
2. 成都大学药学院, 四川抗菌素工业研究所, 四川 成都 610106
2. School of Pharmacy, Chengdu University, Sichuan Institute of Antibiotic Industry, Chengdu 610106, China
血热证是与多种临床疾病相关的一种中医证候[1-3]。凉血名方——犀角地黄汤用于脓毒败血症、紫癜、急性弥漫性血管内凝血等疾病[4]。《张伯臾医案》中记载仿犀角地黄汤,以紫草代犀角,增其清热解毒,凉血散瘀之力,临床治疗血热证效果明显。本研究选用新疆特色清热凉血药材紫草,在成药性虚拟筛选及活性成分靶病关联的网络药理学研究基础上,在两种血热证小鼠模型中评价代表成分的清热作用与机理,以期为血热证治疗提供依据。
1 材料与方法 1.1 试剂与仪器紫草素(SK, 质量分数≥98%,R10J8F39560,上海源叶生物公司),地塞米松磷酸钠注射液(20111280612,辰欣药业),二甲基亚砜(D8370,北京索莱宝科技公司)。阿司匹林(aspirin,美国Sigma-Aldrich公司)。小鼠beta-actin抗体(1 ∶1 000,#AF7018,Affity Biosciences)。Nrf2(12721S,Cell Signaling Technology)抗体和NF-κB p65抗体(8242S,Cell Signaling Technology)。HRP标记的山羊抗兔IgG(ZB-2301)和HRP标记的山羊抗小鼠(ZB-2305),均购自北京中山金桥生物技术公司。
人工气候箱(上海锦玟,JPRX-350A),电子肛温计(杭州协和医疗器械有限公司),多功能酶标仪(3001,美国Thermo公司),EC3TM510 Image Systerm Manual(美国Ultra-Violet公司)。
1.2 实验动物 1.3 紫草活性成分成药性分析使用TCMSP、TCMIP和Swiss Target Prediction收集紫草的主要化合物,分析化合物的药代动力学参数,预测其成药性[7-8]。
1.4 紫草素相关靶标的网络互作关系及通路富集分析STRING数据库对靶标进行聚类分析,设置“number of clusters”为3。做关键靶标基因本体论(gene ontology,GO)和京都基因与基因组百科全书(kyoto encyclopedia of genes and genomes,KEGG)的富集分析。
1.5 短效血热证模型的药效评价观察小鼠基础体征用于血热证主要证候的评价[5, 9],血常规和凝血指标检测[6];检测血清中MDA、LPO、SOD、TNF-α、IL-1β和IL-6水平;试剂盒和MIP法检查血液中GSH和GSSG含量。
1.6 热射病模型构建与药效学评价复合热射病小鼠模型,(41±0.5) ℃,相对湿度60%±5%,联合脂多糖(lipopolysaccharide,LPS)造模[10]。监测热应激期间小鼠的核心体温变化以及生存时间[5]。取肝、肾组织切片HE观察(Axio Imager A2),参考Camargo的肝脏病理分级标准[11]以及肾脏病理的评分体系[12];Western blot检测肝、肾组织中NF-κB p65和Nrf2的蛋白表达,ECL化学发光液显色,CCD系统成像;Discovery Studio 3.5软件对Shikonin与NF-κB p65和Nrf2蛋白晶体结构分别进行虚拟对接[13-14],通过LibDock分数确定适合度[15]。
1.7 数据分析实验数据采用SPSS 20.0软件进行处理,实验结果以x±s表示,单因素方差分析(One-way ANOVA)采用t检验及Bonferroni检验。
2 结果 2.1 紫草的活性成分与靶标聚类富集分析收集到紫草的主要活性成分43个,admetSAR法测得紫草素成药性最好,用于后续实验验证与机制探究(Tab 1)。预测靶标277个,其中应激反应相关71个,主要参与免疫炎症、凝血级联,氧化应激等生物过程;细胞周期相关90个,参与细胞衰老、凋亡等生物过程与代谢相关46个,参与糖代谢、神经递质和激素代谢、药物代谢等生物过程。富集的KEGG信号通路主要与免疫炎症、氧化应激、凝血级联以及代谢和癌症相关(Fig 1)。
| Component | Absorption | Metabolism (CYP450) | Score | ||||||
| HIA+ | Caco2+ | CYP450 1A2 | CYP450 2C9 | CYP450 2D6 | CYP450 2C19 | CYP450 3A4 | |||
| Shikonin | 0.995 5 | 0.790 1 | 0.866 8 | 0.871 4 | 0.604 2 | 0.764 8 | -0.670 8 | 2.107 2 | |
| Shikonine | 0.995 5 | 0.790 1 | 0.866 8 | 0.871 4 | 0.604 2 | 0.764 8 | -0.670 8 | 2.107 2 | |
| Anhydroalkannin | 0.997 0 | 0.852 0 | 0.924 6 | 0.972 2 | -0.544 8 | 0.817 9 | -0.712 8 | 1.268 4 | |
| Deoxyshikonin | 0.989 8 | 0.806 5 | 0.893 4 | 0.906 9 | -0.626 5 | 0.645 2 | -0.787 7 | 0.933 3 | |
| Alkannan | 0.993 9 | 0.811 5 | 0.907 2 | 0.856 1 | -0.638 5 | 0.535 6 | -0.785 8 | 0.806 5 | |
| Alkannin β, β-dimethylacrylate | 0.985 0 | 0.549 9 | 0.694 6 | 0.717 3 | -0.882 2 | 0.837 4 | -0.698 2 | 0.612 6 | |
| β, β-Dimethylacrylshikonin | 0.997 4 | 0.573 9 | 0.707 1 | 0.706 9 | -0.876 9 | 0.850 1 | -0.767 3 | 0.603 2 | |
| Isobutyryl Shikonin | 0.972 6 | 0.719 9 | 0.697 5 | 0.712 2 | -0.603 3 | 0.664 2 | -0.863 6 | 0.603 2 | |
| Shikonofuran B | 0.972 6 | 0.719 9 | 0.697 5 | 0.712 2 | -0.603 3 | 0.664 2 | -0.863 6 | 0.603 2 | |
| Propionylshikonin | 0.990 7 | 0.679 4 | 0.653 7 | 0.665 9 | -0.676 0 | 0.765 2 | -0.835 5 | 0.584 7 | |
| Shikonofuran D | 0.989 2 | 0.558 7 | 0.706 0 | 0.670 1 | -0.867 1 | 0.859 9 | -0.804 1 | 0.567 6 | |
| Shikonofuran E | 0.989 2 | 0.558 7 | 0.706 0 | 0.670 1 | -0.867 1 | 0.859 9 | -0.804 1 | 0.546 8 | |
| Isovalerylshikonin | 0.985 9 | 0.697 4 | 0.740 8 | 0.631 4 | -0.696 9 | 0.670 6 | -0.836 6 | 0.546 8 | |
| 3, 4-Teracrylshikonin | 0.985 9 | 0.697 4 | 0.740 8 | 0.631 4 | -0.696 9 | 0.670 6 | -0.836 6 | 0.516 4 | |
|
| 图 1 The KEGG and GO analysis of shikonin |
紫草素抑制DNP诱导的血热证小鼠的体温升高,呈现剂量依赖性(Fig 2A),明显缩短热程(P < 0.05)(Fig 3B)。SK组“发汗”减少,尿液量、粪便含水量有所增加(Tab 2)。紫草素降低血清中的MDA、LPO水平(P < 0.05),维持血清中SOD的活性(P < 0.05),使血液系统氧化还原恢复平衡,抑制炎症反应,缓解血热证小鼠的症状(Fig 2C-E)。
|
| Fig 2 Effects of shikonin on body temperature, inflammatory factors and redox levels in mice with blood heat syndrome(x±s, n=3) #P < 0.05, ##P < 0.01 vs CTR group; *P < 0.05, **P < 0.01 vs DNP group |
|
| Fig 3 Effect of redox agent on body temperature change and redox level in mice with blood heat syndrome(x±s, n=5) *P < 0.05 vs BSO group; #P < 0.05 vs NAC group. |
| Water consumption/mL | Urine/cm2 | Carbon power propelling rate/% | Fecal moisture capacity/% | |
| CTR | 5.58±0.13* | 84.45±10.16** | 77.10±5.77* | 57.85±0.98** |
| DNP | 6.14±0.33# | 37.00±2.45## | 54.24±11.47# | 49.25±1.65## |
| SK | 5.18±0.60* | 43.00±1.12* | 73.53±2.726* | 54.03±1.74** |
| Asp | 5.28±0.08* | 45.02±2.46* | 65.29±11.321* | 52.54±0.75* |
| #P < 0.05,##P < 0.01 vs CTR group; *P < 0.05,**P < 0.01 vs DNP group | ||||
SK组APTT和PT缩短(P < 0.05),FIB含量降低(P < 0.01),TT有增加的趋势,总凝血时间明显缩短(P < 0.01)(Tab 3)。紫草素能够明显改善凝血功能,纠正血热证“耗血动血”的症状。SK组RBC、WBC、PCT、HGB得到改善(P < 0.05),HCT有改善趋势(Tab 4)。
| APTT/s | PT/s | TT/s | FIB/g·L-1 | Clotting time/s | |
| CTR | 20.55±1.27** | 8.70±0.21** | 15.81±0.46** | 1.78±0.15** | 129.75±10.54** |
| DNP | 37.51±1.27## | 10.51±0.12## | 14.33±0.15## | 3.90±0.23## | 330.51±40.13## |
| SK | 29.23±1.69** | 8.92±0.12* | 15.01±0.35 | 2.55±0.28** | 203.00±23.44** |
| Asp | 29.87±3.14** | 8.24±0.67* | 13.26±0.87 | 2.83±0.21** | 241.00±28.29** |
| APTT: activated partial thromboplastin time; Pt: prothrombin time; TT: thrombin time; FIB: fibrinogen; Clotting time:total clotting time,##P < 0.01 vs CTR group; *P < 0.05,**P < 0.01 vs DNP group. | |||||
| RBC/1012L-1 | HCT/% | WBC/109L-1 | PCT | HGB/g·L-1 | RBC/WBC | |
| CTR | 5.64±0.23* | 31.42±4.62* | 6.24±0.21* | 0.33±0.02* | 128.67±5.33** | 0.90* |
| DNP | 4.61±0.15# | 40.23±1.26# | 8.17±0.10# | 0.43±0.02# | 151.67±2.60## | 0.56# |
| SK | 4.85±0.39* | 35.40±2.25* | 6.83±0.28* | 0.37±0.01* | 141.50±2.06* | 0.71* |
| Asp | 4.54±0.68 | 39.23±2.76 | 6.65±0.13* | 0.41±0.14 | 145.33±2.6 | 0.68* |
| RBC: red blood cell count; HCT:hematocrit; WBC: white blood cell; PCT:platelet pressure; HGB: hemoglobin. #P < 0.05,##P < 0.01 vs CTR group; *P < 0.05,**P < 0.01 vs DNP group. | ||||||
SK组中GSH水平有所恢复,GSH/GSSG比值升高;相比DNP组,GSH耗竭剂BSO进一步提高氧化水平,减弱紫草素的作用,抗氧化剂NAC在恢复氧化还原平衡作用上与紫草素具有协同作用(Tab 5,6)。NAC与NAC-SK均能缓解小鼠发热,联用效果更明显(Fig 3A, B)。与BSO组相比,NAC、NAC-SK组血清中MDA、LPO均降低,SOD活力提高(P < 0.05),NAC-SK组效果最明显(Fig 3C-E)。在DNP诱导的基础上,BSO组凝血时间最长,RBC/WBC比值最低,NAC和NAC-SK组小鼠的各项指标均有所改善,NAC-SK组效果最为明显,APTT、TT和小鼠出血时间明显缩短,FIB含量明显降低。BSO减弱紫草素改善凝血功能的作用,NAC与紫草素联用增强抗氧化和改善凝血功能的作用(Tab 7,8)。
| GSH/μmol·L-1 | GSSG/μmol·L-1 | GSH/GSSG | |
| CTR | 15.41±0.84** | 4.16±0.11* | 3.61** |
| DNP | 12.33±0.68## | 6.21±0.77# | 1.99## |
| SK | 10.31±1.48* | 4.43±0.73* | 2.32* |
| Asp | 11.42±0.82 | 5.21±0.58 | 2.19 |
| GSH: glutathione; GSSG: oxidized glutathione. #P < 0.05, ##P < 0.01 vs CTR group; *P < 0.05, **P < 0.01 vs DNP group. | |||
| Group | GSH/μmol·L-1 | GSSG/μmol·L-1 | GSH/GSSG |
| CTR | 14.03±0.69* | 5.47±0.27** | 2.56** |
| DNP | 12.13±0.47# | 10.97±0.69## | 1.11## |
| BSO | 14.49±0.27 | 13.29±0.35## | 1.09## |
| NAC | 16.86±0.73** | 14.31±0.63** | 1.19 |
| BSO-SK | 15.77±0.76** | 14.13±0.42** | 1.13 |
| NAC-SK | 17.84±0.52** | 13.10±0.31** | 1.36* |
| #P < 0.05, ##P < 0.01 vs CTR group; *P < 0.05, **P < 0.01 vs DNP group. | |||
| Group | APTT/s | PT/s | TT/s | FIB/g·L-1 | Clotting time/s |
| CTR | 29.73±2.02* | 9.24±0.13* | 13.21±0.33** | 3.16±0.42* | 122.10±14.17** |
| DNP | 48.52±5.28# | 7.79±0.21# | 8.91±0.66## | 4.35±0.41# | 224.40±8.98## |
| BSO | 58.32±4.35## | 7.32±0.31# | 8.42±0.18## | 4.47±0.43# | 265.33±25.4## |
| NAC | 37.76±7.89* | 9.22±0.79* | 10.80±0.19* | 4.28±0.44 | 198.11±22.51* |
| BSO-SK | 39.52±6.39* | 8.74±0.70 | 10.15±1.71 | 4.59±0.22 | 219.07±15.52 |
| NAC-SK | 31.82±8.91* | 8.36±0.63 | 11.75±1.82* | 3.39±0.43* | 135.67±9.11** |
| APTT: activated partial thromboplastin time; PT: prothrombin time; TT: thrombin time; FIB: fibrinogen; Clotting time: total clotting time #P < 0.05, ##P < 0.01 vs CTR group; *P < 0.05, **P < 0.01 vs DNP group. | |||||
| Group | RBC/1012L-1 | HCT/% | WBC/109L-1 | PCT | HGB/g·L-1 | RBC/WBC |
| CTR | 6.87±0.39** | 36.7±0.54 | 2.69±0.4** | 0.42±0.06 | 120.33±3.76 | 2.55** |
| DNP | 8.11±0.17## | 45.89±0.43 | 9.27±0.71## | 0.63±0.13 | 122.79±3.03 | 0.87## |
| BSO | 8.32±0.38## | 50.61±3.12 | 12.17±0.13## | 0.57±0.12 | 124.84±6.42 | 0.68## |
| NAC | 8.73±0.11 | 41.28±1.31 | 8.19±1.31 | 0.81±0.17 | 130.95±4.41 | 1.06 |
| BSO-SK | 8.46±0.43 | 43.16±4.14 | 7.38±0.79 | 0.78±0.12 | 128.41±9.14 | 1.14 |
| NAC-SK | 8.87±0.38 | 41.27±1.74 | 6.72±0.52* | 0.77±0.31 | 133.05±10.31 | 1.32* |
| RBC: red blood cell count; HCT:hematocrit; WBC: white blood cell; PCT: platelet pressure; HGB: hemoglobin. ##P < 0.01 vs CTR group; *P < 0.05, **P < 0.01 vs DNP group. | ||||||
SK组明显延缓热应激小鼠的体温上升速度,明显提高热应激小鼠的生存率(Fig 5A-B)。与MOD组比较,SK组小鼠血清中TNF-α、IL-1β和IL-6的水平明显降低,脏器损伤标志物丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)的活力和乳酸脱氢酶(LDH)水平明显下降(Fig 4C-G)。SK组的组织水肿、炎性浸润等现象明显改善,肾小管和肾小球结构较清晰(Fig 4H)。组织病理评分显示,与CTR组相比,MOD组织损伤情况严重,SK组有明显改善(Tab 9,10)。
|
| Fig 4 Effect of shikonin on body temperature and organs of heat-stressed mice (x±s, n=5) ##P < 0.01 vs CTR group; **P < 0.01 vs MOD group. |
|
| Fig 5 Effect of shikonin on expression of NF and Nrf2 proteins in liver and kidney tissues of heat-stressed mice (x±s, n=5) ##P < 0.01 vs CTR group; **P < 0.01 vs MOD group. |
| Group | Grade | Average rank value | |||
| 0 | Ι | Ⅱ | Ⅲ | ||
| CTR | 3 | 2 | 0 | 0 | 3.6 |
| MOD | 0 | 0 | 1 | 4 | 15.8 |
| DXMS | 0 | 1 | 2 | 2 | 12.4 |
| SK | 0 | 2 | 2 | 1 | 10.2 |
| Kruskall Wallis nonparametric test was used for pathological grading, the same below. | |||||
| Group | IFTA score | Interstitial inflammation score | Glomerular grading | Average rank value | ||||
| 0 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | ||||
| CTR | 0.4±0.245** | 0.2±0.2** | 3 | 2 | 0 | 0 | 0 | 4.2 |
| MOD | 2.8±0.2## | 1.8±0.2## | 0 | 0 | 0 | 2 | 3 | 17.8 |
| DXMS | 1.6±0.4** | 1.4±0.245* | 0 | 1 | 3 | 1 | 0 | 11.4 |
| SK | 1.2±0.2** | 0.8±0.2** | 0 | 3 | 2 | 0 | 0 | 8.6 |
| ##P < 0.01 vs CTR group; *P < 0.05,**P < 0.01 vs MOD group. | ||||||||
紫草素与NF-κB p65和Nrf2的晶体蛋白存在较高的结合能力,存在较好的靶标作用,结合Score为92.503和78.140 8(Fig 5F-G)。
2.6 紫草素对热射病相关蛋白表达的影响MOD组小鼠的肝肾组织与CTR组比较NF-κB p65的表达明显上调,Nrf2的表达下调。DXMS组和SK组的NF-κB p65表达水平均明显下降,Nrf2的表达均升高(Fig 5A-E)。
3 讨论清热凉血代表药紫草在网络药理角度对免疫炎症、氧化应激和凝血级联等生物过程具有较好的靶病关联特征。DNP致热物、LPS联合热应激均引起ROS的生成增加,也是“热”证毒性的主要原因,TLR-4/NF-κB等信号通路参与介导热射病大鼠的炎症反应[16-17]。紫草素改善凝血功能,降低血液炎症因子IL-1β和IL-6和氧化损伤因子的水平,抑制NF-κB p65的表达、上调Nrf2的表达将是治疗血热证相关疾病的有效途径,揭示了紫草对不同程度血热证小鼠的防治机理[6, 16-18]。
| [1] |
杜建新. 寻常型银屑病发病机制及中药治疗研究进展[J]. 继续医学教育, 2022, 36(3): 157-60. Du J X. Research progress on pathogenesis and traditional Chinese medicine treatment of psoriasis vulgaris[J]. Continuing Med Educcat, 2022, 36(3): 157-60. |
| [2] |
Zhu X, Yao Y, Yang J, et al. Seizure-induced neuroinflammation contributes to ectopic neurogenesis and aggressive behavior in pilocarpine-induced status epilepticus mice[J]. Neuropharmacology, 2020, 170: 108044. doi:10.1016/j.neuropharm.2020.108044 |
| [3] |
朱昱林, 于莉, 张会永, 等. 基于文献分析的血热证诊断标准比较研究[J]. 世界科学技术-中医药现代化, 2021, 23(11): 4277-84. Zhu Y L, Yu L, Zhang H Y, et al. Comparison study on the diagnostic criteria of blood-heat syndrome based on literature analysis[J]. World Sci Technol Mod Tradit Chin Med, 2021, 23(11): 4277-84. |
| [4] |
杨丽娟. 凉血散瘀类方剂的整理研究[D]. 南京: 南京中医药大学, 2009. Yang L J. The research of Liang xue san yu Preseri Ptions[D]. Nanjing: Nanjing Univ Chin Med, 2009. |
| [5] |
章亮, 罗琼, 何欢欢, 等. 基于网络药理学的软紫草"凉血"在热射病防护上的药效学研究[J]. 中国药学杂志, 2020, 55(17): 1425-32. Zhang L, Luo Q, He H H, et al. Network pharmacology study of arnebia euchroma in the protective effect of heat stroke[J]. Chin Pharm J, 2020, 55(17): 1425-32. |
| [6] |
李天一, 张闪闪, 马晓茹, 等. 基于血热证小鼠模型紫草素清热凉血与血液氧化还原稳态调控的研究[J]. 中草药, 2020, 51(21): 5487-95. Li T Y, Zhang S S, Ma X R, et al. Relationship between clearing heat and cooling blood and regulating blood redox homeostasis of shikonin based on blood heat syndrome mice model[J]. Chin Tradit Herb Drugs, 2020, 51(21): 5487-95. doi:10.7501/j.issn.0253-2670.2020.21.012 |
| [7] |
Cheng F, Li W, Zhou Y, et al. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties[J]. J Chem Inf Model[J], 2012, 52(11): 3099-105.
|
| [8] |
Wang J Y, Chen H, Wang Y Y, et al. Network pharmacological mechanisms of Vernonia anthelmintica(L.)in the treatment of vitiligo: Isorhamnetin induction of melanogenesis via up-regulation of melanin-biosynthetic genes[J]. BMC Syst Biol, 2017, 11(1): 103. doi:10.1186/s12918-017-0486-1 |
| [9] |
李莉, 王晓东, 李波, 等. 玉女煎对大鼠胃热阴虚型血热证候的疗效作用机制研究[J]. 中药药理与临床, 2014, 30(1): 16-9. Li L, Wang X D, Li B, et al. Effect and mechanism of yunvjian on blood heat syndrome of stomach heat Yin deficiency in rats[J]. Pharmacol Clin Chin Mater Med, 2014, 30(1): 16-9. |
| [10] |
林晓静. 过热复合脂多糖致热射病大鼠动物模型多器官急性损伤的实验研究[D]. 广州: 南方医科大学, 2009. Lin X J. Study on an animal experimental rat model of severe heatstroke induced by a combination of hyperthermia and lipopolysaccharide[D]. Guangzhou: South Med Univ 2009. |
| [11] |
Camargo CA Jr, Madden J F, Gao W, et al. Interleukin-6 protects liver against warm ischemia/reperfusion injury and promotes hepatocyte proliferation in the rodent[J]. Hepatology, 1997, 26(6): 1513-20. doi:10.1002/hep.510260619 |
| [12] |
赵辉, 相晓波, 朱秀. 血清25-(OH)D和α-1-MG与2型糖尿病肾病患者肾脏病理损伤程度相关性及对其诊断价值[J]. 临床误诊误治, 2021, 34(11): 69-73. Zhao H, Xiang X B, Zhu X. Correlations between serum levels of 25-(OH)D and α1-MG with degree of renal pathological injury in patients with type 2 diabetic nephropathy and their diagnostic values[J]. Clin Misdiagn Misther, 2021, 34(11): 69-73. doi:10.3969/j.issn.1002-3429.2021.11.016 |
| [13] |
Liu F, Yao Y, Lu Z, et al. 5-Hydroxy-4-methoxycanthin-6-one alleviates dextran sodium sulfate-induced colitis in rats via regulation of metabolic profiling and suppression of NF-κB/p65 signaling pathway[J]. Phytomedicine, 2020, 82: 153438. |
| [14] |
Zhong M, Lynch A, Muellers S N, et al. Interaction energetics and druggability of the protein-protein interaction between Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor erythroid 2 Like 2 (Nrf2)[J]. Biochemistry, 2019, 59(4): 563-81. |
| [15] |
Tiwari M, Lee J K. Molecular modeling studies of L-arabinitol 4-dehydrogenase of Hypocrea jecorina: Its binding interactions with substrate and cofactor[J]. J Mol Graph Model, 2010, 28(8): 707-13. doi:10.1016/j.jmgm.2010.01.004 |
| [16] |
宋仁杰, 李彦波, 周飞虎. 热射病发病机制的研究进展[J]. 解放军医学院学报, 2020, 41(12): 1231-5. Song R J, Li Y B, Zhou F H. Research advances in pathogenesis of heat stroke[J]. Acad J Chin PLA Med Sch, 2020, 41(12): 1231-5. doi:10.3969/j.issn.2095-5227.2020.12.014 |
| [17] |
李云鹏, 杨玉丹, 郭胜存, 等. 萝卜硫素对脓毒症小鼠心肌损伤的保护作用及机制研究[J]. 中国药理学通报, 2020, 36(8): 1105-10. Li Y P, Yang Y D, Guo S C, et al. Protective effect of sulforaphane on myocardial injury in sepsis mice[J]. Chin Pharmacol Bull, 2020, 36(8): 1105-10. |
| [18] |
谢晨, 陈韩英, 钟晶, 等. 紫草素通过上调Nrf2途径及干预胞内氧化还原平衡稳态诱导A549细胞凋亡[J]. 中国药理学通报, 2014, 30(10): 1445-51. Xie C, Chen H Y, Zhong J, et al. Up-regulation of Nrf2 pathway and intervention of intracellular redox homeostasis in shikonin-induced A549 cell apoptosis[J]. Chin Pharmacol Bull, 2014, 30(10): 1445-51. |

