中国医科大学学报  2024, Vol. 53 Issue (7): 603-609

文章信息

李晓婷, 聂宏光, 樊建华
LI Xiaoting, NIE Hongguang, FAN Jianhua
脑缺血/再灌注后大鼠心肌自噬的变化及分子调节机制
Changes in myocardial autophagy and its regulatory mechanisms after cerebral ischemia/reperfusion in rats
中国医科大学学报, 2024, 53(7): 603-609
Journal of China Medical University, 2024, 53(7): 603-609

文章历史

收稿日期:2024-01-29
网络出版时间:2024-06-26 14:26:30
脑缺血/再灌注后大鼠心肌自噬的变化及分子调节机制
李晓婷1 , 聂宏光2 , 樊建华3     
1. 中国医科大学附属第四医院院内感染管理办公室, 沈阳 110032;
2. 中国医科大学基础医学院干细胞与再生医学研究室, 沈阳 110122;
3. 中国医科大学附属第四医院神经内科, 沈阳 110032
摘要目的 探讨脑缺血/再灌注(CI/R)不同时间心肌损伤及机体自我保护机制自噬的的动态变化及分子机制。方法 采用雄性Sprague-Dawley大鼠建立CI/R模型。按照再灌注时间将大脑中动脉闭塞后CI/R大鼠分为6、12、24和48 h组。采用活性氧(ROS)、活性氮(RNS)检测指标评估心肌氧化应激损伤。观察各组大鼠心肌细胞凋亡和自噬体结构,检测心肌自噬、自噬流以及自噬调控蛋白和基因表达的动态变化。结果 大鼠CI/R后心肌发生氧化应激损伤及凋亡,心肌细胞内自噬体增加,在12 h达高峰,自噬流在CI/R前12 h内被破坏,心肌内自噬调节蛋白Beclin 1、mTOR、AMPK在CI/R后48 h表达增加,其表达趋势与自噬变化基本一致,与对照组比较差异均有统计学意义。结论 自噬在大鼠CI/R所致心肌损伤中起保护作用,Beclin 1介导的自噬/凋亡互反馈通路及mTOR介导的mTOR/自噬互反馈通路在调节自噬中起重要作用。
关键词缺血/再灌注损伤    自噬    Beclin 1    mTOR    
Changes in myocardial autophagy and its regulatory mechanisms after cerebral ischemia/reperfusion in rats
1. Hospital-Acquired Infection Control Department, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China;
2. Laboratory of Stem Cell and Regenerative Medicine Research, School of Basic Medicine, China Medical University, Shenyang 110122, China;
3. Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
Abstract: Objective To investigate the dynamic changes and molecular mechanisms of myocardial injury and autophagy as the body's self-protective mechanism at different time points after cerebral ischemia/reperfusion (CI/R). Methods A CI/R model was established in male Sprague-Dawley rats using the Longa thread method. Rats that underwent CI/R following middle cerebral artery occlusion were classified into 6-, 12-, 24, and 48-hour groups according to the reperfusion time. The concentrations of reactive oxygen species and reactive nitrogen species were measured to evaluate myocardial oxidative stress. Cardiomyocyte apoptosis and autophagosomes were observed in the myocardium. Additionally, dynamic changes in myocardial autophagy, autophagic flux, and protein and gene expression of autophagy regulators were detected. Results Oxidative-stress-induced injury and apoptosis were observed in the myocardium after CI/R. The number of autophagosomes in cardiomyocytes increased, peaking in the 12 h group, and autophagic flux was impaired during the first 12 h after CI/R. Beclin 1, mammalian target of rapamycin (mTOR), and adenosine monophosphate-activated protein kinase (AMPK) expression levels in the myocardium increased during the first 48 h after CI/R, peaking in the 12 h group. This was consistent with changes in autophagy, which showed significant differences compared with the control group. Conclusion These results indicated that autophagy plays a protective role against CI/R-induced myocardial injury. Furthermore, Beclin 1-mediated autophagy/apoptosis and mTOR-mediated autophagy mutual feedback pathways play important roles in the regulation of autophagy.
Keywords: ischemia-reperfusion injury    autophagy    Beclin 1    mTOR    

恶性大脑中动脉梗死是一种严重的神经系统疾病,治疗过程中脑缺血/再灌注(cerebral ischemia/reperfusion,CI/R)损伤是不可避免的病理生理过程,包括局部脑损伤和对远隔器官(如心脏)的继发性损伤[1]。活性氧(reactive oxygen species,ROS)和活性氮(reactive nitrogen species,RNS)参与缺血/再灌注(ischemia/reperfusion,I/R)损伤级联反应,过量ROS会导致I/R心肌细胞凋亡[2]Bcl-2Bax以及caspase蛋白酶家族基因是参与心肌凋亡的主要基因。氧化应激状态下,自噬被激活以减轻损伤和凋亡[3]。LC3-Ⅰ和LC3-Ⅱ作为自噬标志物,p62是自噬的底物蛋白,其水平能反映自噬活性程度。通过检测LC3-Ⅱ/LC3-Ⅰ及p62蛋白的变化,能准确地评估自噬流情况[4]。适度自噬是一种内源性细胞保护机制,而自噬不足或过多会影响细胞的代谢和生存[5]。本研究建立CI/R大鼠模型,探讨与CI/R相关的自我保护机制。

1 材料与方法 1.1 实验动物和模型建立

选用辽宁长生生物技术有限公司购买的雄性Sprague-Dawley大鼠(体重250~300 g;2~3月龄),饲养温度保持在(23±2)℃。将大鼠随机分为假手术组(sham组)和CI/R组。CI/R模型采用Longa线栓法,栓塞大脑中动脉2 h。sham组大鼠同样进行了手术操作,但未进行大脑中动脉的栓塞。CI/R模型的评估依据Longa 5分法[6]。最终纳入样本90例,其中sham组18例,CI/R模型组72例。CI/R模型组根据再灌注时间进一步分为4个亚组(6、12、24和48 h),每个亚组18例。实验结束时,大鼠通过腹腔注射过量戊巴比妥钠(150 mg/kg)进行安乐死,开胸取心脏。本研究获得中国医科大学伦理委员会批准。

1.2 HE染色

将固定好的心肌组织常规脱水、包埋、切片,切片厚度为5 μm。经过二甲苯Ⅰ、Ⅱ脱蜡(各20 min),再逐级放入梯度乙醇中进行脱水(各5 min),HE染色,最后以中性树胶封片。使用光学显微镜(Leica DM 2000,德国)观察心肌组织的病理变化,并拍摄照片。根据RONA等[7]描述的方法,对心肌损伤进行半定量评分。

1.3 荧光探针测量ROS和RNS

用基于荧光染料DCFH-DA的试剂盒检测心肌细胞内ROS,使用荧光显微镜(BX51,日本Olympus公司)检测荧光信号并分析ROS的水平。利用荧光探针BBoxiProbe R21的试剂盒检测RNS。每个切片随机选择3个视野拍照,并采用ImageJ软件测量其平均荧光强度。

1.4 TUNEL染色

采用TUNEL试剂盒(C1088,上海贝瑞泰生物技术有限公司),按照制造商的说明进行操作。利用荧光显微镜观察和计数TUNEL阳性细胞核以及DAPI染色的细胞核总数。

1.5 电镜观察心肌内自噬体

将心肌组织用2.5%戊二醛于4℃固定2 h以上,二甲砷酸钠缓冲液漂洗后用1%四氧化锇进行后固定,乙醇、丙酮逐级脱水及环氧树脂包埋,用超薄切片机切成70~90 nm切片,双氧铀及柠檬酸铅双重染色,在透射电镜下观察心肌超微结构并拍照。

1.6 Western blotting

取左心室组织制备匀浆,PBS缓冲液稀释后用BCA蛋白浓度测定试剂盒(P0012S,上海碧云天生物技术有限公司)测定蛋白浓度,对总蛋白进行凝胶电泳并转印至PVDF膜上。将一抗AMPK,p-AMPK,mTOR,p-mTOR,Bax,Bcl-2,Beclin 1,caspase-3,LC3Ⅰ/Ⅱ,p62,β-actin用5% BSA封闭液稀释后置于4 ℃冰箱中孵育过夜。然后将二抗用5% BSA封闭液稀释并置于37 ℃恒温孵育2 h。将PVDF膜放置于凝胶成像分析系统中,滴加ECL发光液后采集图像。采用ImageJ软件测定各条带灰度值,β-actin作为内参,以目的蛋白灰度值/内参条带灰度值的比值作为该样本中蛋白的相对表达水平。

1.7 实时PCR

采用TRIzol裂解液按照试剂操作说明从心肌组织提取总RNA,用紫外吸收法测定RNA溶液的浓度和纯度,之后按照实时PCR试剂盒说明书进行cDNA逆转录反应并定量检测。PCR引物序列如表 1所示,以β-actin作为内参,每个实验重复进行3次,用2-△△Ct法分析基因表达相对变化。

表 1 实时PCR引物序列 Tab.1 Primer sequences for real-time PCR
Gene Forward(5’-3’) Reverse(5’-3’)
m-TOR CACCCATCCAACCTGATGCT ATCGAGACCGGTAACCTCCA
MPK CTTCGGCAAAGTGAAGATTGG TGGAGTGCTGATCACTTGGT
Bax TCATGAAGACAGGGGCCTTT CTGCAGCTCCATGTTGTTGT
Bcl-2 CGGGAGAACAGGGTATGA CAGGCTGGAAGGAGAAGAT
β-actin TCTTCCAGCCTTCCTTCCTG CACACAGAGTACTTGCGCTC

1.8 统计学分析

采用SPSS 19.0软件进行统计分析。数据以x±s表示,多组间比较采用单因素方差分析(ANOVA),组间两两比较差异比较采用LSD检验。P < 0.05为差异有统计学意义。

2 结果 2.1 心肌形态学观察

光镜下观察,sham组肌纤维排列整齐,细胞形态正常,胞核清晰。与sham组比较,CI/R组心肌HE染色显示心肌纤维排列紊乱,间质水肿,局部充血及少量出血,少量炎症细胞浸润,在再灌注12 h最为显著(图 1A)。心肌损伤半定量评分结果显示,CI/R组病理损伤评分较sham组显著增高,在再灌注12 h达高峰(P < 0.05,图 1B)。提示CI/R可造成大鼠心肌损伤,其程度随再灌注时间动态变化。

A, HE staining; B, myocardial injury score. *P < 0.05 vs. sham group; # P < 0.05 vs. CI/R 6 h group; & P < 0.05 vs. CI/R 12 h group. Black arrows indicate disorders of myocardial fiber arrangement. 图 1 HE染色大鼠心肌损伤及心肌损伤评分 Fig.1 Detection of pathological myocardial morphology and myocardial injury score

2.2 心肌氧化应激损伤

CI/R组心肌组织ROS、RNS含量随再灌注时间出现动态变化,CI/R 12 h其含量达高峰,与CI/R组其他各组比较,差异有统计学意义(P < 0.05);CI/R组与sham组比较,ROS、RNS含量有统计学差异(P < 0.05),见表 2

表 2 各组心肌组织ROS、RNS含量检测 Tab.2 Detection of reactive oxygen and nitrogen species in the myocardium in each group
Item Sham CI/R 6 h CI/R 12 h CI/R 24 h CI/R 48 h
ROS 1.03±0.12 1.30±0.101),2) 1.62±0.141) 1.44±0.121),2) 1.40±0.101),2)
RNS 0.96±0.06 1.31±0.101),2) 1.62±0.161) 1.40±0.091),2) 1.42±0.091),2)
1)P < 0.05 vs. sham group;2)P < 0.05 vs. CI/R 12 h group.

2.3 心肌细胞凋亡

TUNEL染色结果显示,sham组心肌细胞凋亡较少,而CI/R组中凋亡心肌细胞数量较多(图 2A)。Western blotting检测结果显示,与sham组相比,CI/R组心肌中Bcl-2/Bax比值显著降低(P < 0.05),Bcl-2/Bax比值在12 h组最低(P < 0.05,图 2B);CI/R组中caspase-3和cleaved caspase-3水平均显著高于sham组(P < 0.05),两者水平随再灌注时间动态变化,在12 h组达到峰值,与6 h组有统计学差异(P < 0.05,图 2C)。实时PCR结果显示,CI/R组中Bax mRNA水平在12 h达到峰值,与6 h组比较有统计学差异(P < 0.05),而Bcl-2 mRNA水平在12 h组最低(P < 0.05),与sham组相比,CI/R组的BaxBcl-2 mRNA水平均有统计学差异(P < 0.05,图 2D)。

A, TUNEL results of myocardial sections from rats in the sham and CI/R groups (×200);B, representative Western blotting results of rats in the sham and CI/R groups; C, quantification of protein levels in the sham and CI/R groups; D, expression of Bax and Bcl-2 mRNA. *P < 0.05 vs. sham group; #P < 0.05 vs. CI/R 6 h group; & P < 0.05 vs. CI/R 12 h group. 图 2 各组心肌细胞凋亡 Fig.2 Detection of cardiomyocyte apoptosis in each group

2.4 心肌细胞自噬体及自噬流变化

电镜结果显示,CI/R组中可见明显自噬体形成。而在Sham组中没有发现自噬体(图 3A)。通过Western blotting同时检测LC3、Beclin 1和p62的表达变化来分析自噬流(图 3B)。结果显示,LC3Ⅱ/LC3Ⅰ比值在CI/R后12 h达到峰值,CI/R组显著高于sham组(P < 0.05),CI/R组的Beclin 1和p62蛋白水平显著高于sham组(P < 0.05),在CI/R后12 h达高峰(图 3C)。

A, electron microscopic observation of cardiomyocytes in the sham and CI/R groups (×15 000);B, representative Western blotting results of rats in the sham and CI/R groups; C, quantification of autophagic protein levels in the sham and CI/R groups determined by Western blotting. Red arrows indicate autophagosomes. *P < 0.05 vs. sham group; #P < 0.05 vs. CI/R 6 h group; & P < 0.05 vs. CI/R 12 h group. 图 3 各组心肌细胞自噬体及自噬流变化 Fig.3 Detection of autophagosomes and the autophagic flux of cardiomyocytes in each group

2.5 心肌细胞自噬调节信号蛋白变化

Western blotting结果显示,p-mTOR/mTOR和p-AMPK/AMPK比值在CI/R组中显著高于sham组,差异有统计学意义(P < 0.05,图 4A),两者均在12 h组达高峰,较6 h组显著升高(P < 0.05,图 4B)。实时PCR结果显示,CI/R组中两者的表达水平明显高于sham组(P < 0.05,图 4C)。

A, representative Western blotting results of left ventricle tissues of the sham and CI/R groups; B, quantification of protein levels in rats in the sham and CI/R groups determined by Western blotting; C, quantification of RNA levels in the sham and CI/R groups determined by real-time PCR. *P < 0.05 vs. sham group; #P < 0.05 vs. CI/R 6 h group; & P < 0.05 vs. CI/R 12 h group. 图 4 各组心肌细胞自噬调节信号蛋白mTOR、AMPK表达 Fig.4 Protein and mRNA expression profiles of mTOR and AMPK in each group

3 讨论

脑卒中能引起远隔部位心脏的功能异常,从而影响患者的预后[8]。目前关于CI/R后心肌损伤的变化和调节机制报道有限。本研究应用大脑中动脉闭塞模型探讨CI/R后心肌氧化应激损伤、凋亡及自噬的变化。

氧化应激损伤是I/R引起器官损伤的主要机制。过量ROS导致凋亡增加[9]。补充抗氧化剂可以减少ROS及脂质过氧化,改善心脏再灌注损伤[10]。本研究结果显示,CI/R后ROS和RNS水平增加,与心肌损伤程度一致。因此,氧化应激可能是CI/R后心肌细胞损伤的重要机制之一。此外,氧化应激可启动凋亡相关基因及蛋白表达。在心肌细胞中,Bcl-2/Bax比值与凋亡程度呈负相关[11]。KHAN等[12]研究证实,增加Bcl-2并抑制caspase-3活性能够减轻再灌注引起的心肌细胞凋亡。本研究结果显示,心肌凋亡在12 h达高峰,变化趋势与心肌损伤基本一致。因此,CI/R后氧化应激损伤可能导致心肌细胞凋亡。应激状态下自噬对减少结构损伤至关重要。诱导自噬可减轻ROS诱导的心肌损害[13],阻断自噬则可能加重氧化应激损伤[14]。本研究结果显示,CI/R组自噬增加,12 h组达高峰。这与氧化应激损伤趋势一致,进一步支持心肌氧化应激损伤可能激活自噬。自噬流参与自噬的整个动态过程,只有完整的自噬流才能有效保护细胞。HE等[15]发现自噬流被阻断可加重心肌细胞损伤。GUAN等[16]报道修复完整的自噬流可以发挥I/R心肌保护作用。本研究结果显示,CI/R后12 h内心肌细胞的自噬流可能受损,但在12 h后恢复通畅。可能是由于CI/R前12 h ROS含量过多破坏自噬流,12 h后在自噬作用下氧化损伤逐渐减轻,自噬流恢复正常。因此,适当增强自噬清除能力可以促进机体的损伤修复。

自噬调控涉及多条信号途径。目前,心肌细胞自噬与凋亡之间的关系成为研究的热点。Beclin 1是自噬/凋亡相互调节的关键节点。PAN等[17]的研究发现,Beclin 1/Bcl-2对自噬/凋亡相互调节至关重要。在Beclin 1+/-小鼠中,自噬在I/R阶段显著减少,抑制自噬可能会增加凋亡[18]。本研究结果显示,CI/R组Bcl-2水平下降,12 h达到最低点。相反,Beclin 1水平随再灌注逐渐增加,在12 h达到峰值,与自噬表达一致。这表明Beclin 1在CI/R后调控自噬中起重要作用,其表达受Bcl-2的负调控。研究[19]显示,自噬和mTOR之间的相互调节对促进细胞存活至关重要。AMPK α亚单位的敲除会加重心肌缺血损伤[20]。本研究结果显示,CI/R后大鼠AMPK和mTOR蛋白以及基因表达变化趋势与自噬水平呈一致性,深入了解自噬及其信号分子的调节将有助于寻找药物研究的有效靶点。

综上所述,CI/R可导致远隔部位心肌损伤及凋亡,自噬在心肌损伤修复中起重要保护作用。自噬/凋亡和mTOR/自噬等互反馈可能在CI/R后不同时间点减轻心肌损伤并发挥重要的调节作用。

参考文献
[1]
SILVER FL, NORRIS JW, LEWIS AJ, et al. Early mortality following stroke: a prospective review[J]. Stroke, 1984, 15(3): 492-496. DOI:10.1161/01.str.15.3.492
[2]
WANG ZK, YANG NN, HOU YJ, et al. L-arginine-loaded gold nanocages ameliorate myocardial ischemia/reperfusion injury by promoting nitric oxide production and maintaining mitochondrial function[J]. Adv Sci, 2023, 10(26): e2302123. DOI:10.1002/advs.202302123
[3]
RAO TC, TONG H, LI J, et al. Exploring the role and mechanism of hyperoside against cardiomyocyte injury in mice with myocardial infarction based on JAK2/STAT3 signaling pathway[J]. Phytomedicine, 2024, 128: 155319. DOI:10.1016/j.phymed.2023.155319
[4]
JIANG PD, MIZUSHIMA N. LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells[J]. Methods, 2015, 75: 13-18. DOI:10.1016/j.ymeth.2014.11.021
[5]
ZHOU B, LEI SQ, XUE R, et al. DJ-1 overexpression restores ischaemic post-conditioning-mediated cardioprotection in diabetic rats: role of autophagy[J]. Clin Sci, 2017, 131(11): 1161-1178. DOI:10.1042/CS20170052
[6]
LONGA EZ, WEINSTEIN PR, CARLSON S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1): 84-91. DOI:10.1161/01.str.20.1.84
[7]
RONA G, CHAPPEL CI, BALAZS T, et al. An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat[J]. AMA Arch Pathol, 1959, 67(4): 443-455.
[8]
FINSTERER J, WAHBI K. CNS-disease affecting the heart: brain-heart disorders[J]. J Neurol Sci, 2014, 345(1/2): 8-14. DOI:10.1016/j.jns.2014.07.003
[9]
GUO YX, JIA PY, CHEN YQ, et al. PHLDA1 is a new therapeutic target of oxidative stress and ischemia reperfusion-induced myocardial injury[J]. Life Sci, 2020, 245: 117347. DOI:10.1016/j.lfs.2020.117347
[10]
GHOREYSHI M, MAHMOUDABADY M, BAFADAM S, et al. The protective effects of pharmacologic postconditioning of hydroalcoholic extract of Nigella sativa on functional activities and oxidative stress injury during ischemia-reperfusion in isolated rat heart[J]. Cardiovasc Toxicol, 2020, 20(2): 130-138. DOI:10.1007/s12012-019-09540-x
[11]
LI WW, YANG JC, LYU QF, et al. Taurine prevents cardiomyocyte apoptosis by inhibiting the calpain-1/cytochrome c pathway during RVH in broilers[J]. Amino Acids, 2020, 52(3): 453-463. DOI:10.1007/s00726-020-02824-5
[12]
KHAN SI, MALHOTRA RK, RANI N, et al. Febuxostat modulates MAPK/NF-κBp65/TNF-α signaling in cardiac ischemia-reperfusion injury[J]. Oxid Med Cell Longev, 2017, 2017: 8095825. DOI:10.1155/2017/8095825
[13]
HOU J, ZHENG DZ, XIAO WJ, et al. Mangiferin enhanced autophagy via inhibiting mTORC1 pathway to prevent high glucose-induced cardiomyocyte injury[J]. Front Pharmacol, 2018, 9: 383. DOI:10.3389/fphar.2018.00383
[14]
SU SH, WU YF, LIN Q, et al. URB597 protects against NLRP3 inflammasome activation by inhibiting autophagy dysfunction in a rat model of chronic cerebral hypoperfusion[J]. J Neuroinflammation, 2019, 16(1): 260. DOI:10.1186/s12974-019-1668-0
[15]
HE WB, TONG G, FAN HL, et al. Exendin-4 alleviates myocardial ischemia reperfusion injury by enhancing autophagy through promoting nuclear translocation of TFEB[J]. Exp Cell Res, 2023, 423(2): 113469. DOI:10.1016/j.yexcr.2023.113469
[16]
GUAN LC, YU ZQ, CHE ZM, et al. Experimental diabetes exacerbates autophagic flux impairment during myocardial I/R injury through calpain-mediated cleavage of Atg5/LAMP2[J]. J Cell Mol Med, 2023, 27(2): 232-245. DOI:10.1111/jcmm.17642
[17]
PAN YZ, LIANG QR, TOMCHICK DR, et al. Structural insights for selective disruption of Beclin 1 binding to Bcl-2[J]. Commun Biol, 2023, 6(1): 1080. DOI:10.1038/s42003-023-05467-w
[18]
TAYLOR MA, KHATHAYER F, RAY SK. Quercetin and sodium butyrate synergistically increase apoptosis in rat C6 and human T98G glioblastoma cells through inhibition of autophagy[J]. Neurochem Res, 2019, 44(7): 1715-1725. DOI:10.1007/s11064-019-02802-8
[19]
XIE CM, SUN Y. The MTORC1-mediated autophagy is regulated by the FBXW7-SHOC2-RPTOR axis[J]. Autophagy, 2019, 15(8): 1470-1472. DOI:10.1080/15548627.2019.1609864
[20]
WANG YS, YANG Z, ZHENG GX, et al. Metformin promotes autophagy in ischemia/reperfusion myocardium via cytoplasmic AMPKα1 and nuclear AMPKα2 pathways[J]. Life Sci, 2019, 225: 64-71. DOI:10.1016/j.lfs.2019.04.002