中国医科大学学报  2025, Vol. 54 Issue (9): 814-820

文章信息

杨英阁, 张晋雷, 孙岩, 陈升, 梁正
YANG Yingge, ZHANG Jinlei, SUN Yan, CHEN Sheng, LIANG Zheng
miR-202-5p通过靶向抑制ROCK1表达减轻急性呼吸窘迫综合征新生大鼠肺损伤
miR-202-5p alleviates lung injury in neonatal rats with acute respiratory distress syndrome by targeting the inhibition of ROCK1 expression
中国医科大学学报, 2025, 54(9): 814-820
Journal of China Medical University, 2025, 54(9): 814-820

文章历史

收稿日期:2025-04-01
网络出版时间:2025-09-16 09:16:20
miR-202-5p通过靶向抑制ROCK1表达减轻急性呼吸窘迫综合征新生大鼠肺损伤
杨英阁1 , 张晋雷1 , 孙岩2 , 陈升3 , 梁正4     
1. 南阳医学高等专科学校第一附属医院儿科,河南 南阳 473007;
2. 河南省人民医院新生儿重症监护室,郑州 450003;
3. 中国医科大学实验动物部,沈阳 110122;
4. 内江市第二人民医院麻醉科,四川 内江 641100
摘要目的 探讨miR-202-5p对急性呼吸窘迫综合征(ARDS)新生大鼠肺损伤的保护作用及其机制。方法 60只新生SD大鼠随机分为对照组(腹腔注射生理盐水)、ARDS组[腹腔注射脂多糖(4 mg/kg)建立ARDS模型]、ARDS+miR-NC组[ARDS大鼠尾静脉注射miR-NC(2 mg/kg),1次/4 h,连续干预12 h]、ARDS+miR-202-5p组[ARDS大鼠尾静脉注射miR-202-5p(2 mg/kg),1次/4 h,连续干预12 h]、ARDS+miR-202-5p+ov-NC组[ARDS大鼠尾静脉注射miR-202-5p(2 mg/kg),1次/4 h,连续干预12 h;脂多糖注射前3 d尾静脉注射6×108 PFU过表达对照腺病毒]和ARDS+miR-202-5p+ov-ROCK1组[ARDS大鼠尾静脉注射miR-202-5p(2 mg/kg),1次/4 h,连续干预12 h;脂多糖注射前3 d尾静脉注射66×108 PFU过表达ROCK1腺病毒],每组10只。实时定量PCR检测大鼠肺组织中miR-202-5p和ROCK1 mRNA表达;HE染色观察大鼠肺组织病理损伤;计算大鼠肺组织湿重/干重比值来评价大鼠肺水肿程度;Western blotting检测大鼠肺组织中ROCK1、TLR4、p-NF-κB p65和p-IκBα蛋白表达。双萤光素酶报告基因实验验证miR-202-5p与ROCK1的关系。结果 miR-202-5p在ARDS大鼠肺组织中表达下调,过表达miR-202-5p可减轻ARDS大鼠肺组织病理损伤和肺水肿。ROCK1 mRNA在ARDS大鼠肺组织中表达上调;过表达miR-202-5p降低ARDS大鼠肺组织中ROCK1表达,而过表达ROCK1逆转了过表达miR-202-5p对ARDS新生大鼠肺损伤的保护作用。过表达miR-202-5p抑制ARDS大鼠肺组织中TLR4、p-NF-κB p65和p-IκBα蛋白表达,过表达ROCK1逆转此作用。双萤光素酶报告基因实验结果显示miR-202-5p靶向结合ROCK1 mRNA的3’UTR。结论 miR-202-5p通过靶向抑制ROCK1表达减轻ARDS大鼠肺损伤,其机制可能与抑制ROCK1介导的TLR4/NF-κB信号通路激活有关。
关键词急性呼吸窘迫综合征    miR-202-5p    ROCK1    TLR4/NF-κB信号通路    肺损伤    
miR-202-5p alleviates lung injury in neonatal rats with acute respiratory distress syndrome by targeting the inhibition of ROCK1 expression
1. Department of Pediatrics, The First Affiliated Hospital of Nanyang Medical College, Nanyang 473007, China;
2. Neonatal Intensive Care Unit, Henan Provincial People's Hospital, Zhengzhou 450003, China;
3. Department of Laboratory Animal Science, China Medical University, Shenyang 110122, China;
4. Department of Anesthesiology, The Second People's Hospital of Neijiang, Neijiang 641100, China
Abstract: Objective To explore the protective effect and mechanism of miR-202-5p on acute respiratory distress syndrome (ARDS) - induced lung injury in neonatal rats. Methods Sixty newborn SD rats were randomly divided into six groups: the control group (intraperitoneal injection of normal saline by tail vein), ARDS group (ARDS model established via intraperitoneal injection of 4 mg/kg lipopolysaccharide by tail vein), ARDS+miR-NC group (ARDS rats receiving 2 mg/kg miR-NC via tail vein injection once every 4 h, with intervention for 12 h), ARDS+miR-202-5p group (ARDS rats receiving 2 mg/kg miR-202-5p via tail vein injection once every 4 h, with intervention for 12 h), ARDS+miR-202-5p+ov-NC group, and ARDS+miR-202-5p+ov-ROCK1 group (ARDS rats receiving 2 mg/kg miR-202-5p once every 4 h, with intervention for 12 h; with 66×108 plaque-forming units control or overexpression ROCK adenovirus administered via tail vein 3 days before lipopolysaccharide injection). Real-time quantitative PCR was employed to measure miR-202-5p and ROCK1 mRNA expression in rat lung tissue. Hematoxylin and eosin staining was performed to assess pathological lung injury. The lung tissue wet-to-dry weight ratio was determined to evaluate pulmonary edema. Western blotting was utilized to analyze ROCK1, Toll-like receptor 4 (TLR4), phosphorylated-nuclear factor κB (p-NF-κB) p65, and phosphorylated-inhibitor of nuclear factor-κBα (p-IκBα) protein expression in lung tissue. The interaction between miR-202-5p and ROCK1 was validated using dual-luciferase reporter gene experiments. Results miR-202-5p expression was significantly down-regulated in ARDS rat lung tissue, while overexpression of miR-202-5p ameliorated pathological injury and pulmonary edema in ARDS rats. ROCK1 mRNA was upregulated in ARDS rat lung tissue; however, overexpression of miR-202-5p decreased the expression of ROCK1 in lung tissue of ARDS rats, while overexpression of ROCK1 reversed the protective effect of overexpression of miR-202-5p on lung injury in ARDS rats. Furthermore, miR-202-5p overexpression suppressed TLR4, p-NF-κB p65, and p-IκBα protein expression in ARDS rat lung tissue, an effect that was reversed by ROCK1 overexpression. Dual-luciferase reporter gene experiments confirmed that miR-202-5p directly targets ROCK1 mRNA 3' UTR. Conclusion miR-202-5p ameliorates ARDS-induced lung injury in neonatal rats through targeted suppression of ROCK1 expression, with the underlying mechanism potentially involving inhibition of ROCK1-mediated TLR4/NF-κB signaling pathway activation.

急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)是由原发性或继发性肺泡表面活性物质减少引起的呼吸系统疾病,进展迅速且死亡率高,严重威胁新生儿的生命。ARDS临床表现为气促、呼吸窘迫、低氧血症、双肺透光率下降甚至白肺[1]。在临床实践中,呼吸支持、肺表面活性物质替代治疗、体外膜肺氧合、营养支持和液体管理是新生儿ARDS的主要治疗方法[2]。然而,新生儿ARDS仍缺乏有效治疗方法。微RNA(microRNA,miRNA)作为一类基因调控分子,可通过影响靶基因的表达来调节炎症途径和免疫反应,在ARDS的发病机制中发挥重要作用[3]。LIANG等[4]研究发现miR-124-3p通过靶向抑制p65表达改善ARDS模型小鼠的炎症和肺损伤。HE等[5]研究发现miR-574-5p通过靶向抑制高迁移率族蛋白B1(high mobility group box 1,HMGB1)表达抑制核因子κB(nuclear factor-κB,NF-κB)信号通路和NLRP3炎症小体激活,从而抑制ARDS小鼠肺泡白细胞浸润、间质水肿、蛋白渗出和炎症。1项生物信息学研究[6]发现miR-202-5p在ARDS大鼠肺组织中表达下调。目前,miR-202-5p对ARDS诱导的肺损伤的影响及其机制研究尚未见报道。本研究通过腹腔注射脂多糖(lipopolysaccharide,LPS)建立新生大鼠ARDS模型,探讨过表达miR-202-5p对ARDS新生大鼠肺损伤的影响及其机制,旨在为ARDS治疗方法的开发提供新思路。

1 材料与方法 1.1 实验动物和细胞

SD孕鼠购自中国医科大学实验动物部,饲养于23~25 ℃,每日光照/黑暗各12 h的环境中。将新生SD大鼠饲养7 d,选取体重10~13 g的7日龄新生大鼠进行实验。本研究获得中国医科大学实验动物伦理委员会批准(审批号CMUKT2024175)。293T细胞购自武汉普诺赛生命科技有限公司,用DMEM培养基(含10%胎牛血清和1%青链霉素)在37 ℃、5 %CO2条件下培养。

1.2 主要试剂和仪器

miR-NC、miR-202-5p、过表达对照腺病毒(ov-NC)和过表达ROCK1腺病毒(ov-ROCK1)由苏州吉玛基因股份有限公司合成。HE染色试剂盒购自北京索莱宝科技有限公司;Western blotting相关试剂购自上海碧云天生物技术有限公司;Western blotting一抗以及二抗购自英国abcam公司;实时定量PCR相关试剂购自日本TaKaRa公司。酶标仪购自美国BioTek公司;凝胶扫描成像系统购自美国Bio-Rad公司;普通PCR仪和实时定量PCR仪购自美国ABI公司;光学显微镜购自日本OLYMPUS公司。

1.3 方法

1.3.1 动物分组及处理

新生SD大鼠随机分为对照组、ARDS组、ARDS+miR-NC组、ARDS+miR-202-5p组、ARDS+miR-202-5p+ov-NC组和ARDS+miR-202-5p+ov-ROCK1组,每组10只。除对照组外,各组大鼠腹腔注射LPS(4 mg/kg)建立大鼠ARDS模型[7]。对照组大鼠腹腔注射等量生理盐水。ARDS+miR-NC组大鼠造模后尾静脉注射miR-NC(2 mg/kg),ARDS+miR-202-5p组、ARDS+miR-202-5p+ov-NC组和ARDS+miR-202-5p+ov-ROCK1组造模后尾静脉注射miR-202-5p(2 mg/kg),1次/4 h,连续干预12 h。ARDS+miR-202-5p+ov-NC组和ARDS+miR-202-5p+ov-ROCK1组分别于造模前3 d经尾静脉注射OV-NC、OV-ROCK1(6×108 PFU)。实验结束后大鼠腹腔注射过量2%戊巴比妥钠麻醉处死,打开胸腔并暴露心肺,分离左肺和右肺用于后续检测。

1.3.2 HE染色

将分离的左肺组织经4%多聚甲醛固定后,常规方法制备石蜡切片。切片经脱蜡水化后依次用苏木素和伊红染色,脱水透明封片后光学显微镜观察并拍照。

1.3.3 肺组织病理损伤

根据文献[8]方法对肺组织损伤程度进行评分。

1.3.4 肺组织水肿程度

将取出的肺组织剪去残存支气管和结缔组织,分离右肺膈叶和副叶,蒸馏水清洗并用吸水纸吸干水分,称量湿重。将称量后的肺组织放入60 ℃恒温烘箱内,烘干24 h至恒质量,称量干重。计算湿重/干重比值来评估肺组织水肿程度。

1.3.5 实时定量PCR

将收集的肺组织置于研钵中,液氮研磨处理。TRIzol法提取组织中总RNA,将RNA反转录为cDNA,检测miRNA的样本反转录时需加入逆转录引物。以cDNA为模板进行实时定量PCR,以U6β-actin为内参,采用2-ΔΔCt法计算目的基因的相对表达量。

1.3.6 Western blotting

将收集的肺组织液氮磨碎后用RIPA裂解液裂解,离心收集蛋白。BCA法定量后配置蛋白样品。煮样变性后电泳分离蛋白,湿转法将其转移至PVDF膜上。5%脱脂牛奶封闭后用ROCK1、Toll样受体4(Toll-like receptor 4,TLR4)、NF-κB p65、p-NF-κB p65、核因子κB抑制蛋白α(inhibitor of nuclear factor-κBα,IκBα)、p-IκBα和β-actin抗体4 ℃孵育过夜。PBST洗膜3次。二抗室温孵育1 h,PBST洗膜3次。ECL法发光,分析电泳条带灰度值并计算相对表达量。

1.3.7 双萤光素酶报告基因实验

ROCK1与miR-202-5p潜在结合位点采用TargetScan在线数据库(https://www.targetscan.org)预测。将ROCK1-WT或ROCK1-MUT与mimics NC或miR-202-5p mimics(由苏州吉玛基因股份有限公司合成)共转染293T细胞,培养24 h后收集并裂解,依次检测萤火虫和海肾萤光素酶活性。

1.4 统计学分析

采用SPSS 22.0软件进行统计学分析。符合正态分布的计量资料采用x±s表示,组间比较采用单因素方差分析和Tukey法。P < 0.05为差异有统计学意义。

2 结果 2.1 ARDS大鼠肺组织miR-202-5p表达情况

实时定量PCR检测结果显示,对照组、ARDS组、ARDS+miR-NC组和ARDS+miR-202-5p组大鼠肺组织中miR-202-5p相对表达水平分别为0.99±0.06、0.44±0.07、0.43±0.10、0.67±0.09。与对照组比较,ARDS组和ARDS+miR-NC组大鼠肺组织中miR-202-5p表达明显降低(P < 0.05);与ARDS组和ARDS+miR-NC组比较,ARDS+miR-202-5p组大鼠肺组织中miR-202-5p表达明显升高(P < 0.05)。

2.2 过表达miR-202-5p对ARDS大鼠肺组织病理损伤的影响

HE染色结果显示,对照组大鼠肺泡结构完整且腔内未见渗出物;ARDS组和ARDS+miR-NC组大鼠肺泡萎缩且完整性破坏,可见充血和大量红细胞浸润;ARDS+miR-202-5p组大鼠肺组织上述病理损伤有所改善。ARDS组和ARDS+miR-NC组大鼠肺组织病理损伤评分较对照组明显升高(P < 0.05);与ARDS组和ARDS+miR-NC组比较,ARDS+miR-202-5p组大鼠肺组织病理损伤评分明显降低(P < 0.05)。见图 1

A, HE staining (×200);B, lung tissue pathological injury score. * P < 0.05 vs. control group; # P < 0.05 vs. ARDS group; △ P < 0.05 vs. ARDS+miR-NC group. 图 1 各组大鼠肺组织病理损伤比较 Fig.1 Comparison of lung tissue pathological injury of rats in each group

2.3 过表达miR-202-5p对ARDS大鼠肺组织水肿程度的影响

结果显示,对照组、ARDS组、ARDS+miR-NC组和ARDS+miR-202-5p组大鼠肺组织的湿重/干重比值分别为4.89±0.31、10.31±0.42、10.06±0.59、7.69± 0.50。ARDS组和ARDS+miR-NC组大鼠肺组织湿重/干重比值较对照组明显升高(P < 0.05);与ARDS组和ARDS+miR-NC组比较,ARDS+miR-202-5p组大鼠肺组织湿重/干重比值明显降低(P < 0.05)。可见过表达miR-202-5p可减轻ARDS大鼠肺组织水肿程度。

2.4 过表达miR-202-5p对ARDS大鼠肺组织中ROCK1和TLR4/NF-κB信号通路的影响

对照组、ARDS组、ARDS+miR-NC组和ARDS+miR-202-5p组大鼠肺组织中ROCK1 mRNA相对表达量分别为1.05±0.08、3.61±0.45、3.35±0.30、1.80±0.21。与对照组比较,ARDS组和ARDS+miR-NC组大鼠肺组织中ROCK1 mRNA和蛋白以及TLR4、p-NF-κBp65和p-IκBα蛋白表达水平明显升高(P < 0.05);与ARDS组和ARDS+miR-NC组比较,ARDS+miR-202-5p组大鼠肺组织中ROCK1 mRNA和蛋白以及TLR4、p-NF-κBp65和p-IκBα蛋白表达水平明显降低(P < 0.05)。各组新生大鼠肺组织中NF-κBp65和IκBα蛋白表达水平比较无统计学差异(P>0.05)。见图 2

* P < 0.05 vs. control group; # P < 0.05 vs. ARDS group; △ P < 0.05 vs. ARDS+miR-NC group. 图 2 各组大鼠肺组织中ROCK1和TLR4/NF-κB信号通路蛋白的表达 Fig.2 Expression of ROCK1 and TLR4/NF-κB signaling pathway related proteins in lung tissue of rats in each group

2.5 miR-202-5p与ROCK1的靶向关系

双萤光素酶报告基因实验结果显示,与mimics NC组比较,转染ROCK1-WT的miR-202-5p mimics组293T细胞的相对萤光素酶活性明显降低(P < 0.05),而转染ROCK1-MUT的mimics NC组与miR-202-5p mimics组293T细胞的相对萤光素酶活性比较无统计学差异(P > 0.05),见图 3。可见,miR-202-5p可靶向结合ROCK1

* P < 0.05 vs. mimics NC group. 图 3 miR-202-5p与ROCK1的靶向关系 Fig.3 The targeting relationship between miR-202-5p and ROCK1

2.6 过表达ROCK1对过表达miR-202-5p的ARDS大鼠肺损伤的影响

Western blotting检测结果显示,与ARDS+miR- 202-5p组和ARDS+miR-202-5p+ov-NC组相比,ARDS+ miR-202-5p+ov-ROCK1组大鼠肺组织中ROCK1、TLR4、p-NF-κB p65和p-IκBα蛋白表达水平明显升高(P < 0.05)。见图 4A

A, expression of ROCK1 and TLR4/NF-κB signaling pathway related proteins; B, pathological injury of lung tissue (×200);C, lung tissue pathological injury score. 1, ARDS+miR-202-5p group; 2, ARDS+miR-202-5p+ov-NC group; 3, ARDS+miR-202-5p+ov-ROCK1 group. * P < 0.05 vs. ARDS+miR-202-5p group; # P < 0.05 vs. ARDS+miR-202-5p+ov-NC group. 图 4 过表达ROCK1对过表达miR-202-5p的ARDS大鼠肺损伤的影响 Fig.4 Effects of ROCK1 overexpression on lung injury in ARDS rats with miR-202-5p overexpression

HE染色结果显示,ARDS+miR-202-5p+ov-ROCK1组大鼠肺组织病理损伤较ARDS+miR-202-5p组和ARDS+miR-202-5p+ov-NC组加重,见图 4B。与ARDS+miR-202-5p组和ARDS+miR-202-5p+ov-NC组相比,ARDS+miR-202-5p+ov-ROCK1组大鼠肺组织病理损伤评分明显升高(P < 0.05)。见图 4C

3 讨论

越来越多的证据表明,miR-202-5p在多种疾病发展中发挥作用。LI等[9]研究发现miR-202-5p上调可通过靶向抑制真核细胞翻译起始因子4E表达减轻氧糖剥夺/复氧诱导的神经元损伤。ZHAO等[10]研究发现过表达miR-202-5p通过靶向抑制瞬时受体电位香草样蛋白2表达改善心肌缺血再灌注损伤。此外,最近研究[11]发现miR-202-5p上调还能通过靶向抑制胞苷一磷酸激酶2表达抑制细胞焦亡,从而减轻肺缺血再灌注损伤。基于生物信息学分析的结果显示,miR-202-5p在ARDS大鼠肺组织中表达下调[6]。本研究结果显示,miR-202-5p在ARDS新生大鼠肺组织中表达下调,与上述生物信息学分析结果一致。此外,本研究还发现过表达miR-202-5p改善ARDS新生大鼠肺组织病理损伤,降低肺组织病理损伤评分和肺组织湿重/干重比值。这些结果表明过表达miR-202-5p可改善新生大鼠ARDS诱导的肺损伤。

ROCK1是RhoA的下游效应器,在激活单核细胞促炎反应中发挥分子开关作用,且参与高血压、动脉硬化、阿尔茨海默病和糖尿病等代谢相关疾病的发病[12-13]。多项研究发现miRNA可通过靶向抑制ROCK1表达改善LPS诱导的肺损伤。miR-144通过靶向抑制ROCK1表达改善LPS诱导的肺内皮细胞通透性增高[14]。miR-539-5p通过靶向抑制ROCK1表达改善LPS诱导的小鼠肺微血管内皮细胞的凋亡和炎症[15]。此外,还有研究[16]发现miR-495通过靶向抑制ROCK1表达抑制LPS诱导的WI-38细胞炎症损伤和凋亡。本研究发现miR-202-5p与ROCK1 mRNA的3’UTR靶向结合;ROCK1在ARDS新生大鼠肺组织中表达上调,且过表达miR-202-5p降低ARDS新生大鼠肺组织中ROCK1表达。此外,过表达ROCK1逆转了过表达miR-202-5p对ARDS新生大鼠肺损伤的保护作用。这些结果表明miR-202-5p可通过靶向抑制ROCK1表达改善新生大鼠ARDS诱导的肺损伤。

已有研究[17]表明,抑制ROCK1可通过抑制TLR4/NF-κB信号通路减轻肝纤维化。ROCK1作为Rho激酶家族成员之一,可能通过调节细胞骨架重排促进TLR4信号复合物的形成[18]。TLR4/NF-κB信号通路是免疫系统中应对感染、炎症和外部刺激的关键信号通路[19]。该信号通路涉及多种分子和细胞因子,包括TLR4受体、途径中的级联激活蛋白以及最终的NF-κB,对调节炎症和免疫反应至关重要[20]。TLR4激活后与位于细胞质中的MyD88形成复合物,激活下游IKK激酶并调节NF-κB激活,NF-κB从细胞质向细胞核转移并参与多种炎性细胞因子产生,从而启动一系列炎症反应[21]。研究[22]表明,黄连素通过抑制TLR4/NF-κB信号通路改善LPS诱导的ARDS肺损伤。本研究结果显示,过表达miR-202-5p抑制ARDS新生大鼠肺组织中TLR4、p-NF-κB p65和p-IκBα蛋白表达,过表达ROCK1逆转过表达miR-202-5p对ARDS新生大鼠肺组织中TLR4、p-NF-κB p65和p-IκBα蛋白表达的下调作用。这些结果表明miR-202-5p介导ROCK1对ARDS诱导的新生大鼠肺损伤的改善作用可能与抑制TLR4/NF-κB信号通路激活有关。

综上所述,miR-202-5p通过靶向抑制ROCK1表达改善ARDS诱导的新生大鼠肺损伤,其机制可能与抑制ROCK1介导的TLR4/NF-κB信号通路激活有关。本研究为miR-202-5p作为治疗ARDS致新生儿肺损伤的有效药物靶点提供了理论依据。

参考文献
[1]
殷宗宝, 余燕梅, 刘凡. N型乙酰胆碱受体对急性呼吸窘迫综合征小鼠炎症反应的影响[J]. 中国医科大学学报, 2025, 54(2): 133-138. DOI:10.12007/j.issn.0258-4646.2025.02.007
[2]
CARLTON EF, YEHYA N. The future of paediatric acute respiratory distress syndrome[J]. Lancet Respir Med, 2023, 11(2): 121-123. DOI:10.1016/S2213-2600(22)00358-7
[3]
ZHANG CC, JI YN, WANG Q, et al. miR-338-3p is a biomarker in neonatal acute respiratory distress syndrome (ARDS) and has roles in the inflammatory response of ARDS cell models[J]. Acta Med Okaya-ma, 2022, 76(6): 635-643. DOI:10.18926/AMO/64113
[4]
LIANG YF, XIE JJ, CHE D, et al. miR-124-3p helps to protect against acute respiratory distress syndrome by targeting p65[J]. Bio-sci Rep, 2020, 40(5): BSR20192132. DOI:10.1042/BSR20192132
[5]
HE BC, ZHOU W, RUI YW, et al. microRNA-574-5p attenuates acute respiratory distress syndrome by targeting HMGB1[J]. Am J Respir Cell Mol Biol, 2021, 64(2): 196-207. DOI:10.1165/rcmb.2020-0112OC
[6]
HUANG CQ, XIAO X, CHINTAGARI NR, et al. microRNA and mRNA expression profiling in rat acute respiratory distress syndrome[J]. BMC Med Genomics, 2014, 7: 46. DOI:10.1186/1755-8794-7-46
[7]
颜林, 梅花, 张钰恒, 等. miR-21通过靶向调控PTEN在新生大鼠急性呼吸窘迫综合征模型中作用的研究[J]. 中华新生儿科杂志, 2025, 10(2): 101-108.
[8]
SMITH KM, MROZEK JD, SIMONTON SC, et al. Prolonged partial liquid ventilation using conventional and high-frequency ventilatory techniques: gas exchange and lung pathology in an animal model of respiratory distress syndrome[J]. Crit Care Med, 1997, 25(11): 1888-1897. DOI:10.1097/00003246-199711000-00030
[9]
LI B, HUANG Z, MENG J, et al. miR-202-5p attenuates neurological deficits and neuronal injury in MCAO model rats and OGD-induced injury in Neuro-2a cells by targeting eIF4E-mediated induction of autophagy and inhibition of Akt/GSK-3β pathway[J]. Mol Cell Probes, 2020, 51: 101497. DOI:10.1016/j.mcp.2019.101497
[10]
ZHAO W, WU YY, YE FH, et al. Tetrandrine ameliorates myocardial ischemia reperfusion injury through miR-202-5p/TRPV2[J]. Biomed Res Int, 2021, 2021: 8870674. DOI:10.1155/2021/8870674
[11]
SUN ZL, YOU T, ZHANG BH, et al. Bone marrow mesenchymal stem cell-derived exosomes miR-202-5p inhibited pyroptosis to alleviate lung ischemic-reperfusion injury by targeting CMPK2[J]. Kaohsiung J Med Sci, 2023, 39(7): 688-698. DOI:10.1002/kjm2.12688
[12]
LIU F, DONG Z, LIN YF, et al. microRNA-502-3p promotes Mycobacterium tuberculosis survival in macrophages by modulating the inflammatory response by targeting ROCK1[J]. Mol Med Rep, 2021, 24(5): 753. DOI:10.3892/mmr.2021.12393
[13]
SUNG BJ, LIM SB, YANG WM, et al. ROCK1 regulates insulin secretion from β-cells[J]. Mol Metab, 2022, 66: 101625. DOI:10.1016/j.molmet.2022.101625
[14]
RIZWAN SIDDIQUI M, AKHTAR S, SHAHID M, et al. miR-144- mediated inhibition of ROCK1 protects against LPS-induced lung endothelial hyperpermeability[J]. Am J Respir Cell Mol Biol, 2019, 61(2): 257-265. DOI:10.1165/rcmb.2018-0235OC
[15]
MENG L, CAO HH, WAN CH, et al. miR-539-5p alleviates sepsis-induced acute lung injury by targeting ROCK1[J]. Folia Histochem Cytobiol, 2019, 57(4): 168-178. DOI:10.5603/FHC.a2019.0019
[16]
ZHANG J, XIANG J, LIU T, et al. miR-495 targets ROCK1 to inhibit lipopolysaccharides-induced WI-38 cells apoptosis and inflammation[J]. Kaohsiung J Med Sci, 2020, 36(8): 607-614. DOI:10.1002/kjm2.12210
[17]
WEI S, ZHOU HM, WANG Q, et al. RIP3 deficiency alleviates liver fibrosis by inhibiting ROCK1-TLR4-NF-κB pathway in macrophages[J]. FASEB J, 2019, 33(10): 11180-11193. DOI:10.1096/fj.201900752R
[18]
MAAS-BAUER K, STELL AV, YAN KL, et al. ROCK1/2 signaling contributes to corticosteroid-refractory acute graft-versus-host di-sease[J]. Nat Commun, 2024, 15(1): 446. DOI:10.1038/s41467-024-44703-7
[19]
乌恩岳苏, 杨晓燕. 蒙药苏格木勒-7通过抑制TLR4/NF-κB通路减轻子宫内膜炎大鼠炎症反应[J]. 中国医科大学学报, 2024, 53(9): 845-852. DOI:10.12007/j.issn.0258‐4646.2024.09.01
[20]
WEN ZH, ZHANG Y, FENG JJ, et al. Excretory/secretory proteins inhibit host immune responses by downregulating the TLR4/NF-κB/MAPKs signaling pathway: a possible mechanism of immune evasion in parasitic nematode Haemonchus contortus[J]. Front Immunol, 2022, 13: 1013159. DOI:10.3389/fimmu.2022.1013159
[21]
PAN WZ, DU J, ZHANG LY, et al. The roles of NF-kB in the development of lung injury after one-lung ventilation[J]. Eur Rev Med Pharmacol Sci, 2018, 22(21): 7414-7422. DOI:10.26355/eurrev_201811_16281
[22]
XU GH, WAN HQ, YI LT, et al. Berberine administrated with different routes attenuates inhaled LPS-induced acute respiratory distress syndrome through TLR4/NF-κB and JAK2/STAT3 inhibition[J]. Eur J Pharmacol, 2021, 908: 174349. DOI:10.1016/j.ejphar.2021.174349