浙江大学学报(农业与生命科学版)  2017, Vol. 43 Issue (4): 469-475
文章快速检索     高级检索
乌饭树和蓝莓对不同土壤pH值的生理反应[PDF全文]
李晴晴, 鲁珊珊, 张红, 杨艳, 肖家欣    
安徽师范大学生命科学学院/安徽省重要生物资源保护与利用研究重点实验室,安徽 芜湖 241000
摘要: 采用盆栽砂培法,研究3种不同的土壤pH值(4.2、5.2和6.2)对乌饭树(Vaccinium bracteatum Thunb.)和兔眼蓝莓(Vaccinium ashei Reade)品种“灿烂”生长及相关生理指标的影响。结果表明:乌饭树和蓝莓的生物量、叶绿素含量及根系活力均在土壤pH 6.2时最低,而其生物量与根系活力分别在pH 5.2和pH 4.2时最高。乌饭树和蓝莓根和叶部的可溶性糖及可溶性蛋白质含量均在pH 6.2时最高,分别在pH 5.2和pH 4.2时最低。在土壤pH 5.2时,乌饭树的根、茎、叶中P、Fe和Zn含量较高;当土壤pH 4.2时,蓝莓根部P和Fe含量、茎部Fe含量及叶部Fe和Zn含量均相对较高。乌饭树和蓝莓根或叶的POD和CAT活性及MDA含量均在pH 6.2时最高,而其最低值分别出现在pH5.2和pH 4.2时。综上,乌饭树和蓝莓分别在土壤pH 5.2和pH 4.2时生长最好,pH 6.2的土壤环境对二者生长均有抑制作用,尤其以蓝莓较为明显。
关键词: 土壤pH    乌饭树    蓝莓    生理反应    
Physiological response to different soil pH values between Vaccinium bracteatum and Vaccinium ashei
LI Qingqing, LU Shanshan, ZHANG Hong, YANG Yan, XIAO Jiaxin    
Anhui Provincial Key Laboratory of the Concervation and Exploitation of Biological Resources/College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
Summary: Blueberry (Vaccinium spp.) is well known for its rich anthocyanins and other bioactive compounds, which contributes to prevent from cardiovascular disease and other chronic illnesses. Thereby, many countries including China have attached great importance to the economic value and development prospect of blueberry. However, the main root of blueberry tree is not obvious but exceedingly slender, intertwined and lack of root hair. Meanwhile, blueberry prefers acidic even strongly acidic soil, and its most suitable pH value of culture is from 3.8 to 5.0. As the soil pH value of cultivating blueberry is generally higher than 5.0, large amounts of sulfur powder are applied to reduce the soil pH value. Wufanshu (Vaccinium bracteatum Thunb.), belonging to the same family and genus with blueberry, is a stock with developed root system, strong barren tolerance and extensively ecological adaptability, which has been cultivated as a kind of economic or landscaping plant species. There are many examples of grafting and improving native blueberry with Wufanshu scion in folk. Grafting blueberry with Wufanshu is well worth popularizing in blueberry cultivation at least in the Yangtze River area of China. However, few studies have been reported on the effects of soil pH values on the growth of different Vaccinium plants. To evaluate the effects of different soil pH values on the growth and relative physiological indices of Wufanshu (V. bracteatum) and rabbiteye blueberry (Vaccinium ashei Reade) cv. Brightwell plants, three different soil pH values (4.2, 5.2 and 6.2) were applied to the 9-month-old plants of Wufanshu and rabbiteye blueberry under greenhouse conditions. Plants were grown in the medium of V(sand):V(perlite)=1:1 and irrigated every 2 days with half-strength Hoagland's No. 2 nutrient solutions with different pH values (4.2, 5.2, and 6.2). Leaves, stems and roots were separately sampled after 187 days to determine their relative physiological indices. The results showed that the biomass, chlorophyll content and root activity of Wufanshu and blueberry were the lowest at pH 6.2 level, but the maxima of the biomass and root activity in Wufanshu and blueberry were found at pH 5.2 and 4.2 levels, respectively. The soluble sugar and protein contents of Wufanshu and blueberry were the highest at pH 6.2, and the lowest ones were detected at pH 5.2 and 4.2, respectively. The contents of phosphorus (P), ferrum (Fe) and zinc (Zn) in the roots, stems and leaves of Wufanshu were the highest at pH 5.2 level; however, the contents of P and Fe in the roots, Fe in the stems, and Fe and Zn in the leaves of blueberry were the highest at pH 4.2 level. The activities of peroxidase (POD) and catalase (CAT), and malondialdehyde (MDA) content of Wufanshu and blueberry were the highest at pH 6.2 level, while the minima of them were presented at pH 5.2 and 4.2, respectively. These results indicate that pH 5.2 and pH 4.2 are the optimal soil pH values for the growth of Wufanshu and blueberry plants, respectively; however, soil pH 6.2 will inhibit their growth, especially the blueberry.
Key words: soil pH    Vaccinium bracteatum    Vaccinium ashei    physiological response    

乌饭树(Vaccinium bracteatum Thunb.)为杜鹃花科越橘属灌木或小乔木,耐瘠薄,较耐寒,为浅根性树种,喜酸性环境,在土壤pH 4.5~6.6的黄红壤或红壤上生长良好,是南方酸性红壤区一种良好的水土保持植物,也是酸性红壤土的指示植物之一[1]。蓝莓(Vaccinium spp.)亦为杜鹃花科越橘属灌木,其果实富含花青苷,低糖,低脂肪,抗氧化能力强,具有增强免疫力、保护视力和心脏功能的独特疗效,营养价值高,被国际粮农组织列为人类5大健康食品之一[2]。蓝莓属浅根性树种,无根毛,最适土壤pH值为3.8~5.0,然而天然土壤pH值往往高于5.0,因此许多地区采用施用硫磺粉的方法来降低土壤pH值以适应其栽培需求,这不仅限制了蓝莓的广泛推广,还增加了栽培成本[3-5]。近年来,我国蓝莓产业发展势头强劲,由北向南已推广到江南、华南等地。2015年全国超过20个省市区开展了蓝莓种植,总面积约3万hm2,产量约2.5万t[6]。蓝莓通常分为3大类:高丛蓝莓(北高丛、南高丛和半高丛蓝莓)、兔眼蓝莓及矮丛蓝莓,其中在长江流域广泛引种栽培的大多是南高丛蓝莓和兔眼蓝莓[7]。土壤pH值过高容易引起蓝莓黄化等异常症状,一般认为当土壤pH值高于5.2时,土壤中的自由态铁会与有机物质作用,生成不能被蓝莓根系吸收的络合物,从而引起蓝莓植株缺铁黄化等症状[8]

生产上除了施用硫磺粉降低土壤pH值来适应蓝莓栽培的需求外,曾有研究者以乌饭树为砧木嫁接蓝莓并获得成功[9-11]。乌饭树和蓝莓亲缘关系较近,而且乌饭树对土壤的适应性相对较强,在我国南北各地均有分布[12],因此,乌饭树作为蓝莓嫁接的砧木具有广泛的应用前景。乌饭树和蓝莓虽然都喜欢酸性土壤条件,但二者对土壤适应性的生理差异尚不明确。因此,本研究以南方普遍栽培的乌饭树和兔眼蓝莓品种“灿烂”为试验材料,研究二者对不同土壤pH值的生理反应差异,明确它们最适生长的土壤pH值,为进一步提高蓝莓栽培的适应性提供理论与实践±据。

1 材料与方法 1.1 试验材料

试验基质为V(石英砂):V(珍珠岩)=1:1的混合物,清洗干净后,取出自然晾干,装入3 L不透光塑料盆中,每盆约3.0 kg。试验用的兔眼蓝莓(Vaccinium ashei Reade)品种“灿烂”和乌饭树(Vaccinium bracteatum Thunb.)苗分别购自安徽徽王农业有限公司和江苏省宜兴市南烛乌饭树生态园。

1.2 试验设计

2015年4月10日,将大小相对一致的9个月龄的蓝莓苗和乌饭树苗移栽入装有3.0 kg试验基质的塑料盆(盆上口内径22 cm、盆底内径16 cm、盆高18 cm)中,然后放置于温室大棚内,每隔1 d浇1次水(200 mL/盆,pH 5.0)。待植株萌发出新叶后,开始浇灌1/4浓度 Hoagland 营养液(pH 5.0),每隔2 d浇灌1次,浇灌2次后洗盐1次。待植物长到7~8片新叶(约7周)时浇灌1/2浓度 Hoagland 营养液,同时进行不同pH处理。设置3个pH梯度:pH 4.2、pH 5.2和pH 6.2,分别用1 mol/L盐酸和氢氧化钠在pH检测仪下调配。采用完全随机分组,共6个处理,每个处理6盆,每盆定植1株,共36盆。2015年10月17日分别取叶片、根系及茎进行相关生理指标的测定。

1.3 分析方法

植株采收后将部分样品置于105 ℃烘箱中杀青15 min,之后置于70 ℃条件下烘至恒量,用称质量法测定单株根和茎的干质量。叶绿素含量采用乙醇丙酮浸提法测定,可溶性糖与可溶性蛋白质含量分别采用蒽酮比色法和G-250比色法测定[10]。分别将蓝莓和乌饭树的根、茎、叶干样用不锈钢电动粉碎机粉碎,然后采用硝酸-高氯酸(体积比为4:1)消煮法消煮,用Optimal 2100 DV电感耦合等离子体发射光谱仪(Pekin-Elmer公司,美国)测定消化液中P、Fe、Zn和Mg含量[11]。过氧化物酶(peroxidase, POD)活性采用愈创木酚法测定,过氧化氢酶(catalase, CAT)活性采用紫外吸收法测定,丙二醛(malondialdehyde, MDA)含量采用硫代巴比妥酸比色法测定[13]

1.4 数据处理

所获得的数据采用SPSS 20.0及Excel 2007进行统计分析。其中,利用SPSS 20.0软件的单向方差分析(one-way analysis of variance)进行不同处理间的差异显著性检验,采用邓肯法进行多重比较。

2 结果与分析 2.1 pH值对乌饭树和蓝莓生物量、叶绿素含量与根系活力的影响

当营养液pH值为4.2和5.2时,乌饭树和蓝莓叶片的叶绿素含量均显著高于pH 6.2时的含量;乌饭树根和茎的干质量以及根系活力在营养液pH 5.2时最高;而蓝莓的茎干质量及根系活力在pH 4.2时最高,且显著高于pH 5.2和pH 6.2时的对应值,其根干质量在pH 4.2和pH 5.2时的差异无统计学意义,且均高于pH 6.2时的对应值(表 1)。

表1 pH值对乌饭树和蓝莓生物量、叶绿素含量与根系活力的影响 Table 1 Effect of pH values on biomass, chlorophyll content and root activity of Wufanshu and blueberry
点击放大
2.2 pH值对乌饭树和蓝莓可溶性糖与可溶性蛋白质含量的影响

乌饭树根和叶部的可溶性糖与可溶性蛋白质含量均以pH 6.2时最高,pH 4.2次之,pH 5.2时最低;而蓝莓根部可溶性糖与可溶性蛋白质含量均以pH4.2时最低,pH 5.2居中,pH 6.2时最高(图 1)。

W和B分别代表乌饭树和蓝莓。图上数据按鲜质量计。短栅上的不同小写字母表示在P<0.05水平差异有统计学意义。 W and B represent Wufanshu and blueberry, respectively. The data are calculated by fresh mass. Different lowercase letters above bars represent statistically significant differences at the 0.05 probability level. 图1 pH值对乌饭树和蓝莓可溶性糖与可溶性蛋白质含量的影响 Fig. 1 Effect of pH values on soluble sugar and soluble protein contents in Wufanshu and blueberry
2.3 pH值对乌饭树和蓝莓矿质元素含量的影响

图 2可以看出:在3个不同pH值处理下,乌饭树根、茎和叶部P、Fe和Zn含量均以pH 5.2时最高,且除pH 4.2与pH 5.2时叶部Zn含量在统计学上无显著差异外,其他都呈现显著性差异;而pH 5.2时乌饭树根、茎和叶部Mg含量显著低于pH 4.2和pH 6.2时的含量,且除根部Mg含量在pH 4.2与pH 5.2时无显著差异外,其余都差异显著。当pH 4.2时,蓝莓根部P和Fe、茎部Fe及叶部Fe和Zn含量均显著高于pH 5.2和pH 6.2时的含量,除pH 4.2和pH 5.2时蓝莓根部Zn含量无显著差异外,其余均显著高于pH 6.2时的含量;而pH 4.2时蓝莓根、茎和叶部Mg含量均显著低于pH 5.2和pH 6.2时的含量;此外,3个不同pH值之间的蓝莓茎和叶部P含量,以及茎部Zn含量均无显著差异。

B和W分别代表蓝莓和乌饭树。图上数据按干质量计。短栅上的不同小写字母表示在P<0.05水平差异有统计学意义。 B and W represent blueberry and Wufanshu, respectively. The data are calculated by dry mass. Different lowercase letters above bars represent statistically significant differences at the 0.05 probability level. 图2 pH值对乌饭树和蓝莓根、茎及叶片中P、Mg、Fe、Zn元素含量的影响 Fig. 2 Effect of pH values on P, Mg, Fe and Zn contents in the roots, stems and leaves of Wufanshu and blueberry
2.4 pH值对乌饭树和蓝莓CAT和POD活性与MDA含量的影响

在pH 5.2时,乌饭树根和叶的CAT和POD活性以及MDA含量均显著低于pH 4.2与pH 6.2时的值,且叶片CAT活性在pH 4.2与pH 5.2时差异不显著,其余均呈现显著差异;在pH 4.2时,蓝莓根部CAT活性及MDA含量均显著低于pH 6.2和pH 5.2时的对应值,而在pH 4.2和pH 5.2时蓝莓根部POD活性均低于pH 6.2时的值;乌饭树和蓝莓根或叶的POD、CAT活性及MDA含量均以pH 6.2时最高(图 3)。

W和B分别代表乌饭树和蓝莓。图上数据按鲜质量计。短栅上的不同小写字母表示在P<0.05水平差异有统计学意义。 W and B represent Wufanshu and blueberry, respectively. The data are calculated by fresh mass. Different lowercase letters above bars represent statistically significant differences at the 0.05 probability level. 图3 pH值对乌饭树和蓝莓CAT和POD活性与MDA含量的影响 Fig. 3 Effect of pH values on CAT and POD activities and MDA content in Wufanshu and blueberry
3 讨论

土壤pH值,即土壤酸碱度是一个重要的土壤理化指标,对植物生长、土壤微生物活动、养分转化以及土壤肥力等均有明显的影响[14]。适宜植物生长的土壤pH值一般有一定的范围,只有在合适的pH值范围内,植物才能充分吸收和利用养分,生长良好。土壤pH值过高或过低对植物而言都是一种环境胁迫,会影响植物的生长发育和生理代谢过程,如培养基pH过低或过高会抑制非生根蓝莓组培苗的生长[15]。当然,植物对逆境的变化程度也具有一定的适应能力[16]

有研究认为,蓝莓正常生长对土壤酸碱度的要求极为严格,其最适土壤pH值为4.0~4.8[17]。乡土树种乌饭树与蓝莓的亲缘关系较近(为杜鹃花科越橘属灌木或小乔木),而且该树种对土壤的适应性强,在中国南北各地均有分布[12]。本研究结果显示乌饭树根系活力及根、茎干质量均以pH 5.2时最高,而蓝莓则以pH 4.2时最高,二者叶绿素含量均以pH 6.2时最低。可见,乌饭树与蓝莓均适宜在酸性环境中生长,pH 6.2的土壤环境对二者植株生长均有一定的抑制作用。这不同于柑橘或其他树种生长的最适pH水平为6.0左右[18]

可溶性糖和可溶性蛋白质均为渗透调节物质。在逆境条件下,植物体内的渗透调节物质往往会升高,从而增加细胞液浓度,降低水势,促进植物吸收水分,以抵抗不良环境对植物细胞的伤害。本研究表明,乌饭树的根、叶和蓝莓根部的可溶性糖与可溶性蛋白质含量分别在pH 5.2和pH 4.2时最低,并均在pH 6.2时最高。可见,pH 6.2时二者的渗透调节物质积累明显,说明乌饭树和蓝莓植株已处于一种胁迫环境。这与前人在杜鹃[19]和大豆[20]上的研究结果类似,即当土壤pH值处于胁迫水平时,植株体内的渗透调节物质含量明显上升。另一方面,pH 5.2和pH 4.2分别是乌饭树和蓝莓较合适的土壤pH值,因而在合适的pH条件下,其渗透调节物质积累较少,这与上述根系活力和生物量结果亦相吻合。

本研究结果还显示,在不同pH值条件下,乌饭树各部位P、Fe和Zn含量均在pH 5.2时最高,而蓝莓则在pH 4.2时对P、Fe和Zn的吸收量最多。这表明pH 5.2和pH 4.2分别是乌饭树和蓝莓较合适的土壤pH条件,在此条件下最有利于植株对P、Fe和Zn等矿质元素的吸收与转运。而Mg含量在乌饭树和蓝莓的最适pH条件下均为最低,这与李亚东等[21]的研究结果类似,但与曹增强等[15]的研究结果略有不同。曹增强等[15]认为,培养基pH过高(6.0、6.5和7.0)或过低(pH 4.5)均会抑制蓝莓组培苗对P、K、Zn和Mg等元素的吸收。这可能与蓝莓苗的培养条件(非生根组培苗培养基培养与砂基培养)差异有关。一般认为,在酸性环境下Mg的溶解度增加,容易淋失,植株因来不及吸收而造成Mg元素的缺乏。另一方面,矿质元素之间还存在相互拮抗的关系,这也可能使Mg元素的吸收转运与其他元素不同[22]。因而,在实际生产中,在酸性土壤上栽培蓝莓和乌饭树要注意及时补充Mg肥,以防止缺Mg现象的发生。

植物在水分胁迫和重金属污染等逆境条件下, 体内活性氧含量往往会上升, 为防止过量的活性氧对植物细胞膜的伤害, 植株体内抗氧化酶活性也会明显提高,从而使活性氧含量维持在较低水平[23-25]。过氧化氢酶(CAT)和过氧化物酶(POD)可以催化H2O2转化为H2O。丙二醛(MDA)是膜脂过氧化反应的产物,其含量变化在一定程度上反映了细胞受伤害的程度。本研究结果显示,无论是乌饭树还是蓝莓,其根或叶的POD和CAT活性及MDA含量均在pH 6.2时最高。这与王明元等[26]的研究结果一致,即随着基质pH值的升高,枳幼苗受到的胁迫明显加重,植株体内的POD、CAT活性均明显提高。可见,pH 6.2的土壤环境对乌饭树和蓝莓都造成了一定的逆境伤害,为应对该环境胁迫,植物体内的POD和CAT活性升高,抗氧化防御能力增强,但其生长仍受到明显抑制。在pH 5.2时,乌饭树根或叶的CAT、POD活性及MDA含量均达到最低,而蓝莓则在pH 4.2时最低。这进一步说明土壤pH 5.2对乌饭树生长较为合适,而pH 4.2的土壤条件对蓝莓生长较为合适。

参考文献
[1] 谢远程, 徐志豪, 周晓琴. 乌饭树野生群落生态特征研究. 贵州林业科技, 2006, 34(3): 21-24.
XIE Y C, XU Z H, ZHOU X Q. Study on the ecological characteristics of wild community of Vaccinium bracteatum Thunb. Guizhou Forestry Science and Technology, 2006, 34(3): 21-24. (in Chinese with English abstract)
[2] 樊基胜, 蒋光月, 陶龙. 安徽蓝莓适生地蓝莓丰产栽培技术. 安徽农业科学, 2012, 40(8): 4509-4511.
FAN J S, JIANG G Y, TAO L. The high yield cultivation techniques of blueberry in suitable habitat of Anhui. Journal of Anhui Agricultural Sciences, 2012, 40(8): 4509-4511. (in Chinese with English abstract)
[3] SPIERS J M, BRASWELL J H. Soil-applied sulfur affects elemental leaf content and growth of'Tifblue'rabbiteye blueberry. Journal of the American Society for Horticultural Science, 1992, 117(2): 230-233.
[4] VESTRHEIM S, HAFFNER K, GRONNEROD K. Highbrush blueberry production and research in Norway. Acta Horticulturae, 1997(446): 177-180.
[5] DRUMMOND F, SMAGULA J M, ANNIS S M, et al. Organic wild blueberry production. Maine Agricultural and Forest Experiment Station, 2009, 852: 5-6.
[6] 吴林. 中国蓝莓35年:科学研究与农业发展. 吉林农业大学学报, 2016, 38(1): 1-11.
WU L. Thirty-five years of research and industry development of blueberry in China. Journal of Jilin Agricultural University, 2016, 38(1): 1-11. (in Chinese with English abstract)
[7] 方仲相, 胡君艳, 江波, 等. 蓝莓研究进展. 浙江农林大学学报, 2013, 30(4): 599-606.
FANG Z X, HU J Y, JIANG B, et al. Research progress on blueberry. Journal of Zhejiang A & F University, 2013, 30(4): 599-606. (in Chinese with English abstract) DOI:10.11833/j.issn.2095-0756.2013.04.020
[8] 赵爱雪, 佟海恩, 孙喜臣. 蓝莓对土壤酸碱度的要求和调节. 北方果树, 2008(5): 22-23.
ZHAO A X, TONG H E, SUN X C. Requirement and regulation of blueberry response to pH value in soil. Northern Fruits, 2008(5): 22-23. (in Chinese with English abstract)
[9] 童正仙, 陆寿忠. 乌饭树嫁接南高丛越橘生长结果观察初报. 中国果树, 2007(5): 30-32.
TONG Z X, LU S Z. Primary report on growth and fruiting of Vaccinium australe grafted on Vaccinium bracteatum. China Fruits, 2007(5): 30-32. (in Chinese with English abstract)
[10] 童正仙, 陆寿忠, 吕萍. 乌饭树嫁接高丛越橘技术研究. 中国南方果树, 2007, 36(6): 88-89.
TONG Z X, LU S Z, Lü P. Study on the grafting technique of cranberry onto oriental blueberry. South China Fruits, 2007, 36(6): 88-89. (in Chinese with English abstract)
[11] XU C, MA Y, CHEN H. Technique of grafting with Wufanshu (Vaccinium bracteaturn Thunb.) and the effects on blueberry plant growth and development, fruit yield and quality. Scientia Horticulturae, 2014, 176: 290-296. DOI:10.1016/j.scienta.2014.07.021
[12] 奚强, 张娟, 钟灼仔, 等. 中国乌饭树的生理生态及人工栽培研究现状. 宁夏农林科技, 2011, 52(1): 83-84.
XI Q, ZHANG J, ZHONG Z Z, et al. Research advance in the ecology, physiology and artificial cultivation of oriental blueberry in China. Ningxia Journal of Agriculture and Forestry Science and Technology, 2011, 52(1): 83-84. (in Chinese with English abstract)
[13] 王学奎. 植物生理生化实验原理和技术. 2版. 北京: 高等教育出版社, 2006: 167-281.
WANG X K. Experimental Principle and Technique for Plant Physiology and Biochemistry. 2nd ed. Beijing: Higher Education Press, 2006: 167-281. (in Chinese with English abstract)
[14] 林丽仙, 张庆美, 黄飚, 等. 土壤pH测定影响因素探讨及蓝莓种植园土壤pH值的测定. 福建热作科技, 2013, 38(4): 22-26.
LIN L X, ZHANG Q M, HUANG B, et al. Discussion on the effect factor of soil pH measurement and determination of soil pH value in blueberry plantation. Fujian Science & Technology of Tropical Crops, 2013, 38(4): 22-26. (in Chinese with English abstract)
[15] 曹增强, 徐莹莹, 张宁, 等. 不同pH对蓝莓组培苗生长和元素吸收的影响. 中国农业大学学报, 2016, 21(2): 50-57.
CAO Z Q, XU Y Y, ZHANG N, et al. Effects of different pH levels on the growth and mineral absorption of blueberry tissue culture plantlets. Journal of China Agricultural University, 2016, 21(2): 50-57. (in Chinese with English abstract)
[16] 武维华. 植物生理学. 北京: 科学出版社, 2003: 444-449.
WU W H. Plant Physiology. Beijing: Science Press, 2003: 444-449. (in Chinese with English abstract)
[17] 纪前羽, 刘星剑, 刘爱兵, 等. 糠醛渣替代硫磺调节土壤pH值及其对蓝莓生长发育的影响. 中国南方果树, 2013, 42(2): 15-17.
JI Q Y, LIU X J, LIU A B, et al. Replacement of sulphur with furfural residue to regulate soil pH and its effects on growth and development of blueberry. South China Fruits, 2013, 42(2): 15-17. (in Chinese with English abstract)
[18] 王明元, 夏仁学. 不同pH值下丛枝菌根真菌对枳生长及铁吸收的影响. 微生物学报, 2009, 49(10): 1374-1379.
WANG M Y, XIA R X. Effects of arbuscular mycorrhizal fungi on growth and iron uptake of Poncirus trifoliata under different pH. Acta Microbiologica Sinica, 2009, 49(10): 1374-1379. (in Chinese with English abstract) DOI:10.3321/j.issn:0001-6209.2009.10.009
[19] 徐娟, 曹玉峰, 田艳丽, 等. 不同pH值对兴安杜鹃及迎红杜鹃生理特性的影响. 林业科技, 2009, 34(5): 58-59.
XU J, CAO Y F, TIAN Y L, et al. Effect of different pH value on physiology characteristic of Rhododendron dauricum and Rhododendron mucronujatum. Forestry Science & Technology, 2009, 34(5): 58-59. (in Chinese with English abstract)
[20] 王京元, 阎俊崎, 陈霞, 等. 土壤pH值对盆栽大豆幼苗的影响. 江西农业学报, 2012, 24(2): 96-97.
WANG J Y, YAN J Q, CHEN X, et al. Effect of soil pH-value on seedling of potted soybean. Acta Agriculturae Jiangxi, 2012, 24(2): 96-97. (in Chinese with English abstract)
[21] 李亚东, 陈伟, 张志东, 等. 土壤pH值对越橘幼苗生长及元素吸收的影响. 吉林农业大学学报, 1994, 16(3): 51-54.
LI Y D, CHEN W, ZHANG Z D, et al. Influence of soil pH on growth and leaf nutrient of blueberry. Journal of Jilin Agricultural University, 1994, 16(3): 51-54. (in Chinese with English abstract)
[22] 庄伊美. 柑橘营养与施肥. 北京: 中国农业出版社, 1994: 53-56.
ZHUANG Y M. The Citrus Nutrient Elements and Fertilization. Beijing: China Agricultural Press, 1994: 53-56. (in Chinese with English abstract)
[23] 许庆龙, 刘晓敏, 徐小兵, 等. 4种丛枝菌根真菌对南高丛蓝莓抗旱性的影响. 浙江大学学报(农业与生命科学版), 2016, 42(4): 427-434.
XU Q L, LIU X M, XU X B, et al. Effects of four arbuscular mycorrhizal fungi on tolerance of Vaccinium corymbosum to drought stress. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(4): 427-434. (in Chinese with English abstract)
[24] SHARMA S S, DIETZ K J. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 2006, 57(4): 711-726. DOI:10.1093/jxb/erj073
[25] WU Q S, ZOU Y N, XIA R X. Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. European Journal of Soil Biology, 2006, 42(3): 166-172. DOI:10.1016/j.ejsobi.2005.12.006
[26] 王明元, 鲁玉洋. 基质pH值对枳幼苗生长和抗氧化酶活性的影响. 中国南方果树, 2009, 38(5): 32-33.
WANG M Y, LU Y Y. Effect of medium pH values on the growth and antioxidase activities of trifoliate orange seedlings. South China Fruits, 2009, 38(5): 32-33. (in Chinese with English abstract)