浙江大学学报(农业与生命科学版)  2017, Vol. 43 Issue (6): 727-733
文章快速检索     高级检索
二氯喹啉酸对农田生态系统的影响及其微生物降解研究进展[PDF全文]
孙扬1, 徐会娟2, 李晓晶1, 李永涛2, 赵丽霞1    
1. 农业部环境保护科研监测所农田有机污染生物消减创新团队,天津 300191;
2. 华南农业大学资源环境学院,广州 510642
摘要: 在总结国内外研究成果的基础上,较全面地综述了典型喹啉羧酸类除草剂二氯喹啉酸对作物、动物、土壤微生物群落结构和酶活性的影响,以及微生物降解方面的研究进展,并对未来从分子生物学层面研究二氯喹啉酸微生物降解机制、降解菌筛选以及田间实际应用等方面进行了展望。主要内容如下:土壤中残留的二氯喹啉酸会引起作物体内相关基因及功能酶的变化,从而对后茬作物产生药害;环境中的二氯喹啉酸可能会引起动物生长发育不良、变态发育以及生殖异常,进而影响自然界动物的多样性和丰度;正常施用量的二氯喹啉酸对土壤微生物群落结构和土壤酶活性影响不大;二氯喹啉酸在自然环境土壤中残留时间长,基于微生物降解的生物修复是治理二氯喹啉酸污染土壤的一种有效途径;目前研究者从二氯喹啉酸污染土壤和烟草根部分离出的二氯喹啉酸高效降解菌株大多是细菌;二氯喹啉酸的降解可能是脱羧反应和脱氯反应2种路径共同作用的结果;温、湿度和pH是影响土壤中二氯喹啉酸微生物降解的主要因素。为探明土壤微生物降解二氯喹啉酸的复杂生理生化过程及机制,研发二氯喹啉酸污染土壤修复技术,今后应利用先进的分子生物学技术和质谱联用技术研究二氯喹啉酸逐级降解产物,筛选功能降解菌株,通过遗传工程构建二氯喹啉酸高效降解菌剂,并进一步加强多种降解菌株的复合降解研究,验证二氯喹啉酸功能降解菌株在田间复杂环境中的实际效果。
关键词: 二氯喹啉酸    土壤    生态毒性    微生物降解    降解机制    
Research progress in farmland ecological effects and microbial degradation of quinclorac
SUN Yang1, XU Huijuan2, LI Xiaojing1, LI Yongtao2, ZHAO Lixia1    
1. Innovation Team of Soil Organic Contamination Control, Institute of Agro-Environmental Protection, Ministry of Agriculture, Tianjin 300191, China;
2. College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
Summary: Quinclorac is one of the typical quinolinecarboxylic acid herbicides existing in farmland ecosystems. The research progress in effect of quinclorac on crops, community structure of soil microorganisms, enzyme activities and its degradation by microorganisms was reviewed comprehensively. The future works focusing on mechanisms of microbial degradation, screening of degradative bacteria, and application in farmlands were also proposed. The main contents are as follows: Quinclorac is relatively stable in the environment; quinclorac residues in soil can lead to changes of genes and functional enzymes in crops, thus causing damage to crops and resistance of some weeds; the presence of quinclorac in environment may cause animal dysplasia, metamorphosis and reproductive abnormality, thus affecting the diversity and abundance of animals; regular application rate has little effect on community structure of soil microorganisms and soil enzyme activities. Quinclorac often exists for a long time in natural environment, and the bioremediation based on microbial degradation is an effective way to control the quinclorac pollution. At present, researches on microbial degradation of quinclorac are conducted mainly in China, and several highly effective strains for degrading quinclorac isolated from contaminated soils and tobacco roots are mostly identified as bacteria. The degradation of quinclorac may attribute to the combination of decarboxylation reaction and dechlorination reaction. Temperature, humidity and pH are the main influencing factors of microbial degradation. Usually in a certain range, the degradation of quinclorac in soil accelerated with the increase of temperature and humidity. However, excessively high temperature or humidity would reduce the efficiency of microbial degradation. pH value mainly affected the microbial degradation of quinclorac in two aspects. Quinclorac is weak acidic and shows higher dissociation degree in slight alkaline soil, which is more easily degraded; on the other hand, the pH of soil has direct effect on the species and quantity of soil microbial communities, which has a great impact on the effect of microbial degradation. In conclusion, to reveal the complex physiological and biochemical processes and mechanism of soil microbial degradation, and explore the remediation technology for quinclorac contaminated soil, future work should focus on: 1) investigating the mechanism of quinclorac degradation at molecular biological level by the application of advanced molecular biological technology and tandem mass spectrometry technology, and constructing highly effective strains in degrading quinclorac through genetic engineering; 2) focusing on complex degradation of quinclorac by multiple strains; 3) verifying the effect of the currently isolated quinclorac-degrading strains in the field.
Key words: quinclorac    soil    ecotoxicity    microbial degradation    degradation mechanism    

喹啉羧酸类除草剂是20世纪由德国巴斯夫(BASF)公司开发,与苯甲酸类、苯氧羧酸类除草剂同属于羧酸类除草剂,主要品种有二氯喹啉酸、喹草酸和氯钾喹啉酸[1]。其中,二氯喹啉酸应用最为普遍,施药1次即能防除整个生育期稻田中的稗草,还可用于大豆、高粱、小麦和玉米等作物田以及草坪、休耕地,防治马唐、稗草等禾本科杂草及一些阔叶杂草[2]。近年来,二氯喹啉酸因其用药剂量小、有效期长、施用适期宽等优点在亚洲、南美洲、北美洲以及欧洲稻区被广泛应用[3-6]

二氯喹啉酸在土壤中降解缓慢,容易造成环境污染,使下茬作物或非靶标作物受害,影响农业生产[7]。1998—2002年,广东烟区稻田因不当施用二氯喹啉酸而导致下茬烟草受害,近年又在广东五华县发现大面积烟草生长畸形现象,受害烟株叶缘下卷,叶片向背面皱缩,叶片狭长,经分析认定是上茬作物使用二氯喹啉酸除草剂所致[8]。因此,全面深入了解二氯喹啉酸除草剂在土壤中的生态效应、环境行为及其降解转化,对科学合理施用二氯喹啉酸除草剂以提高其药效、降低其环境风险尤为重要。本文主要就二氯喹啉酸对作物、动物及土壤微生物的生态影响、在环境中的迁移转化行为及其微生物降解等方面的研究进行了较全面的综述。

1 二氯喹啉酸结构与理化性质

二氯喹啉酸,化学名称为3,7-二氯喹啉-8-羧酸,英文通用名quinclorac,分子式为C10H5Cl12NO2,相对分子质量为242.1,化学结构式如图 1。二氯喹啉酸原药外观为淡黄白色晶体,熔点为274 ℃,密度为1.75 g/cm3,蒸汽压<1 × 10-7 mPa(20 ℃);溶解度(20 ℃,g/100 g溶剂):水0.006 4、丙酮0.2、乙醚0.1、乙酸乙酯0.1,几乎不溶于甲苯、乙腈、正辛醇、二氯甲烷、正乙烷;分配系数Kow(正辛醇/水):0.07(pH 7,20 ℃);酸性,pKa=4.34(20 ℃);对光、热较稳定,在pH值为3~9时不易水解,无腐蚀性[9]

图1 二氯喹啉酸的化学结构 Fig. 1 Chemical structure of quinclorac
2 二氯喹啉酸的生态影响 2.1 对作物的药害及危害机制

二氯喹啉酸能够在土壤中积累,残留时间长,易对后茬作物产生药害。在施用309 d内,除水稻外不能种任何作物,12个月之内不能种茄子、烟草,伞形花科作物如胡萝卜、芹菜、香菜等对二氯喹啉酸也很敏感,不能用施过二氯喹啉酸的水灌溉上述蔬菜以免引起药害[10]。二氯喹啉酸对烟草产生的药害一般表现为叶片发育异常、生长缓慢乃至枯萎,甚至烟株死亡等[8]。有很多学者研究了二氯喹啉酸对作物产生药害的原因和机制。GROSSMANN等[11]发现二氯喹啉酸能够增强1-氨基环丙烷-1-羧酸(ACC)合酶的活性水平,然后通过氧化生成乙烯导致氰化物的富集,阻断叶绿体和线粒体中的电子传递,从而引起植物体中活性氧(reactive oxygen species, ROS)生产过剩[12]而使二氯喹啉酸呈现出药害[1, 13]。敏感的双子叶植物对于二氯喹啉酸的应激反应是增加脱落酸的生物合成,从而导致ROS过量产生[2, 14]。通过转录组学分析可知,二氯喹啉酸施用在水稻(Orzya sativa)植株上可以引起几个具有药物解毒功能基因组的表达增强[15]。而且,具有调节体内生长素平衡功能的基因EcGH3.1表达诱导被认为是稗草(Echinochloa crusgalli)具有二氯喹啉酸抗药性的主要原因[16]。综上所述,除草剂二氯喹啉酸的不当、过量使用会导致作物体内基因及功能酶的变化,从而造成对作物的药害及一些杂草的抗药性。

2.2 对动物的毒性及致毒机制

二氯喹啉酸是一种低毒农药,该药在动物体内代谢迅速,无明显积累作用,主要通过尿液排出[17]。该类除草剂对哺乳动物的靶器官主要为肝脏和肾脏,可引起老鼠睾丸、肝脏绝对量减轻,脾和睾丸退化;使兔、狗等动物体内的碱性磷酸酶活性降低、谷氨酸-丙酮酸转氨酶活性增强。虽然二氯喹啉酸被认为对水生和陆地生物(包括鱼类、藻类、鸟类和无脊椎动物类)毒性很小[17],但硬骨鱼(Leporinus obtusidens)长时间暴露在二氯喹啉酸质量浓度为20~44.6 μg/L的水田中,其大脑和肌肉中乙酰胆碱酯酶的活性明显降低,大脑和肝脏的氧化应激水平也会受到不同程度的损伤[18-19]。PERSCH等[20]通过水体染毒培育实验得知,1.75 μg/L二氯喹啉酸溶解于水中即可引起Rhamdia quelen幼鱼体内鳃、肾和肌肉组织中的脂质过氧化以及超氧化物歧化酶活性的增强。DORNELLES等[21]发现水体中0.05~ 0.20 μg/L二氯喹啉酸即能够引起两栖类动物北美牛蛙(Lithobates catesbeianus)肝脏和肌肉中的糖原、总脂肪、甘油三酯、胆固醇和总蛋白等生化指标的大幅降低,以及这些动物体内的脂质过氧化。因此,二氯喹啉酸可能导致动物的生长发育不良、变态发育以及生殖异常而影响自然界动物的多样性和丰度。

2.3 对土壤微生物群落及酶活性的影响

土壤中的微生物生物量及活性对除草剂在土壤中的持效性有着明显的影响[22-23],农药对环境微生物群落及酶活性的影响是评价农药生态环境安全性的一个重要指标[24-25]。SUBHANI等[26]研究发现,二氯喹啉酸虽然对好氧微生物生物量及活性均有明显的影响,但这种影响是暂时性的,经过一段时间即可自行恢复正常。吕镇梅等[27]采用平板稀释法及最大或然计数法等传统生物学方法发现:质量分数为0.33~2.00 mg/kg干土的二氯喹啉酸对稻田土壤中微生物群落的影响是暂时的,在第33天时即能恢复至对照水平;以正常土壤施用量(即0.67 mg/kg干土)施用时对水田土壤各微生物种群均无实质性危害。张妤等[28]采用磷脂脂肪酸法(PLFA)研究了2种水平(83.3和166.6 μg/kg干土)的二氯喹啉酸处理对淹水和不淹水的水田土壤微生物群落结构的影响,并采用PLFA主成分分析法(PCA)找到了2种水平处理的土壤微生物优势种群,通过对土壤微生物生物量、细菌和真菌生物量以及土壤真菌/细菌比值的测定发现,二氯喹啉酸会使不淹水的水田土壤微生物群落稳定性下降,而对淹水水田生物群落稳定性无明显干扰。杨彩宏等[29]在25 ℃暗培养条件下,通过向稻田土壤中施加不同含量的二氯喹啉酸分别探讨在水旱条件下土壤酶活性及微生物群落的变化,结果表明:在淹水条件下土壤过氧化氢酶被激活的程度较大,而脲酶、脱氢酶和纤维素酶的活性均与对照的酶变化趋势同步;在干旱条件下真菌生物量有所下降,二氯喹啉酸污染土壤PLFA总生物量与过氧化氢酶和脲酶呈显著负相关,而与脱氢酶和纤维素酶呈一定的正相关。综上可知,正常土壤施用量(0.67 mg/kg干土)的二氯喹啉酸对土壤微生物群落和土壤酶活性的影响较小,且影响是暂时的。

3 二氯喹啉酸的微生物降解研究进展

二氯喹啉酸性质稳定,在自然环境中很难降解,土壤中残留时间长[30],在稻田施用6个月后仍有相当多的二氯喹啉酸残留[9]。光解和微生物降解是消除环境中二氯喹啉酸污染的2种主要途径[5, 31],新兴的基于硫酸根自由基(SO4·)的高级氧化技术也能有效降解水体中二氯喹啉酸的残留[32]。但光降解和高级氧化技术仅适用于水体和土壤表面[5, 31-33],对土壤中移动性能较强的二氯喹啉酸作用微弱[34]。基于微生物降解的生物修复对治理二氯喹啉酸的土壤污染是一种有效的途径[35]

3.1 具二氯喹啉酸降解功能的微生物种类

目前关于二氯喹啉酸高效降解微生物的研究主要集中在国内,已有研究者从二氯喹啉酸污染土壤和烟草根部分离出数株二氯喹啉酸高效降解菌。LÜ等[36]从农药厂土壤中分离到1株二氯喹啉酸降解菌WZ1,经鉴定为洋葱伯克霍尔德菌属。在优化条件下,WZ1能够在11 d内将初始质量浓度为1 g/L的二氯喹啉酸降解至10%以下[37-38]。徐淑霞等[39]从污水处理池污泥中分离到1株博德特氏菌HN36,对初始质量浓度为0.4 g/L的二氯喹啉酸在48 h内的降解率为96%。董俊宇等[40]从经常施用二氯喹啉酸的土壤中分离到二氯喹啉酸降解菌株J3,经鉴定属产碱杆菌属,在适宜的条件下能将0.1 g/L二氯喹啉酸在7 d内降解70%。范俊等[41]从长期使用二氯喹啉酸的土壤中分离得到1株泛菌属菌QC06,在优化条件下对初始质量浓度为0.05 g/L的二氯喹啉酸的7 d降解率为95.31%。张顺等[42]从长期施用二氯喹啉酸的稻田土壤中分离到了1株二氯喹啉酸高效降解菌,经鉴定为节杆菌属菌,并命名为MC-10,在该降解菌的最佳降解温度30 ℃、最佳降解pH 7、最佳接种量5%条件下,二氯喹啉酸在10~100 mg/L初始质量浓度范围内培养7 d,其降解率可达70%,即降解菌MC-10在土壤中对二氯喹啉酸同样具有高效的降解效果。LIU等[33]从生长在二氯喹啉酸污染土壤中的烟草根部分离到1株内生二氯喹啉酸降解菌Q3,经鉴定为巨大芽孢杆菌,在温度30 ℃、pH 8、接种量为6%的优化条件下,能将20 mg/L二氯喹啉酸在7 d内降解93.6%。由上述研究可以看出,目前分离到的具有二氯喹啉酸降解功能的微生物主要是细菌,降解率可达70%~96%。

3.2 微生物降解路径和机制

细菌一般通过酶促反应降解农药,即有机污染物进入细菌体后,在各种酶的作用下,经过复杂的生理生化反应,最终完全降解为分子质量较小的无毒或毒性较小的化合物[43]

LI等[38]通过气相色谱-质谱联用技术(GC-MS)对二氯喹啉酸的代谢产物进行了分析,初步推测了二氯喹啉酸可能的降解途径。菌株WZ1先通过脱羟酸反应将二氯喹啉酸转化为3,7-二氯喹啉,再通过加氧环裂解作用形成一个中间过渡物,经过基团交换转移等反应转化成2-氯-1,6-苯二甲酸,然后通过邻苯二甲酸双加氧酶和氯邻苯二酚1,2 -双加氧酶作用后最终进入三羧酸循环,完成降解过程[38]。LIU等[33]用液相色谱-质谱/质谱联用(LC-MS/MS)分析检测发现,经微生物降解菌Q3作用后,二氯喹啉酸的代谢产物为3,7-二氯-8-甲基-喹啉、3-氯-8-喹啉-羧酸和8-喹啉-羧酸;基于不同于LI等[38]的研究结果,推测Q3对二氯喹啉酸的降解可能是2种路径的共同作用:一种可能是二氯喹啉酸发生脱羧反应,另一种可能是脱氯反应。由于缺少降解产物的标准品和产物分离纯化方法,研究者未能对降解产物进行定量分析。

作为一种结构相对简单的典型有机氯化物,对二氯喹啉酸生物降解机制的研究能为探究其他具有类似乃至更加复杂结构的有机污染物的生物降解机制提供一定的参考,为探索复杂有机污染物降解新途径、构建多功能有机污染物降解工程菌种奠定基础。此外,由于二氯喹啉酸与一些抗生素如喹诺酮类药物(诺氟沙星、氧氟沙星等)不但结构相似,而且都具有氧化还原活性,研究降解菌株在二氯喹啉酸胁迫下的生理变化,对阐明菌株的抗药性机制具有积极的参考价值。同时,对于将相关菌株更加安全地运用于环境生物修复乃至人类疾病防治以及环境卫生技术方面均有积极意义。

3.3 微生物降解的影响因素

温度和湿度是微生物降解土壤中二氯喹啉酸的主要影响因素。通常在一定的范围内,随着温度和湿度的增加,二氯喹啉酸在土壤中的降解会加快。但温度过高或湿度过大则会降低微生物的降解效果。HILL等[30]研究发现,温度和湿度主要通过影响土壤微生物和酶的活性,进而影响微生物分解化合物的速度。目前筛选得到的二氯喹啉酸降解菌株在25~38 ℃温度范围内和自然环境湿度下都有较好的降解效果[33, 39-42]

pH值主要通过2个方面影响二氯喹啉酸的微生物降解。一方面,二氯喹啉酸呈弱酸性,在偏碱性土壤中解离度较大,较易被降解;另一方面,土壤pH值对于土壤微生物种群类别和数量有直接的影响,从而对二氯喹啉酸的微生物降解效果产生较大的影响。研究者目前所筛选出的二氯喹啉酸降解菌的最适降解pH值大多为7[39-42],Q3菌株的最适降解pH值是8[33]

除土壤pH、温湿度等影响因素外,土壤有机质含量、土壤质地类型和土壤通透性能等因素也会对二氯喹啉酸的微生物降解产生重要影响[44-45]。丰富的土壤有机质对微生物生存区域微环境的改善有着积极影响。SHAW等[46]研究表明,根际环境中微生物降解作用增强与根际分泌物和根际碎叶的腐殖化有关。

4 结论与展望

二氯喹啉酸作为一种国内外广泛使用的稻田除稗剂,全面系统地了解其生态效应、主要降解途径与机制,对防止其经农田水流、地表径流以及淋溶下渗等途径进入地表和地下水体,造成农业面源污染具有重要意义。二氯喹啉酸在土壤中不易光解和水解,主要依靠相关微生物和酶类对其进行降解。为探明土壤微生物降解及矿化二氯喹啉酸的复杂生理生化过程,揭示其分子生物学机制,今后的工作应从以下几个方面着手:1)微生物对二氯喹啉酸的降解机制至今尚不清楚,应利用当前先进的分子生物学技术和质谱联用技术从分子生物学层面研究其机制,通过遗传工程构建二氯喹啉酸高效降解菌剂;2)已有报道均只是单一菌株对二氯喹啉酸的降解性能和降解机制研究,然而在大田中有机物的微生物降解大多是在复合菌株的共同参与下完成的,因此,有关多种降解菌株的复合降解有待进一步研究;3)当前研究者分离到的细菌菌株在室内模拟环境下均对二氯喹啉酸有很好的降解效果,但投放到复杂的田间环境中的实际降解效果有待验证。

参考文献
[1] GROSSMANN K. Mode of action of auxin herbicides: A new ending to a long, drawn out story. Trends in Plant Science, 2000, 5(12): 506-508. DOI:10.1016/S1360-1385(00)01791-X
[2] GROSSMANN K. Auxin herbicides: Current status of mechanism and mode of action. Pest Management Science, 2010, 66(2): 113-120.
[3] 张舒, 胡文星, 常向前, 等. 稻田除草剂对4种田埂豆类植物的安全性. 农药, 2016, 55(8): 586-589.
ZHANG S, HU W X, CHANG X Q, et al. Research on the security of paddy herbicides to four kinds of ridge legumes. Agrochemicals, 2016, 55(8): 586-589. (in Chinese with English abstract)
[4] MATZENBACHER F O, BORTOLY E D, KALSING A, et al. Distribution and analysis of the mechanisms of resistance of barnyardgrass (Echinochloa crusgalli) to imidazolinone and quinclorac herbicides. Journal of Agricultural Science, 2015, 153(6): 1044-1058. DOI:10.1017/S0021859614000768
[5] PINNA M V, PUSINO A. Direct and indirect photolysis of two quinolinecarboxylic herbicides in aqueous systems. Chemosphere, 2012, 86(6): 655-658. DOI:10.1016/j.chemosphere.2011.11.016
[6] FIPKE M V, VIDAL R A. Integrative theory of the mode of action of quinclorac: Literature review. Planta Daninha, 2016, 34(2): 393-402. DOI:10.1590/S0100-83582016340200020
[7] STERLING T M. Mechanisms of herbicide absorption across plant membranes and accumulation in plant cells. Weed Science, 1994, 42(2): 263-276.
[8] 陈泽鹏, 邓建朝, 万树青, 等. 二氯喹啉酸致烟草畸形的解毒剂筛选与解毒效果. 生态环境, 2007, 16(2): 453-456.
CHEN Z P, DENG J C, WAN S Q, et al. Detoxication of some chemicals for deformity of tobacco by quinclorac. Ecology and Environment, 2007, 16(2): 453-456. (in Chinese with English abstract)
[9] 刘长令. 世界农药大全:除草剂卷. 北京: 化学工业出版社, 2002: 124-125.
LIU C L. World of Pesticides: Herbicides. Beijing: Chemical Industry Press, 2002: 124-125. (in Chinese with English abstract)
[10] GROSSMANN K, KWIATKOWSKI J. Evidence for a causative role of cyanide, derived from ethylene biosynthesis, in the herbicidal mode of action of quinclorac in barnyard grass. Pesticide Biochemistry and Physiology, 1995, 51(2): 150-160. DOI:10.1006/pest.1995.1015
[11] GROSSMANN K, SCHELTRUP F. Selective induction of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity is involved in the selectivity of the auxin herbicide quinclorac between barnyard grass and rice. Pesticide Biochemistry and Physiology, 1997, 58(2): 145-153. DOI:10.1006/pest.1997.2290
[12] NAVROT N, ROUHIER N, GELHAYE E, et al. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiologia Plantarum, 2007, 129(1): 185-195. DOI:10.1111/ppl.2007.129.issue-1
[13] ABDALLAH I, FISCHER A J, ELMORE C L, et al. Mechanism of resistance to quinclorac in smooth crabgrass (Digitaria ischaemum). Pesticide Biochemistry and Physiology, 2006, 84(1): 38-48. DOI:10.1016/j.pestbp.2005.05.003
[14] VAN EERD L L, STEPHENSON G R, KWIATKOWSKI J, et al. Physiological and biochemical characterization of quinclorac resistance in a false cleavers (Galium spurium L.) biotype. Journal of Agricultural and Food Chemistry, 2005, 53(4): 1144-1151. DOI:10.1021/jf048627e
[15] XU W Y, DI C, ZHOU S X, et al. Rice transcriptome analysis to identify possible herbicide quinclorac detoxification genes. Frontiers in Genetics, 2015, 6: 306.
[16] LI G, XU M F, CHEN L P, et al. A novel EcGH3 gene with a different expression pattern in quinclorac-resistant and susceptible barnyardgrass (Echinochloa crusgalli). Plant Gene, 2016, 5: 65-70. DOI:10.1016/j.plgene.2015.12.002
[17] Group on Specifications of the FAO Panel of Experts on Pesticide, Specifications, Registration Requirements and Application Standards and Prior Informed Consent. Manual on the Development and Use of FAO Specifications for Plant Protection Products. 5th ed, including the new procedure. 1999.
[18] TONI C, MENEZES C, CLASEN B, et al. Oxidative stress in carp exposed to quinclorac herbicide under rice field condition. Ecotoxicology and Environmental Safety, 2013, 92: 27-31. DOI:10.1016/j.ecoenv.2013.01.028
[19] PRETTO A, LORO V L, MENEZES C, et al. Commercial formulation containing quinclorac and metsulfuron-methyl herbicides inhibit acetylcholinesterase and induce biochemical alterations in tissues of Leporinus obtusidens. Ecotoxicology and Environmental Safety, 2011, 74(3): 336-341. DOI:10.1016/j.ecoenv.2010.10.003
[20] PERSCH T S P, WEIMER R N, FREITAS B S, et al. Metabolic parameters and oxidative balance in juvenile Rhamdia quelen exposed to rice paddy herbicides: Roundup®, Primoleo®, and Facet®. Chemosphere, 2017, 174: 98-109. DOI:10.1016/j.chemosphere.2017.01.092
[21] DORNELLES M F, OLIVEIRA G T. Effect of atrazine, glyphosate and quinclorac on biochemical parameters, lipid peroxidation and survival in bullfrog tadpoles (Lithobates catesbeianus). Archives of Environmental Contamination Toxicology, 2014, 66(3): 415-429. DOI:10.1007/s00244-013-9967-4
[22] 廖敏, 黄昌勇. 镉在有机酸存在时对红壤中微生物生物量的影响. 应用生态学报, 2002, 13(3): 300-302.
LIAO M, HUANG C Y. Microbial biomass affected by cadmium with the occurrence of organic acids in red soil. Chinese Journal of Applied Ecology, 2002, 13(3): 300-302. (in Chinese with English abstract)
[23] 薛冬, 姚槐应, 何振立, 等. 红壤酶活性与肥力的关系. 应用生态学报, 2005, 16(8): 1455-1458.
XUE D, YAO H Y, HE Z L, et al. Relationships between red soil enzyme activity and fertility. Chinese Journal of Applied Ecology, 2005, 16(8): 1455-1458. (in Chinese with English abstract)
[24] PASCUAL J A, GARCIA C, HERNANDEZ T, et al. Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biology and Biochemistry, 2000, 32(13): 1877-1883. DOI:10.1016/S0038-0717(00)00161-9
[25] ACOSTA-MARTNEZ V, MIKHA M M, VIGIL M F. Microbial communities and enzyme activities in soils under alternative crop rotations compared to wheat-fallow for the central great plains. Applied Soil Ecology, 2007, 37(1/2): 41-52.
[26] SUBHANI A, EI-GHAMRY A M, HUANG C Y, et al. Effects of pesticides (herbicides) on soil microbial biomass: A review. Pakistan Journal of Biological Sciences, 2000, 3(5): 705-709. DOI:10.3923/pjbs.2000.705.709
[27] 吕镇梅, 闵航, 叶央芳. 除草剂二氯喹啉酸对水稻田土壤中微生物种群的影响. 应用生态学报, 2004, 15(4): 605-609.
LÜ Z M, MIN H, YE Y F. Effect of herbicide quinclorac on microbic populations in a paddy soil. Chinese Journal of Applied Ecology, 2004, 15(4): 605-609. (in Chinese with English abstract)
[28] 张妤, 郭爱玲, 崔烨, 等. 培养条件下二氯喹啉酸对土壤微生物群落结构的影响. 生态学报, 2015, 35(3): 849-857.
ZHANG Y, GUO A L, CUI Y, et al. Effect of quinclorac on soil microbial community structure under culture conditions. Acta Ecologica Sinica, 2015, 35(3): 849-857. (in Chinese with English abstract)
[29] 杨彩宏, 张妤, 崔烨, 等. 二氯喹啉酸在水旱条件下对土壤酶活性及微生物群落的影响. 广东农业科学, 2015, 42(6): 74-79.
YANG C H, ZHANG Y, CUI Y, et al. Effects of quinclorac on soil enzymes activities and microbial community under flooded and non-flooded conditions. Guangdong Agricultural Sciences, 2015, 42(6): 74-79. (in Chinese with English abstract)
[30] HILL B D, MOYER J R, INABA D J, et al. Effect of moisture on quinclorac dissipation in Lethbridge soil. Canadian Journal of Plant Science, 1998, 78(4): 697-702. DOI:10.4141/P97-119
[31] PAREJA L, PÉREZ-PARADA A, AGÜERA A, et al. Photolytic and photocatalytic degradation of quinclorac in ultrapure and paddy field water: Identification of transformation products and pathways. Chemosphere, 2012, 87(8): 838-844. DOI:10.1016/j.chemosphere.2012.01.016
[32] 钟美娥, 李季, 龚道新, 等. 均相Co(Ⅱ)/PMS体系对二氯喹啉酸的降解特性研究. 中国环境科学, 2015, 35(11): 3282-3287.
ZHONG M E, LI J, GONG D X, et al. Degradation characteristics of quinclorac in homogeneous Co(Ⅱ)/PMS system. China Environmental Science, 2015, 35(11): 3282-3287. (in Chinese with English abstract) DOI:10.3969/j.issn.1000-6923.2015.11.011
[33] LIU M, LUO K, WANG Y S, et al. Isolation, identification and characteristics of an endophytic quinclorac degrading bacterium Bacillus megaterium Q3. PLoS One, 2014, 9(9): e108012. DOI:10.1371/journal.pone.0108012
[34] ADAMS J W, LYM R G. Quinclorac and aminocyclopyrachlor movement in sandy soils. Invasive Plant Science and Management, 2015, 8(3): 269-275. DOI:10.1614/IPSM-D-14-00070.1
[35] SINGH D K. Biodegradation and bioremediation of pesticide in soil: Concept, method and recent developments. Indian Journal of Microbiology, 2008, 48(1): 35-40.
[36] LÜ Z M, MIN H, WU S W, et al. Phylogenetic and degradation characterization of Burkholderia cepacia WZ1 degrading herbicide quinclorac. Journal of Environmental Science and Health, Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2003, 38(6): 771-782. DOI:10.1081/PFC-120025560
[37] LÜ Z M, MIN H, LI N, et al. Variations of bacterial community structure in flooded paddy soil contaminated with herbicide quinclorac. Journal of Environmental Science and Health, Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2006, 41(6): 821-832. DOI:10.1080/03601230600805873
[38] LI Z M, SHAO T J, MIN H, et al. Stress response of Burkholderia cepacia WZ1 exposed to quinclorac and the biodegradation of quinclorac. Soil Biology and Biochemistry, 2009, 41(5): 984-990. DOI:10.1016/j.soilbio.2008.10.026
[39] 徐淑霞, 周杰, 黄宁, 等. 二氯喹啉酸降解菌HN36的分离、鉴定及降解特性研究. 安全与环境学报, 2012, 12(2): 45-49.
XU S X, ZHOU J, HUANG N, et al. On the way of isolating, identifying and characterization of quinclorac-degrading bacterium HN36. Journal of Safety and Environment, 2012, 12(2): 45-49. (in Chinese with English abstract)
[40] 董俊宇, 罗坤, 柏连阳, 等. 二氯喹啉酸降解菌的分离鉴定及降解特性分析. 农药学学报, 2013, 15(3): 316-322.
DONG J Y, LUO K, BAI L Y, et al. Isolation, identification and characterization of an Alcaligenes strain capable of degrading quinclorac. Chinese Journal of Pesticide Science, 2013, 15(3): 316-322. (in Chinese with English abstract)
[41] 范俊, 柏连阳, 刘敏捷, 等. 1株二氯喹啉酸降解菌QC06的筛选鉴定及其降解特性. 中国生物防治学报, 2013, 29(3): 431-436.
FAN J, BO L Y, LIU M J, et al. Isolation, identification and degradation characteristics of quinclorac-degrading strain QC06. Chinese Journal of Biological Control, 2013, 29(3): 431-436. (in Chinese with English abstract)
[42] 张顺, 黄国联, 许家来, 等. 二氯喹啉酸降解MC-10的筛选、鉴定及其降解特性. 微生物学报, 2015, 55(1): 80-88.
ZHANG S, HUANG G L, XU J L, et al. Screening, identification and characterization of a quinclorac-degrading Arthrobacter sp. MC-10. Acta Microbiologica Sinica, 2015, 55(1): 80-88. (in Chinese with English abstract)
[43] 尤民生, 刘新. 农药污染的生物降解与生物修复. 生态学杂志, 2004, 23(1): 73-77.
YOU M S, LIU X. Biodegradation and bioremediation of pesticide pollution. Chinese Journal of Ecology, 2004, 23(1): 73-77. (in Chinese with English abstract)
[44] WALKER A, MOON Y H, WELCH S J. Influence of temperature, soil moisture and soil characteristics on the persistence of alachlor. Pest Management Science, 1992, 35(2): 109-116. DOI:10.1002/ps.v35:2
[45] 尹乐斌, 刘勇, 张德咏, 等. 磺酰脲类除草剂残留的微生物降解研究进展. 微生物学通报, 2010, 37(4): 594-600.
YIN L B, LIU Y, ZHANG D Y, et al. Research progress of microbial degradation of the sulfonylurea herbicides. Microbiology, 2010, 37(4): 594-600. (in Chinese with English abstract)
[46] SHAW L J, BURNS R G. Influence of the rhizosphere on the biodegradation of organic xenobiotics: A case study with 2, 4-dichlorophenoxyacetic acid//HEIPIEPER H J. Bioremediation of Soils Contaminated with Aromatic Compounds. Netherlands: Springer, 2007:6-8.