文章信息
- 李晓甜, 吴启飞, 何慧洁, 牛海英, 刘静怡, 张冬
- LI Xiaotian, WU Qifei, HE Huijie, NIU Haiying, LIU Jingyi, ZHANG Dong
- CENPⅠ对肺腺癌H1650细胞生物学功能的影响及其机制
- Effect of the expression of CENPⅠon the biological function of lung adenocarcinoma H1650 cells and its mechanism
- 中国医科大学学报, 2025, 54(5): 431-436
- Journal of China Medical University, 2025, 54(5): 431-436
-
文章历史
- 收稿日期:2024-05-31
- 网络出版时间:2025-05-20 13:16:00
2. 内蒙古科技大学包头医学院研究生院内科学专业,内蒙古 包头 014040
2. Internal Medicine Specialty, Graduate School, Baotou Medical College of Inner Mongolia University of Science and Technology, Baotou 014040, China
肺癌是常见的癌症之一,也是癌症死亡的主要原因[1]。肺腺癌是最常见的非小细胞肺癌,约占肺癌的40% [2-3]。85%以上的肺癌患者在确诊时已为中晚期,且预后较差,5年生存率不足20%[4-6]。人着丝粒蛋白Ⅰ(centromere proteinⅠ,CENPⅠ)是由CENPⅠ基因编码的包含756个氨基酸的蛋白质,分子量为86×103 [7]。CENPⅠ蛋白是CENPA-NAC复合物的组成部分,该复合物对准确的染色体对齐和分离至关重要,确保了适当的有丝分裂进程[8-10]。相关研究表明,CENPⅠ基因在ER+乳腺癌[11]、结直肠癌[12]、胃癌[13]等多种肿瘤组织中表达上调。但CENPⅠ在肺腺癌中的表达情况及其在肺腺癌发生发展过程中的作用鲜有报道。本研究采用实时PCR和Western blotting检测CENPⅠ在肺腺癌H1650细胞中的表达情况,探讨CENPⅠ对肺腺癌发生、发展的影响,为寻找肺腺癌诊断和治疗的新靶点提供思路。
1 材料与方法 1.1 材料肺腺癌细胞系A549、H1650、H1975、H1395及人正常肺上皮细胞系BEAS-2B(中国科学院干细胞库);lipofectamine 2000转染试剂盒(美国Invitrogen公司);TRIzol试剂、逆转录试剂盒、SYBR Premix Ex Taq(南京诺唯赞生物科技股份有限公司);膜联蛋白-V-FITC细胞凋亡检测试剂盒(中国福州飞净生物科技有限公司);CCK-8试剂盒、BCA试剂盒(上海碧云天生物技术有限公司);CENPⅠ兔抗人多克隆抗体(美国Proteintech公司);Transwell小室、Ki-67抗体、cyclin D1抗体、Bcl-2抗体、E-cadherin抗体、N-cadhe-rin抗体、vimentin抗体、胰岛素样生长因子1(insulin like growth factor 1,IGF-1)抗体(英国abcam公司)。
1.2 方法 1.2.1 细胞培养、转染及实验分组用含10%FBS、1%青链霉素双抗的RPMI 1640培养基,在37 ℃、5%CO2的细胞培养箱中培养肺腺癌细胞系和人正常肺上皮细胞。当细胞生长达80%~90%融合时进行实验。按照lipofectamine 2000转染试剂盒说明书进行CENPⅠ干扰RNA(si-CENPⅠ)的转染,并检测细胞转染效率。将细胞分为实验组(si-CENPⅠ组)、阴性对照组(未经转染的肺腺癌细胞,NC组)和si-CENP Ⅰ+IGF-1组(在si-CENPⅠ组基础上加入通路激活剂IGF-1 100 μg/L进行干预)。
1.2.2 实时定量PCR用TRIzol试剂提取肺腺癌细胞和人正常肺上皮细胞中总RNA,按照逆转录试剂盒说明书逆转录合成cDNA,根据实时定量PCR试剂盒SYBR Premix Ex Taq说明书进行实验,GAPDH作内参照,采用2-ΔΔCt法计算肺腺癌细胞和人正常肺上皮细胞中CENPⅠmRNA相对表达量。
1.2.3 CCK-8增殖实验采用CCK-8试剂盒检测,取对数生长期的H1650细胞,按照实验分组接种于96孔培养板中(每孔加100 μL细胞悬液),37 ℃、5%CO2培养箱中培养24 h,设置3个复孔,24、48、72 h后加入CCK-8溶液(10 μL/孔),继续培养3 h,用酶标仪测定450 nm处吸光度,并根据数值绘制标准曲线。
1.2.4 流式细胞术取转染后的H1650细胞,消化并离心后,弃上清,1 mL PBS洗涤细胞1次,1 000 r/min离心5 min,弃上清并收集细胞。加入400 μL 1×Bin-ding Buffer,吹打重悬细胞,加入Annexin V-FITC 5 μL混匀,室温避光,孵育15 min。加入10 μL碘化丙啶染液,混匀,2~8 ℃避光反应5 min,用流式细胞仪检测细胞凋亡情况。
1.2.5 Transwell实验(1)迁移实验,取转染成功的H1650细胞,用PBS清洗2遍,消化并离心。无血清培养基稀释细胞至1×104/mL,在24孔板中加入0.8 mL完全培养基,放入Transwell小室中,向上室加100 μL细胞混悬液,37 ℃、5%CO2培养箱中培养24 h后,用PBS清洗1遍,甲醇固定10 min;加入0.6 mL Giemsa染液染色1 h,漂洗干燥,光学显微镜下观察细胞生长状态并拍照记录。(2)侵袭实验,Transwell上室铺Matrigel(1 mg/mL,100 μL),向上室中加入100 μL细胞混悬液,其余步骤同迁移实验。
1.2.6 Western blotting裂解H1650细胞,收集总蛋白,蛋白加样并进行电泳,转至PVDF膜,5%脱脂奶粉室温孵育60 min,加入抗CENPⅠ、E-cadherin、N-cadherin、vimentin、Ki-67、cyclin D1、Bcl-2、PI3K、AKT、mTOR、p-PI3K、p-AKT、p-mTOR、IGF-1一抗,4 ℃孵育过夜,次日用TBST冲洗3次,5 min/次,加入羊抗兔IgG二抗,孵育步骤同上。化学发光显影,观察并拍照。用GAPDH做内参照。
1.3 统计学分析用SPSS 26.0软件进行统计分析,用GraphPad Prism 8.0软件绘图。呈正态分布的计量资料用x±s表示。2组间比较采用t检验,多组间比较采用单因素方差分析。P<0.05为差异有统计学意义。
2 结果 2.1 CENPⅠ在肺腺癌细胞系中的表达及转染实时定量PCR和Western blotting结果显示,CENPⅠ mRNA和蛋白在4种肺腺癌细胞系中呈高表达(P<0.01),其中H1650细胞中的表达水平最高,故选择H1650细胞进行转染。与NC组相比,si-CENPⅠ组CENPⅠ mRNA和蛋白表达水平明显降低(P<0.01),表明转染成功,可以进行后续实验。见图 1。
|
| A, B, C, expression of CENPⅠ mRNA and protein in normal alveolar epithelial cell line and lung cancer cell lines; D, E, F, CENPⅠ mRNA and protein expression in H1650 cells after CENPⅠ knock-down. *P < 0.01, **P < 0.001 vs. BEAS-2B cells; #P < 0.01, ##P < 0.001 vs. group NC. 图 1 CENPⅠ的表达及转染情况 Fig.1 Expression and transfection of CENPⅠ |
2.2 敲低CENPⅠ对H1650细胞周期、增殖、凋亡及迁移、侵袭的影响
与NC组相比,si-CENPⅠ组H1650细胞增殖活性显著降低,细胞凋亡显著增加,G0/G1期细胞增加,G2/M期和S期细胞减少,si-CENPⅠ组肺腺癌H1650细胞迁移及侵袭的细胞数明显减少(P<0.01),提示敲低CENPⅠ可抑制肺腺癌H1650细胞增殖、迁移和侵袭,促进细胞凋亡。见图 2。
|
| A, CCK-8 result; B-E, flow cytometry results; F, G, Transwell assay results (×40). *P < 0.01 vs. group NC. 图 2 敲低CENPⅠ对H1650细胞增殖、细胞凋亡、细胞周期及迁移、侵袭的影响 Fig.2 Effects of CENPⅠ knock-down on proliferation, apoptosis, cell cycle, migration, and invasion of H1650 cells |
2.3 敲低CENPⅠ对H1650细胞EMT、增殖、细胞周期及凋亡相关蛋白的影响
与NC组相比,si-CENPⅠ组H1650细胞中E-cadhe-rin表达水平显著升高(P<0.001),N-cadherin、vimentin、Ki-67、cyclin D1、Bcl-2表达水平显著降低(P<0.05)。表明敲低CENPⅠ可抑制H1650细胞EMT过程,抑制H1650细胞的增殖、迁移及侵袭,促进其凋亡。见图 3。
|
| 图 3 敲低CENPⅠ对H1650细胞EMT、增殖蛋白、细胞周期蛋白及凋亡蛋白的影响 Fig.3 Effects of CENPⅠ knock-down on EMT, proliferating protein, cyclin, and apoptosis protein in H1650 cells |
2.4 敲低CENPⅠ对PI3K/AKT/mTOR信号通路的影响
与NC组相比,si-CENPⅠ组H1650细胞中PI3K、AKT、mTOR表达水平无明显变化,而p-PI3K、p-AKT、p-mTOR表达水平下降(P<0.05),表明敲低CENPⅠ抑制了PI3K/AKT/mTOR信号通路的激活。在敲低CENPⅠ的基础上,加入PI3K/AKT/mTOR信号通路激活剂IGF-1,结果显示,与si-CENPⅠ组相比,si-CENPⅠ+IGF-1组H1650细胞中PI3K、AKT、mTOR表达水平无明显变化,而p-PI3K、p-AKT、p-mTOR表达水平升高(P<0.05)。表明IGF-1可逆转敲低CENPⅠ对PI3K/AKT/mTOR信号通路激活的抑制作用。见图 4。
|
| A, expression of PI3K/AKT/MTOR pathway-related proteins; B-D, PI3K, AKT, and mTOR correlation.*P < 0.05, **P < 0.01. 图 4 敲低CENPⅠ对PI3K/AKT/mTOR信号通路的影响 Fig.4 Effect of CENPⅠ knock-down on PI3K/AKT/mTOR signding pathway |
3 讨论
CENPⅠ在有丝分裂过程中具有重要作用[7]。研究[11]发现,CENPⅠ在ER+乳腺癌中过表达,可作为ER+乳腺癌患者预后不良的有力标志物。CENPⅠ在结直肠癌的细胞和组织中表达上调,且与结直肠癌患者的临床分期、肿瘤深度、淋巴结转移、远处转移和分化相关[12]。CENPⅠ在胃癌中也表达上调,它可能通过调节AKT信号通路促进胃癌细胞增殖、迁移,抑制凋亡,诱导EMT过程[13],参与胃癌的发生发展[14]。过表达CENPⅠ还可促进胃癌细胞的增殖、侵袭、迁移,并可能抑制细胞凋亡[15]。本研究发现,CENPⅠ在肺腺癌等多种肿瘤组织中表达上调,且CENPⅠ高表达可促进肺腺癌H1650细胞的增殖、侵袭、迁移,抑制细胞凋亡。
EMT在发育、伤口愈合、组织纤维化及癌症进展等过程中均发挥重要作用[16-19]。本研究结果显示,敲低H1650细胞中CENPⅠ后,EMT标志物E-cadherin表达水平升高,N-cadherin、vimentin表达水平下降,表明敲低CENPⅠ可延缓EMT过程。Ki-67作为肿瘤细胞增殖的标志物之一,主要作用是防止有丝分裂过程中染色体的聚集[20-21]。Bcl-2作为BCL家族成员之一,主要参与细胞凋亡[22]。cyclin D1作为细胞周期蛋白家族的成员之一,在细胞周期调控中扮演重要角色[23]。本研究结果显示,敲低CENPⅠ后,H1650细胞中Ki-67、Bcl-2、cyclin D1的表达被明显抑制,表明敲低CENPⅠ可抑制肺腺癌H1650细胞的增殖能力,促进细胞凋亡。
PI3K/AKT信号通路通过影响细胞凋亡、转录、翻译、代谢、血管生成等下游效应分子的活性,控制着重要的细胞生物学过程以及细胞周期调节[24]。AKT是一种丝氨酸/苏氨酸蛋白激酶,是PI3K信号的重要下游效应器,在多种肿瘤中被过度激活[26-30]。而mTOR作为其下游的靶蛋白,通过控制多种蛋白的转录和翻译,影响细胞生长凋亡[24]。本研究结果显示,敲低CENPⅠ后,PI3K、AKT、mTOR的表达水平未见明显改变,而p-PI3K、p-AKT、p-mTOR的表达水平明显下降,在用该通路的激活剂IGF-1干预后,si-CENPⅠ+IGF-1组PI3K、AKT、mTOR的表达水平与si-CENPⅠ组比较未见明显改变,p-PI3K、p-AKT、p-mTOR表达水平则升高,表明敲低CENPⅠ可以抑制PI3K/AKT/mTOR信号通路,而IGF-1可逆转敲低CENPⅠ对PI3K/AKT/mTOR信号通路激活的抑制作用。
综上所述,CENPⅠ在肺腺癌中呈高表达,CENPⅠ高表达促进肺腺癌H1650细胞的增殖、侵袭、迁移及EMT过程,抑制细胞凋亡,其机制可能与PI3K/AKT/mTOR信号通路激活相关,这可能为肺腺癌的靶向治疗和药物研发开拓新思路。本研究的不足之处是缺少肺腺癌组织和相关体内研究实验,此外研究发展机制相对单一,有待后续深入研究。
| [1] |
SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI:10.3322/caac.21660 |
| [2] |
SHER T, DY GK, ADJEI AA. Small cell lung cancer[J]. Mayo Clin Proc, 2008, 83(3): 355-367. DOI:10.4065/83.3.355 |
| [3] |
RUIZ-CORDERO R, DEVINE WP. Targeted therapy and checkpoint immunotherapy in lung cancer[J]. Surg Pathol Clin, 2020, 13(1): 17-33. DOI:10.1016/j.path.2019.11.002 |
| [4] |
OZE I, ITO H, NISHINO Y, et al. Trends in small-cell lung cancer survival in 1993-2006 based on population-based cancer registry data in Japan[J]. J Epidemiol, 2019, 29(9): 347-353. DOI:10.2188/jea.JE20180112 |
| [5] |
YANG B, LEE H, UM SW, et al. Incidence of brain metastasis in lung adenocarcinoma at initial diagnosis on the basis of stage and genetic alterations[J]. Lung Cancer, 2019, 129: 28-34. DOI:10.1016/j.lungcan.2018.12.027 |
| [6] |
赫捷, 李霓, 陈万青, 等. 中国肺癌筛查与早诊早治指南(2021, 北京)[J]. 中国肿瘤, 2021, 30(2): 81-111. DOI:10.11735/j.issn.1004-0242.2021.02.A001 |
| [7] |
ROBERTS RG, KENDALL E, VETRIE D, et al. Sequence and chromosomal location of a human homologue of LRPR1 an FSH primary response gene[J]. Genomics, 1996, 37(1): 122-124. DOI:10.1006/geno.1996.0528 |
| [8] |
OKADA M, CHEESEMAN IM, HORI T, et al. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-a into centromeres[J]. Nat Cell Biol, 2006, 8(5): 446-457. DOI:10.1038/ncb1396 |
| [9] |
CHEESEMAN IM, HORI T, FUKAGAWA T, et al. KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates[J]. Mol Biol Cell, 2008, 19(2): 587-594. DOI:10.1091/mbc.e07-10-1051 |
| [10] |
MATSON DR, DEMIREL PB, STUKENBERG PT, et al. A conserved role for COMA/CENP-H/I/N kinetochore proteins in the spindle checkpoint[J]. Genes Dev, 2012, 26(6): 542-547. DOI:10.1101/gad.184184.111 |
| [11] |
THANGAVELU PU, LIN CY, VAIDYANATHAN S, et al. Overexpression of the E2F target gene CENPⅠ promotes chromosome instability and predicts poor prognosis in estrogen receptor-positive breast cancer[J]. Oncotarget, 2017, 8(37): 62167-62182. DOI:10.18632/oncotarget.19131 |
| [12] |
DING N, LI RX, SHI WH, et al. CENPⅠ is overexpressed in colorectal cancer and regulates cell migration and invasion[J]. Gene, 2018, 674: 80-86. DOI:10.1016/j.gene.2018.06.067 |
| [13] |
WANG JH, LIU X, CHU HJ, et al. Centromere proteinⅠ(CENP Ⅰ) is upregulated in gastric cancer, predicts poor prognosis, and promotes tumor cell proliferation and migration[J]. Technol Cancer Res Treat, 2021, 20: 15330338211045510. DOI:10.1177/15330338211045510 |
| [14] |
曹韵. CST2和CENPⅠ在胃癌组织中表达及与临床病理相关性分析[D]. 衡阳: 南华大学, 2020. DOI:10.27234/d.cnki.gnhuu.2020.000130.
|
| [15] |
张胜堂. 过表达CENPⅠ基因对胃癌SGC7901细胞生物学行为影响的研究[D]. 衡阳: 南华大学, 2022. DOI:10.27234/d.cnki.gnhuu.2022.000707.
|
| [16] |
MAO XY, LI QQ, GAO YF, et al. Gap junction as an intercellular glue: emerging roles in cancer EMT and metastasis[J]. Cancer Lett, 2016, 381(1): 133-137. DOI:10.1016/j.canlet.2016.07.037 |
| [17] |
LAMOUILLE S, XU J, DERYNCK R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3): 178-196. DOI:10.1038/nrm3758 |
| [18] |
HUGO H, LEIGH ACKLAND M, BLICK T, et al. Epithelial: mesenchymal and mesenchymal: epithelial transitions in carcinoma progression[J]. J Cell Physiol, 2007, 213(2): 374-383. DOI:10.1002/jcp.21223 |
| [19] |
LEE TK, POON RTP, YUEN AP, et al. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition[J]. Clin Cancer Res, 2006, 12(18): 5369-5376. DOI:10.1158/1078-0432.CCR-05-2722 |
| [20] |
SAIGAL S, BHARGAVA A. Stem cell: is there any role in tumorigenic activity[J]. Turk Patoloji Derg, 2011, 27(2): 93-97. DOI:10.5146/tjpath.2011.01055 |
| [21] |
SUN XM, KAUFMAN PD. Ki-67: more than a proliferation marker[J]. Chromosoma, 2018, 127(2): 175-186. DOI:10.1007/s00412-018-0659-8 |
| [22] |
TSUJIMOTO Y. Bcl-2: antidote for cell death[J]. Prog Mol Subcell Biol, 1996, 16: 72-86. DOI:10.1007/978-3-642-79850-4_5 |
| [23] |
杜朝阳. CyclinD1通过激活NDR调控细胞周期的机制研究[D]. 合肥: 中国科学技术大学, 2013.
|
| [24] |
余涛, 俞万钧, 王华英. PI3K/AKT信号通路在非小细胞肺癌中作用的研究进展[J]. 中国临床研究, 2021, 34(2): 248-250, 254. DOI:10.13429/j.cnki.cjcr.2021.02.026 |
| [25] |
LU T, ZHU Z, WU JC, et al. DRAM1 regulates autophagy and cell proliferation via inhibition of the phosphoinositide 3-kinase-Akt-mTOR-ribosomal protein S6 pathway[J]. Cell Commun Signal, 2019, 17(1): 28. DOI:10.1186/s12964-019-0341-7 |
| [26] |
CHEN QY, COSTA M. PI3K/Akt/mTOR signaling pathway and the biphasic effect of arsenic in carcinogenesis[J]. Mol Pharmacol, 2018, 94(1): 784-792. DOI:10.1124/mol.118.112268 |
| [27] |
WANG L, WEN XZ, LUAN FM, et al. EIF3B is associated with poor outcomes in gastric cancer patients and promotes cancer progression via the PI3K/AKT/mTOR signaling pathway[J]. Cancer Manag Res, 2019, 11: 7877-7891. DOI:10.2147/CMAR.S207834 |
| [28] |
HONG Z, WANG ZH, ZHOU B, et al. Effects of evodiamine on PI3K/Akt and MAPK/ERK signaling pathways in pancreatic cancer cells[J]. Int J Oncol, 2020, 56(3): 783-793. DOI:10.3892/ijo.2020.4956 |
| [29] |
ZHOU F, GENG J, XU S, et al. FAM83A signaling induces epithelial-mesenchymal transition by the PI3K/AKT/Snail pathway in NSCLC[J]. Aging (Albany NY), 2019, 11(16): 6069-6088. DOI:10.18632/aging.102163 |
2025, Vol. 54



