中国医科大学学报  2025, Vol. 54 Issue (5): 461-465

文章信息

张晰越, 邵小骏, 林永忠, 朱刚
ZHANG Xiyue, SHAO Xiaojun, LIN Yongzhong, ZHU Gang
代谢组学在焦虑障碍中的应用
Application of metabolomics in anxiety disorders
中国医科大学学报, 2025, 54(5): 461-465
Journal of China Medical University, 2025, 54(5): 461-465

文章历史

收稿日期:2024-10-17
网络出版时间:2025-05-20 10:50:21
代谢组学在焦虑障碍中的应用
张晰越1,2 , 邵小骏1 , 林永忠2 , 朱刚1     
1. 中国医科大学附属第一医院精神科,沈阳 110001;
2. 大连医科大学附属第二医院神经内科,辽宁 大连 116027
摘要:焦虑障碍是一类常见的精神疾病,患病率高,具有慢性和共病的特点。WHO已将焦虑障碍列为与健康有关的致残原因之一。代谢组学利用现代分析技术对生物体内的代谢物进行定性定量分析,能够全面揭示机体代谢变化的整体特征,为疾病的研究提供新思路。基于代谢组学分析焦虑障碍患者代谢物及其代谢通路的变化,能够挖掘出与焦虑障碍相关的潜在生物标志物。本文对代谢组学在焦虑障碍中的应用情况进行综述,旨在揭示焦虑障碍的发病机制,为该病的早期诊断及疗效评估提供依据。
关键词焦虑障碍    代谢组学    生物标志物    
Application of metabolomics in anxiety disorders
1. Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China;
2. Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
Abstract: Anxiety disorders are psychiatric conditions characterized by high prevalence, chronicity, and comorbidity. The World Health Organization has listed anxiety disorders as a cause of health-related disabilities. Metabolomics can be used to qualitatively and quantitatively analyze metabolites in organisms using modern analytical techniques, comprehensively revealing the overall characteristics of metabolic changes in the body and providing novel insights into diseases. It is important to identify potential biomarkers associated with anxiety disorders by investigating perturbations in metabolites and metabolic pathways in patients with anxiety disorders. This review addresses the application of metabolomics in anxiety disorders to provide a basis for revealing their pathogenesis, early diagnosis, and efficacy evaluation.
Keywords: anxiety disorder    metabolomics    biomarker    

焦虑障碍以高患病率、慢性病程及高共病率为特征,已被WHO列为与健康有关的致残原因之一。我国精神障碍的流行病学现状调查[1]显示,近年来随着社会压力的增加,焦虑障碍疾病的患病率呈持续增长趋势,终身患病率达7.57%。焦虑障碍不仅显著降低患者的生活质量,还可导致社会功能严重受损,并与自杀风险升高密切相关。焦虑障碍受神经生物学、社会心理、家族遗传等多种因素影响,其病因和发病机制仍不明确。焦虑障碍的神经生物学因素主要与神经递质传递、内分泌功能和免疫功能紊乱相关[2-4]。代谢组学作为一种新兴的研究手段,在焦虑障碍的研究中展现出巨大的潜力。基于代谢组学的高通量分析技术研究焦虑障碍患者代谢物及其代谢通路的变化,能够揭示与焦虑障碍相关的潜在生物标志物。本文总结了代谢组学在焦虑障碍研究中的最新进展,旨在揭示焦虑障碍的发病机制,为早期诊断及疗效评估提供新的视角和科学依据。

1 焦虑障碍及代谢组学概述 1.1 焦虑障碍

焦虑障碍通常表现为缺乏明显客观原因的内心不安或无根据的恐惧,常伴随主观焦虑体验、外显紧张行为和自主神经功能紊乱[5],女性比男性更容易患病,其终生患病率是男性的1.3~3.4倍[6-7]。焦虑障碍的遗传易感性呈现多基因-环境交互作用的复杂网络特征。近年来,分子机制研究从单基因关联分析转向多组学整合研究,全基因组关联研究(genome-wide association studies,GWAS)揭示了多基因小效应变异与环境因素的协同作用,并证实其与焦虑、神经质等人格特质的遗传相关性。表观遗传修饰(DNA甲基化、组蛋白修饰等)可能作为关键介导因素,调控基因-环境交互作用在焦虑障碍发病中的作用[8-10]。基础神经科学研究揭示焦虑障碍与威胁反应回路功能障碍相关,主要涉及内侧颞叶、前额叶皮层及扣带回区域[11-13]

目前,焦虑障碍诊断及治疗效果评估主要根据患者临床症状,参考患者精神状态史和临床评价量表,同时结合经验证的、结构化或半结构化的临床访谈,尚缺乏客观生物标志物[7, 14]。包括药物治疗、心理治疗、物理治疗(电休克治疗、经颅磁刺激等)及生活方式干预等的综合治疗已成为焦虑障碍治疗的主流;综合治疗可以最大限度地提高治疗效果,减少不良反应和复发风险[15-16]

1.2 代谢组学

代谢组学是研究生物体内代谢物种类、结构、数量、变化和功能的学科。这些代谢物主要是指相对分子量1 000以内的小分子物质,包括氨基酸、糖类、脂类、核酸等,它们参与或产生于新陈代谢过程中[17]。代谢组学是系统生物学的重要组成部分,旨在揭示生命活动的规律和机制,研究方法主要包括样本采集、样本制备、代谢物检测、数据分析和数据解释等步骤。目前,常用的代谢物检测技术有质谱(mass spectrum,MS)和核磁共振(nuclear magnetic resonance,NMR)等,这些技术可以对样本中的数百到数千种代谢物进行高通量、高灵敏度和高分辨率的定性、定量分析;数据分析和数据解释则需要结合生物信息学与统计学方法(多元统计分析、机器学习算法、代谢网络分析等)来完成[18]

2 焦虑障碍患者的生物样本及代谢物

焦虑障碍病理机制复杂,受神经生物学、家族遗传、社会心理等多种因素影响,需采用多种生物样本(血样、尿液等)进行代谢组学研究。每种样本类型均承载着特有的代谢信息,为全面阐述焦虑障碍的代谢特征提供了多维视角。其中,血样本可直接反映即时生理状态;尿液样本因其能获得较长时间的代谢变化而成为研究长期代谢波动的理想选择。

焦虑障碍患者的血浆或血清代谢物谱与健康对照组存在显著差异。KUI等[19]采集焦虑障碍和健康人群血浆进行分析,发现了22种差异代谢物,其中8种代谢物(柠檬酸、胞嘧啶、3-羟基癸酸、2-苯乙酰胺、组氨酸、L-3-苯乳酸、苯乙酰谷氨酰胺、溶血磷脂酰乙醇胺)是焦虑障碍的独立危险因素;主要涉及6种代谢途径(苯丙氨酸、酪氨酸和色氨酸生物合成,组氨酸代谢,酪氨酸代谢,半胱氨酸和蛋氨酸代谢,三羧酸循环,乙醛酸盐和二羧酸盐代谢)。

焦虑障碍患者的尿液代谢物谱也表现出显著变化。CHEN等[20]使用不同的代谢组学方法分析焦虑障碍和抑郁障碍患者尿液样本,认为N-甲基烟酰胺、氨基丙二酸、壬二酸和马尿酸是鉴别焦虑障碍和抑郁障碍的生物标志物;这些代谢物主要涉及3种代谢途径(丙酸代谢,缬氨酸、亮氨酸和异亮氨酸降解,甘氨酸、丝氨酸和苏氨酸代谢)及5种分子细胞功能(细胞周期、氨基酸代谢、分子转运、细胞生长和增殖、小分子生物化学过程)。

样本的多样性可提供丰富的信息源,但其复杂的基质成分却造成定量分析困难,误差风险增加。因此,众多学者开发了简便且高效的样本前处理技术(去蛋白处理、高效提取纯化、化学衍生化等)。这些技术通过有效富集目标生物标志物以增强信号,同时显著降低或消除基质效应以减少背景噪声,最大限度减少样本基质对结果的干扰,提高代谢物检测的灵敏度和特异度[21-22],为焦虑障碍生物标志物的发现、验证及临床应用提供了实验基础。

3 焦虑障碍的生物标志物

基于代谢组学的研究已经发现了焦虑障碍多种潜在的生物标志物。这些潜在的生物标志物不仅有助于焦虑障碍的诊断,还可能为疾病的治疗提供新的靶点。研究[23]显示,焦虑障碍与脂质代谢、炎症反应、氧化应激、神经递质传递有关。

3.1 脂质代谢和炎症反应

目前,脂质代谢紊乱与焦虑障碍的关系是研究的热点。脂质不仅构成神经元膜结构,其动态平衡还参与调控离子通道功能、神经递质传递、髓鞘形成及神经可塑性等关键神经生物学过程[24]。临床研究[25]证实,与健康对照组相比,焦虑障碍患者血清甘油三酯、极低密度脂蛋白、总胆固醇水平显著升高,而高密度脂蛋白、胆固醇酯水平显著降低。男性群体中血清总胆固醇、低密度脂蛋白水平与焦虑程度呈正相关,而年轻女性群体中则表现为负相关[26],这种差异可能与雌激素通过CYP7A1调控胆汁酸代谢有关[27-28]

神经元膜脂质成分改变可直接干扰离子通道功能及细胞信号转导。多不饱和脂肪酸作为类花生酸和类二十二酸的前体,其代谢失衡可促进前列腺素、白三烯等促炎症介质释放,引发神经炎症反应。ω-3多不饱和脂肪酸是细胞膜形成的必要脂质,已有研究[29-30]表明ω-3多不饱和脂肪酸水平与焦虑、抑郁等精神疾病严重程度呈负相关。临床研究[31-32]显示,补充ω-3多不饱和脂肪酸对于缓解焦虑症状有效。但动物实验研究[33]表明,雄性小鼠经膳食补充二十二碳六烯酸(docosahexaenoic acid,DHA)后焦虑症状缓解,但对雌性小鼠无影响,表明疗效存在性别差异。可见多不饱和酸治疗焦虑的效果尚不一致,未来应开展大规模实验进一步论证。

脂质稳态失衡与炎症级联反应的交互作用是焦虑障碍发生的病理基础。研究[34-35]证实,鞘脂代谢失衡是引起与焦虑相关脂质紊乱的主要原因。GAWEY等[36]研究结果显示,丁酸盐生物合成通路异常(尤其是琥珀酸盐和5-氨基戊酸酯代谢紊乱)与焦虑症状相关。肠道微生物群与焦虑障碍的相关性研究[37-38]表明,与健康对照组相比,焦虑障碍患者肠道促炎菌种(肠杆菌和脱硫弧菌等)丰度升高;而产短链脂肪酸(short chain fatty acid,SCFA)菌种(粪杆菌等)丰度降低,导致抗炎代谢物SCFA(丁酸、丙酸等)水平下降,促进神经炎症。有研究[39-40]证实,靶向补充产丁酸盐益生菌(粪杆菌属等)或膳食纤维干预,可显著恢复SCFA水平并改善焦虑症状。因此,未来需基于菌群-代谢物轴调控来探讨焦虑障碍精准治疗策略。

3.2 氧化应激

研究[41]表明,焦虑障碍患者的氧化应激失衡表现为脂质过氧化反应增强,其特征性生物标志物(脂质氧化产物、一氧化氮代谢产物、脂质氢过氧化物、丙二醛和尿酸)水平高于健康患者;而抗氧化防御系统的关键成分高密度脂蛋白胆固醇和对氧磷酶-1水平降低。

维生素在调节焦虑障碍患者氧化应激方面发挥着重要的作用。维生素E(α-生育酚)、维生素C(抗坏血酸)和维生素A(β-胡萝卜素)具有抗氧化作用。1项纳入80例20~60岁受试者的非随机对照临床试验[42]显示,与健康对照组相比,广泛性焦虑障碍患者血液中维生素A、C和E水平显著降低;膳食补充维生素A、C和E 6周后患者血液中维生素A、C和E水平显著升高,焦虑症状明显改善。可见,维生素的抗氧化作用可有效改善焦虑障碍症状。

3.3 神经递质

5-羟色胺(5-hydroxytryptamine,5-HT)、多巴胺(dopamine,DA)、谷氨酸(glutamic acid,Glu)等神经递质及其代谢物的异常与焦虑密切相关[43]。ALI等[44]发现大鼠中缝核群和海马区5-HT及其代谢物5-羟吲哚乙酸(5-hydroxyindole acetic acid,5-HIAA)、高香草酸(DA代谢物)水平降低导致焦虑障碍。5-HT能系统活性变化与药物的抗焦虑作用有关。研究[45]显示在抗焦虑药物干预下,大鼠下丘脑中5-HT及其代谢物5-HIAA水平增加。近年研究[46]发现,肠道菌群的代谢失衡会影响5-HT的合成,乳酸与嗜黏蛋白阿克曼氏菌共同补充能够促进色氨酸向5-HT转化,改善小鼠焦虑症状。在压力及焦虑状态下,小鼠前额叶皮层中DA水平升高[47];而在给予抗焦虑药物(阿福巴唑)后下丘脑DA代谢物水平显著下降[45]。除了5-HT和DA外,Glu-谷氨酰胺(glutamine,Gln)循环功能障碍与各种焦虑相关,在焦虑人群和动物模型中均存在兴奋性/抑制性Glu能神经回路失衡的证据[48-49]。既往研究[50]显示,母系分离小鼠肠道氨基酸转运蛋白水平下调导致血液中Gln水平下降,限制内侧前额叶皮层的突触功能,导致小鼠出现社交障碍和焦虑样行为;补充Gln后可以逆转该症状。

4 总结与展望

综上所述,与氧化应激、炎症过程、脂质代谢、神经传递相关的代谢物似乎有可能成为焦虑障碍的生物标志物。跨样本(血浆、尿液)研究筛选出柠檬酸、N-甲基烟酰胺、溶血磷脂酰乙醇胺等候选标志物,涉及三羧酸循环、氨基酸代谢等通路,为无创诊断提供了分子基础。肠道菌群干预(补充益生菌调节色氨酸-5-HT代谢轴,丁酸盐生物合成等)、ω-3多不饱和脂肪酸靶向补充及抗氧化剂(维生素A、C、E)应用已显示出改善焦虑障碍症状的潜力,但仍需多中心临床试验进一步验证。

代谢组学在焦虑障碍研究中的应用显示出巨大潜力,但仍面临诸多挑战与不足。首先,代谢组学应用尚处于初步阶段,不同研究团队采用的仪器设备、实验设计及分析方法各异,导致了研究结果存在较大差异,难以形成统一的结论体系。其次,代谢组学研究复杂多样,而目前研究多局限于单一组学层面,传统“单胺假说”仅能部分解释临床症状,难以全面揭示焦虑障碍的病理生理机制,未来需整合多组学(代谢组学、基因组学、转录组学、蛋白质组学、微生物组学等)数据构建交互网络模型,进而多层次、多维度深入分析焦虑障碍的发病机制,为焦虑障碍的早期识别与精准医疗提供新的思路和方向。

参考文献
[1]
HUANG YQ, WANG Y, WANG H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3): 211-224. DOI:10.1016/S2215-0366(18)30511-X
[2]
LIN YL, WEI CW, LERDALL TA, et al. Crabp1 modulates HPA axis homeostasis and anxiety-like behaviors by altering FKBP5 expression[J]. Int J Mol Sci, 2021, 22(22): 12240. DOI:10.3390/ijms222212240
[3]
MARCINKIEWCZ CA, MAZZONE CM, D'AGOSTINO G, et al. Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala[J]. Nature, 2016, 537(7618): 97-101. DOI:10.1038/nature19318
[4]
MCINTOSH AM, WHALLEY HC, LAWRIE SM. Genetics and neurobiology of anxiety and depression[J]. Eur Psychiatry, 2015, 30: 117. DOI:10.1016/s0924-9338(15)30097-3
[5]
CARY SK, DAN JS, MARIO MAJ MD, et al. The classification of anxiety and fear-related disorders in the ICD-11[J]. Depress Anxiety, 2016, 33(12): 1141-1154. DOI:10.1002/da.22530
[6]
岳莉莉, 柏光泽. 抑郁症与焦虑障碍的研究现状[J]. 医学综述, 2013, 19(6): 1069-1072. DOI:10.3969/j.issn.1006-2084.2013.06.038
[7]
PENNINX BW, PINE DS, HOLMES EA, et al. Anxiety disorders[J]. Lancet, 2021, 397(10277): 914-927. DOI:10.1016/s0140-6736(21)00359-7
[8]
MEIER SM, DECKERT J. Genetics of anxiety disorders[J]. Curr Psychiatry Rep, 2019, 21(3): 16. DOI:10.1007/s11920-019-1002-7
[9]
CASPI A, MOFFITT TE. All for one and one for all: mental disorders in one dimension[J]. Am J Psychiatry, 2018, 175(9): 831-844. DOI:10.1176/appi.ajp.2018.17121383
[10]
CHAWNER SJRA, OWEN MJ, HOLMANS P, et al. Genotype-phenotype associations in children with copy number variants associated with high neuropsychiatric risk in the UK (IMAGINE-ID): a case-control cohort study[J]. Lancet Psychiatry, 2019, 6(6): 493-505. DOI:10.1016/S2215-0366(19)30123-3
[11]
VIA E, FULLANA MA, GOLDBERG X, et al. Ventromedial prefrontal cortex activity and pathological worry in generalised anxiety disorder[J]. Br J Psychiatry, 2018, 213(1): 437-443. DOI:10.1192/bjp.2018.65
[12]
WLAD M, FRICK A, ENGMAN J, et al. Dorsal anterior cingulate cortex activity during cognitive challenge in social anxiety disorder[J]. Behav Brain Res, 2023, 442: 114304. DOI:10.1016/j.bbr.2023.114304
[13]
YUAN ML, LIU B, YANG B, et al. Dysfunction of default mode network characterizes generalized anxiety disorder relative to social anxiety disorder and post-traumatic stress disorder[J]. J Affect Disord, 2023, 334: 35-42. DOI:10.1016/j.jad.2023.04.099
[14]
CHEVALIER LL, BLACKMON JE, ROMAN A, et al. Screening young adult cancer survivors for depression and anxiety with the Primary Care Evaluation of Mental Disorders (PRIME-MD): comparisons with a structured clinical diagnostic interview[J]. Psychooncology, 2023, 32(7): 1122-1129. DOI:10.1002/pon.6166
[15]
ORVATI AZIZ M, MEHRINEJAD SA, HASHEMIAN K, et al. Integrative therapy (short-term psychodynamic psychotherapy & cognitive-behavioral therapy) and cognitive-behavioral therapy in the treatment of generalized anxiety disorder: a randomized controlled trial[J]. Complementary Ther Clin Pract, 2020, 39: 101122. DOI:10.1016/j.ctcp.2020.101122
[16]
VIGOD SN, FREY BN, CLARK CT, et al. Canadian network for mood and anxiety treatments 2024 clinical practice guideline for the management of perinatal mood, anxiety, and related disorders: guide de pratique 2024 du Canadian network for mood and anxiety treatments pour le traitement des troubles de l'humeur, des troubles anxieux et des troubles connexes périnatals[J]. Can J Psychiatry, 2025, 7067437241303031. DOI:10.1177/07067437241303031
[17]
QIU S, CAI Y, YAO H, et al. Small molecule metabolites: discovery of biomarkers and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 132. DOI:10.1038/s41392-023-01399-3
[18]
ABU-ASAB MS, CHAOUCHI M, ALESCI S, et al. Biomarkers in the age of omics: time for a systems biology approach[J]. OMICS, 2011, 15(3): 105-112. DOI:10.1089/omi.2010.0023
[19]
KUI HQ, SU HH, WANG Q, et al. Serum metabolomics study of anxiety disorder patients based on LC-MS[J]. Clin Chim Acta, 2022, 533: 131-143. DOI:10.1016/j.cca.2022.06.022
[20]
CHEN JJ, BAI SJ, LI WW, et al. Urinary biomarker panel for diagnosing patients with depression and anxiety disorders[J]. Transl Psychiatry, 2018, 8(1): 192. DOI:10.1038/s41398-018-0245-0
[21]
MENG XJ, PANG HH, SUN F, et al. Simultaneous 3-nitrophenylhydrazine derivatization strategy of carbonyl, carboxyl and phosphoryl submetabolome for LC-MS/MS-based targeted metabolomics with improved sensitivity and coverage[J]. Anal Chem, 2021, 93(29): 10075-10083. DOI:10.1021/acs.analchem.1c00767
[22]
LIEBEKE M, PUSKÁS E. Drying enhances signal intensities for global GCMS metabolomics[J]. Metabolites, 2019, 9(4): 68. DOI:10.3390/metabo9040068
[23]
DONATI RJ, RASENICK MM. G protein signaling and the molecu-lar basis of antidepressant action[J]. Life Sci, 2003, 73(1): 1-17. DOI:10.1016/s0024-3205(03)00249-2
[24]
ZORKINA Y, USHAKOVA V, OCHNEVA A, et al. Lipids in psychiatric disorders: functional and potential diagnostic role as blood biomarkers[J]. Metabolites, 2024, 14(2): 80. DOI:10.3390/metabo14020080
[25]
MISHRA TK, SHANKAR R, SHARMA I, et al. Serum lipids in anxiety neurosis[J]. Indian J Psychiat, 1984, 26(3): 237-241.
[26]
HUMER E, PIEH C, PROBST T. Metabolomic biomarkers in anxiety disorders[J]. Int J Mol Sci, 2020, 21(13): 4784. DOI:10.3390/ijms21134784
[27]
DE BARI O, WANG HH, PAIK C, et al. Sa1293 GPR30, a novel estrogen receptor, enhances cholesterol cholelithogenesis by inhibiting cholesterol 7α-hydroxylase (CYP7A1) and the classic pathway of bile acid synthesis[J]. Gastroenterology, 2013, 144(5): S-254. DOI:10.1016/S0016-5085(13)60899-9
[28]
MAHMOUDIANDEHKORDI S, BHATTACHARYYA S, BRYDGES CR, et al. Gut microbiome-linked metabolites in the pathobiology of major depression with or without anxiety-a role for bile acids[J]. Front Neurosci, 2022, 16: 937906. DOI:10.3389/fnins.2022.937906
[29]
PUSCEDDU MM, KELLY P, STANTON C, et al. N-3 polyunsaturated fatty acids through the lifespan: implication for psychopathology[J]. Int J Neuropsychopharmacol, 2016, 19(12): pyw078. DOI:10.1093/ijnp/pyw078
[30]
LANGE KW. Lipids in the treatment of mental disorders[M/OL] //SHAHIDI F. Bailey's Industrial Oil Fat Products. Hoboken: John Wiley & Sons: 2020. (2020-02-17)[2024-10-07]. https://doi.org/10.1002/047167849X.bio120.
[31]
AUCOIN M, LACHANCE L, VAN DER WURFF I, et al. Dietary counseling plus omega-3 supplementation in the treatment of generalized anxiety disorder: results of a randomized wait-list controlled pilot trial (the 'EASe-GAD Trial')[J]. Nutr Neurosci, 2024, 1-14. DOI:10.1080/1028415X.2024.2403901
[32]
MANOS BE, BRAVENDER TD, HARRISON TM, et al. A pilot randomized controlled trial of omega-3 fatty acid supplementation for the treatment of anxiety in adolescents with anorexia nervosa[J]. Int J Eat Disord, 2018, 51(12): 1367-1372. DOI:10.1002/eat.22964
[33]
DAVIS DJ, HECHT PM, JASAREVIC E, et al. Sex-specific effects of docosahexaenoic acid (DHA) on the microbiome and behavior of socially-isolated mice[J]. Brain Behav Immun, 2017, 59: 38-48. DOI:10.1016/j.bbi.2016.09.003
[34]
DEMIRKAN A, ISAACS A, UGOCSAI P, et al. Plasma phosphatidylcholine and sphingomyelin concentrations are associated with depression and anxiety symptoms in a Dutch family-based lipidomics study[J]. J Psychiatr Res, 2013, 47(3): 357-362. DOI:10.1016/j.jpsychires.2012.11.001
[35]
DEIGNER HP, GULBINS E, CLAUS RA. Sphingolipid metabolism in systemic inflammation[C] // Intensive Care Medicine. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007: 249-266. DOI: 10.1007/978-3-540-49433-1_23.
[36]
GAWEY BJ, SMITH MR, COMBA YY, et al. Metabolomic profiling reveals alterations in butyrate metabolism associated with anxiety in working adults[J]. Am J Gastroenterol, 2024, 119(10S): S562. DOI:10.14309/01.ajg.0001032648.58178.37
[37]
SIMPSON CA, DIAZ-ARTECHE C, ELIBY D, et al. The gut microbiota in anxiety and depression - a systematic review[J]. Clin Psychol Rev, 2021, 83: 101943. DOI:10.1016/j.cpr.2020.101943
[38]
QUINN-BOHMANN N, WILMANSKI T, SARMIENTO KR, et al. Microbial community-scale metabolic modelling predicts personalized short-chain fatty acid production profiles in the human gut[J]. Nat Microbiol, 2024, 9(7): 1700-1712. DOI:10.1038/s41564-024-01728-4
[39]
DUAN CX, HUANG L, ZHANG C, et al. Gut commensal-derived butyrate reverses obesity-induced social deficits and anxiety-like behaviors via regulation of microglial homeostasis[J]. Eur J Pharmacol, 2021, 908: 174338. DOI:10.1016/j.ejphar.2021.174338
[40]
SONG LJ, SUN QH, ZHENG HN, et al. Roseburia hominis alleviates neuroinflammation via short-chain fatty acids through histone deacetylase inhibition[J]. Mol Nutr Food Res, 2022, 66(18): 2200164. DOI:10.1002/mnfr.202200164
[41]
LOAS G, DALLEAU E, LECOINTE H, et al. Relationships between anhedonia, alexithymia, impulsivity, suicidal ideation, recent suicide attempt, C-reactive protein and serum lipid levels among 122 inpatients with mood or anxious disorders[J]. Psychiatry Res, 2016, 246: 296-302. DOI:10.1016/j.psychres.2016.09.056
[42]
GAUTAM M, AGRAWAL M, GAUTAM M, et al. Role of antioxidants in generalised anxiety disorder and depression[J]. Indian J Psychiatry, 2012, 54(3): 244-247. DOI:10.4103/0019-5545.102424
[43]
ZHANG YY, FILIOU MD, RECKOW S, et al. Proteomic and metabolomic profiling of a trait anxiety mouse model implicate affected pathways[J]. Mol Cell Proteomics, 2011, 10(12): M111.008110. DOI:10.1074/mcp.M111.008110
[44]
ALI SB, MAHMOOD K, SAEED R, et al. Elevated anxiety, hypoactivity, memory deficits, decreases of brain serotonin and 5-HT-1A receptors expression in rats treated with omeprazole[J]. Toxicol Res, 2020, 37(2): 237-248. DOI:10.1007/s43188-020-00060-3
[45]
DAVYDOVA AI, KLODT PM, KUDRIN VS, et al. Neurochemical study of effects of the new anxiolytic drugs afobazol and ladasten on the synthesis and metabolism of monoamines and their metabolites in the brain structures of Wistar rat on the model of monoamine synthesis blockade induced by aromatic amino acid decarboxylase inhibitor NSD-1015[J]. Eksp Klin Farmakol, 2010, 73(3): 2-6.
[46]
PAN MM, QIAN CL, HUO SY, et al. Gut-derived lactic acid enhances tryptophan to 5-hydroxytryptamine in regulation of anxiety via Akkermansia muciniphila[J]. Gut Microbes, 2025, 17(1): 2447834. DOI:10.1080/19490976.2024.2447834
[47]
TOKUMO K, TAMURA N, HIRAI T, et al. Effects of (Z)-3-hexe-nol, a major component of green odor, on anxiety-related behavior of the mouse in an elevated plus-maze test and biogenic amines and their metabolites in the brain[J]. Behav Brain Res, 2006, 166(2): 247-252. DOI:10.1016/j.bbr.2005.08.008
[48]
PUURUNEN J, TⅡRA K, VAPALAHTI K, et al. Fearful dogs have increased plasma glutamine and γ-glutamyl glutamine[J]. Sci Rep, 2018, 8: 15976. DOI:10.1038/s41598-018-34321-x
[49]
SCHOUSBOE A. Metabolic signaling in the brain and the role of astrocytes in control of glutamate and GABA neurotransmission[J]. Neurosci Lett, 2019, 689: 11-13. DOI:10.1016/j.neulet.2018.01.038
[50]
ZHU JS, ZHONG ZT, SHI LJ, et al. Gut microbiota mediate early life stress-induced social dysfunction and anxiety-like behaviors by impairing amino acid transport at the gut[J]. Gut Microbes, 2024, 16(1): 2401939. DOI:10.1080/19490976.2024.2401939