NEWAIRY A A, BADRELDEEN M M, et al. Protective role of selenium against renal toxicity induced by cadmium in rats. Toxicology, 2007, 235(3): 185-193. DOI:10.1016/j.tox.2007.03.014
[94] CARY E E. Effect of selenium and cadmium additions to soil on their concentrations in lettuce and wheat. Agronomy Journal, 1981, 73(4): 703-706. DOI:10.2134/agronj1981.00021962007300040033x
[95] SHANKER K, MISHRA S, SRIVASTAVA S. Studies on Cd-Se interaction with reference to the uptake and translocation of cadmium in kidney bean. Chemical Speciation & Bioavailability, 1995, 7(3): 97-100.
[96] WU Z C, LIU S, ZHAO J, et al. Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. Environmental and Experimental Botany, 2017, 133: 1-11. DOI:10.1016/j.envexpbot.2016.09.005
[97] ZEMBALA M, FILEK M, WALAS S, et al. Effect of selenium on macro-and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant and Soil, 2010, 329(1/2): 457-468.
[98] 贺前锋, 李鹏祥, 易凤姣, 等. 叶面喷施硒肥对水稻植株中镉、硒含量分布的影响. 湖南农业科学, 2016(1): 37-39.
HE Q F, LI P X, YI F J, et al. Effects of selenium fertilizer foliage application on distribution of Cd and Se in rice. Hunan Agricultural Sciences, 2016(1): 37-39. (in Chinese with English abstract)
[99] 林莉. 硒缓解水稻镉毒害的机制研究. 杭州: 浙江大学, 2011: 37-42.
LIN L. Mechanism of alleviation effects of selenium application on cadmium toxicity in rice. Hangzhou: Zhejiang University, 2011: 37-42. (in Chinese with English abstract) http://cdmd.cnki.com.cn/Article/CDMD-10335-1013187180.htm
[100] RAMACHANDRAN V, D'SOUZA T J. Plant uptake of cadmium, zinc, and manganese from four contrasting soils amended with Cdenriched sewage sludge. Journal of Environmental Science and Health, Part A, 2002, 37(7): 1337-1346. DOI:10.1081/ESE-120005990
[101] BASZYŃKI T, WAJDA L, KRÓL M, et al. Photosynthetic activities of cadmium-treated tomato plants. Physiologia Plantarum, 1980, 48(3): 365-370. DOI:10.1111/ppl.1980.48.issue-3
[102] PAL'OVE-BALANG P, KISOVÁ A, PAVLOVKIN J, et al. Effect of manganese on cadmium toxicity in maize seedlings. Plant, Soil and Environment, 2006, 52(4): 143-149.
[103] EKMEKCI Y, TANYOLAC D, AYHAN B. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology, 2008, 165(6): 600-611. DOI:10.1016/j.jplph.2007.01.017
[104] ZORNOZA P, VÁZQUEZ S, ESTEBAN E, et al. Cadmium-stress in nodulated white lupin: Strategies to avoid toxicity. Plant Physiology and Biochemistry, 2002, 40(12): 1003-1009. DOI:10.1016/S0981-9428(02)01464-X