文章信息
- 焦宁, 陈迎, 常利华
- JIAO Ning, CHEN Ying, CHANG Lihua
- 芹菜素通过miR-181a-5p/SOCS3信号通路调节Treg/Th17细胞平衡减轻类风湿关节炎进展
- Apigenin regulates Treg/Th17 cells balance reduces the progress of rheumatoid arthritis via miR-181a-5p/SOCS3 signaling pathway
- 中国医科大学学报, 2024, 53(12): 1080-1087
- Journal of China Medical University, 2024, 53(12): 1080-1087
-
文章历史
- 收稿日期:2024-01-19
- 网络出版时间:2024-12-09 12:12:17
2. 中国医科大学 附属盛京医院风湿免疫科, 沈阳 110004
2. Department of Rheumatology and Immunology, Shengjing Hospital of ChinaMedical University, Shenyang 110004, China
类风湿关节炎(rheumatoid arthritis,RA)是常见的慢性自身免疫性炎症疾病,其特征表现为持续性滑膜炎和关节破坏[1]。RA基本病变是大量炎性细胞因子产生和滑膜增生,Treg/Th17细胞失衡影响炎性细胞因子水平,进而导致RA进展[2-3]。研究[4-5]显示,Th17细胞通过分泌白细胞介素(interleukin,IL)-17促进炎症反应加速RA进展,而Treg细胞通过分泌IL-10发挥抗炎作用抑制RA进展。因此,调节Treg和Th17细胞平衡可能抑制RA发展。芹菜素(apigenin,API)是植物中最丰富的黄酮类化合物之一,具有抗氧化、抗癌和抗炎等作用[6]。已有研究[7]表明,API可通过抑制滑膜增生、血管生成、骨细胞生成在RA中发挥保护作用。此外,还有研究[8]发现API处理的树突状细胞共培养的T细胞中Th17细胞比例降低,Treg细胞比例增加。目前,API能否通过调节Treg/Th17细胞平衡来改善RA症状及其作用机制尚不清楚。本研究探讨API对胶原诱导性关节炎(collagen induced arthritis,CIA)大鼠关节炎的影响及其对Treg/Th17细胞平衡的调节作用,并进一步分析可能的作用机制。
1 材料与方法 1.1 实验动物、主要试剂和仪器Wistar大鼠(6周龄,体重140~180 g,雄性,共50只)购自北京维通利华实验动物技术有限公司。HEK-293T细胞购自武汉普诺赛生命科技有限公司。胎牛血清和DMEM高糖培养基购自美国Gibco公司,慢病毒购自上海吉凯基因医学科技股份有限公司,Lipofectamine 3000转染试剂、细胞培养箱和流式细胞仪购自美国Thermo公司,双萤光素酶报告基因检测试剂盒和化学发光仪购自美国Promega公司,Western blotting相关试剂购自上海碧云天生物技术股份有限公司,实时荧光定量PCR(real-time fluorescence quantitative PCR,RT-qPCR)相关试剂购自南京诺唯赞生物科技股份有限公司,SOCS3和GAPDH抗体购自美国abcam公司,CD4、CD25、IL-17和Foxp3抗体购自武汉伊莱瑞特生物科技股份有限公司,HE染色试剂盒购自上海碧云天生物技术股份有限公司,酶标仪购自美国BioTek公司,凝胶成像系统购自美国Bio-Rad公司。
1.2 方法 1.2.1 CIA大鼠模型建立取乳化剂(0.2 mL牛Ⅱ型胶原和弗氏完全佐剂乳剂等比例混合乳化)经大鼠尾部注射进行首次免疫。首次免疫后7 d取乳化剂(0.4 mL牛Ⅱ型胶原和弗氏不完全佐剂乳剂等比例混合乳化)经大鼠尾部注射进行加强免疫[3]。通过观察大鼠足部肿胀程度、检测关节炎指数评分以及HE染色观察踝关节组织病理损伤来评价模型是否建立成功。
1.2.2 动物分组及处理将50只Wistar大鼠随机分为对照组(Control组)、模型组(CIA组)、API组、API+敲减对照组(API+sh-NC组)和API+敲减SOCS3组(API+sh-SOCS3组),每组10只。CIA组、API组、API+sh-NC组和API+sh-SOCS3组大鼠按1.2.1方法制备CIA模型。对照组大鼠于相同时间注射乳化剂等量的生理盐水。API组、API+sh-NC组和API+sh-SOCS3组大鼠于第1次注射乳化剂前1 d开始腹腔注射API(20 mg/kg),持续50 d。API+sh-NC组和API+sh-SOCS3组于第10天和第30天经尾静脉注射敲减对照和敲减SOCS3慢病毒(50 μL,滴度为1×108 TU/mL)。各组大鼠于最后1次给予API后第2天脱颈椎法处死,取血清、脾脏、踝关节和滑膜组织用于后续实验。
1.2.3 关节炎指数评分各组大鼠于造模后第7天至第50天进行关节炎指数评分[9]。评分标准:0分,正常;1分,跗关节或脚踝出现红肿;2分,红肿和轻度肿胀从脚踝蔓延到跗关节;3分,发红和中度肿胀从脚踝蔓延到跖骨关节;4分,遍及整个足部的严重肿胀和四肢僵硬。
1.2.4 HE染色按HE染色试剂盒说明书对大鼠踝关节组织进行染色。多聚甲醛固定的踝关节组织用EDTA脱钙后,经脱水、透明、浸蜡和包埋后切成厚4 μm的石蜡切片。石蜡切片烘干后二甲苯脱蜡、梯度乙醇水化,然后依次进行苏木素染色、盐酸酒精分化和伊红染色,染色后切片经梯度乙醇脱水和二甲苯透明后,中性树胶封片,光学显微镜下观察并拍照。
1.2.5 酶联免疫吸附试验(enzyme-linked immunosorbent assay,ELISA)严格按照ELISA试剂盒说明书检测大鼠血清中IL-17A、IL-6、TGF-β和IL-10水平。
1.2.6 流式细胞术取大鼠脾脏,无菌PBS匀浆,用200目细胞过滤器过滤细胞悬液,300 g离心并弃上清,红细胞溶解液重悬细胞。取1×106个脾细胞,用PE偶联的抗CD4抗体和ER780偶联的抗CD25抗体4 ℃染色45 min。PBS洗涤后,细胞内固定和渗透缓冲液用于固定和渗透脾细胞。PBS洗涤脾细胞,并与APC偶联的抗IL-17抗体和FITC偶联的抗Foxp3抗体4 ℃染色45 min。PBS洗涤后流式细胞仪中检测Treg/Th17细胞。
1.2.7 RT-qPCR大鼠滑膜组织液氮冷冻后经研钵研碎,用Trizol试剂收集研磨后的滑膜组织并提取组织中总RNA。将提取的RNA反转录为cDNA,以cDNA为模板进行RT-qPCR反应,以U6和GAPDH为内参,采用2-ΔΔCt法计算目的基因的相对表达量。
1.2.8 Western blotting大鼠滑膜组织液氮冷冻后经研钵研碎,用RIPA裂解液收集研磨后的滑膜组织并提取组织总蛋白,BCA法进行蛋白定量。取20 μg蛋白样本煮样使其充分变性后进行SDS-聚丙烯酰胺凝胶电泳及转膜,5%脱脂牛奶室温封闭1 h,SOCS3(1∶1 000稀释)和GAPDH(1∶5 000稀释)抗体4 ℃孵育过夜。PBST洗膜3次,二抗室温孵育1 h,PBST洗膜3次,ECL化学发光,使用ImageJ软件进行灰度分析。
1.2.9 双萤光素酶报告基因实验取对数生长期的HEK-293T细胞均匀铺板于24孔板中,培养过夜后,将细胞分为SOCS3-WT和mimics NC共转染组、SOCS3-WT和miR-181a-5p mimics共转染组、SOCS3-MUT和mimics NC共转染组和SOCS3-MUT和miR-181a-5p mimics共转染组,各组细胞严格按照Lipofectamine 3000转染试剂说明书进行转染,转染后细胞继续培养24 h后弃培养基,PBS洗去残余培养基,加入裂解液后室温摇晃15 min,并通过相应试剂盒检测细胞的萤光素酶活性。
1.3 统计学分析采用SPSS 22.0软件进行统计学分析。符合正态分布的计量资料采用x±s表示,多组间比较采用单因素方差分析,并采用Tukey事后检验进行组间两两比较。P < 0.05为差异有统计学意义。
2 结果 2.1 API对CIA大鼠关节炎症状的影响Control组大鼠关节炎指数为0,且随着时间的推移无改变,足部未发现水肿;CIA组大鼠关节炎指数随时间的推移迅速增加,并于第44天达到峰值,足部水肿严重;API组大鼠关节炎指数于第44天开始明显低于CIA组(P < 0.05),足部的水肿程度与CIA组比较明显降低。见图 1。
![]() |
A, arthritis index score of rat in each group; B: gross observation results of paws of rat in each group. * P < 0.05 vs. control group; # P < 0.05 vs. CIA group. 图 1 各组大鼠关节炎炎症症状 Fig.1 Arthritis inflammatory symptoms of rat in each group |
2.2 API对CIA大鼠踝关节滑膜损伤的影响
对照组大鼠未见关节滑膜损伤。CIA组大鼠关节腔可见大量炎症细胞浸润及增生的滑膜组织。与CIA组比较,API组大鼠关节滑膜损伤改善。见图 2。
![]() |
A, control group; B, CIA group; C, API group. 图 2 HE染色检测各组大鼠踝关节滑膜损伤×200 Fig.2 The synovial injury of ankle joint of rat in each group by HE staining ×200 |
2.3 API对CIA大鼠Treg/Th17细胞平衡的影响
与Control组比较,CIA组大鼠血清中IL-17A和IL-6水平以及脾细胞中CD4+ IL17A+细胞数均明显升高,血清中TGF-β和IL-10水平以及脾细胞中CD25+ Foxp3+细胞数均明显降低(P < 0.05)。与CIA组比较,API组大鼠血清中IL-17A和IL-6水平以及脾细胞中CD4+ IL17A+细胞数明显降低,血清中TGF-β和IL-10水平以及脾细胞中CD25+ Foxp3+细胞数明显升高(均P < 0.05)。见图 3。
![]() |
A, Th17 and Treg-related cytokines levels in serum of rat in each group; B, the proportion of Th17 and Treg cells in spleen cells of rat in each group. * P < 0.05 vs. control group; # P < 0.05 vs. CIA group. 图 3 ELISA和流式细胞术检测各组大鼠Treg/Th17细胞平衡 Fig.3 Treg/Th17 cells balance of rat in each group by ELISA and flow cytometry |
2.4 API对CIA大鼠滑膜中miR-181a-5p和SOCS3表达的影响
与Control组比较,CIA组大鼠滑膜组织中miR-181a-5p表达水平明显升高,SOCS3 mRNA和蛋白表达水平明显降低(P < 0.05)。与CIA组比较,API组大鼠滑膜组织中miR-181a-5p表达水平明显降低,SOCS3 mRNA和蛋白表达水平明显升高(P < 0.05)。见图 4。
![]() |
A, the expression of miR-181a-5p and SOCS3 mRNA in synovial tissue of rat in each group; B, the expression of SOCS3 protein in synovial tissue of rat in each group.* P < 0.05 vs. control group; # P < 0.05 vs. CIA group. 图 4 各组大鼠滑膜组织中miR-181a-5p和SOCS3表达情况 Fig.4 Expression of miR-181a-5p and SOCS3 in synovial tissue of rat in each group |
2.5 miR-181a-5p与SOCS3间的靶向关系
与mimics NC组比较,miR-181a-5p mimics组转染SOCS3-WT的HEK-293T细胞的萤光素酶活性明显降低(P < 0.05),而转染SOCS3-MUT的HEK-293T细胞的萤光素酶活性无明显差异(P > 0.05)。见图 5。
![]() |
* P < 0.05 vs. mimics NC+SOCS3-WT group. 图 5 miR-181a-5p与SOCS3间的靶向关系 Fig.5 Targeting relationship between miR-181a-5p and SOCS3 |
2.6 API介导SOCS3影响CIA大鼠关节炎症状和踝关节滑膜损伤
与API+sh-NC组比较,API+sh-SOCS3组大鼠滑膜组织中miR-181a-5p表达水平无统计学差异(P > 0.05),SOCS3 mRNA和蛋白表达水平明显降低(均P < 0.05)。API+sh-NC组大鼠关节炎指数随时间推移增加,并于第38天达到峰值,足部水肿程度和关节滑膜损伤较轻。API+sh-SOCS3组大鼠关节炎指数于第26天开始明显高于API+sh-NC组(P < 0.05),足部水肿和关节滑膜损伤程度重于API+sh-NC组。见图 6。
![]() |
A, the expression of miR-181a-5p and SOCS3 mRNA in synovial tissue of rat in each group; B, the expression of SOCS3 protein in synovial tissue of rat in each group; C, arthritis index score of rat in each group; D, gross observation results of paws of rat in each group; E, the synovial injury of ankle joint of rat in each group by HE staining (×200). * P < 0.05 vs. API+sh-NC group. 图 6 API治疗基础上敲减SOCS3后CIA大鼠关节炎炎症症状以及踝关节滑膜损伤情况 Fig.6 Inflammatory symptoms of arthritis and synovial injury of ankle joint in CIA rats after knocking down SOCS3 on the treatment of API |
2.7 API介导SOCS3影响CIA大鼠Treg/Th17细胞平衡
与API+sh-NC组比较,API+sh-SOCS3组大鼠血清中IL-17A和IL-6水平以及脾细胞中CD4+ IL17A+细胞数明显升高,血清中TGF-β和IL-10水平以及脾细胞中CD25+ Foxp3+细胞数明显降低(P < 0.05)。见图 7。
![]() |
A, Th17 and Treg-related cytokines levels in serum of rat in each group; B, the proportion of Th17 and Treg cells in spleen cells of rat in each group. * P < 0.05 vs. API+sh-NC group. 图 7 ELISA和流式细胞术检测各组大鼠Treg/Th17细胞平衡 Fig.7 Treg/Th17 cells balance of rat in each group by ELISA and flow cytometry |
3 讨论
API对RA的改善作用已有报道。LI等[7]研究发现API抑制CIA小鼠滑膜增生,通过下调血管内皮细胞生长因子及其受体抑制CIA小鼠滑膜组织中的血管生成,并通过抑制RANKL/RANK/OPG信号通路抑制CIA小鼠滑膜组织中的破骨细胞生成。SUN等[10]研究发现,API抑制LPS诱导的巨噬细胞释放IL-6和TNF-α,并抑制ConA诱导的脾T淋巴细胞释放IFN-γ和IL-2,表明API抑制RA中免疫细胞的炎症反应。本研究结果显示,API降低CIA大鼠的关节炎指数评分,改善CIA诱导的大鼠足部肿胀和滑膜病理损伤。此外,本研究结果显示,API降低CIA大鼠血清IL-17A和IL-6水平并增加TGF-β和IL-10水平,降低大鼠脾细胞中CD4+ IL17A+ Th17细胞比例并增加CD25+ Foxp3+ Treg细胞比例,表明API改善了CIA诱导的Treg/Th17细胞失衡状态。
最近,多项研究表明miRNA调节RA进展中Treg/Th17细胞平衡。JIN等[11]研究发现,Maresin 1通过上调miR-21增加RA关节中Treg细胞比例并降低Th17细胞比例,改善Treg/Th17细胞失衡状态,减少关节炎症和损伤。XIE等[12]研究发现NF-κB诱导miR-34a表达抑制其靶基因Foxp3表达,破坏Treg/Th17细胞平衡,从而促进CIA小鼠关节损伤。本研究结果显示,API下调CIA大鼠滑膜组织中miR-181a-5p表达。此外,本研究还鉴定了miR-181a-5p的下游靶基因SOCS3;并发现SOCS3 mRNA的3’-UTR存在miR-181a-5p的潜在结合位点,而且API上调CIA大鼠滑膜组织中SOCS3表达。说明API改善RA中的Treg/Th17细胞失衡状态可能是通过下调miR-181a-5p表达上调其下游靶基因SOCS3表达来实现的。
SOCS3在RA中的保护作用已广泛报道。研究[13]表明SOCS3通过抑制信号转导和转录激活因子3/类视黄醇相关的孤儿核受体γt信号通路抑制Th17细胞分化。ZHAO等[14]研究发现,艾灸可以通过调节SOCS3的表达水平来调节Treg/Th17细胞平衡,并减轻RA进展;且敲低SOCS3逆转了艾灸在缓解RA和调节Treg/Th17细胞平衡中的保护作用。AARTS等[15]研究发现,过表达IL-22可增强SOCS3表达降低CIA发病率和关节严重程度。还有研究[16]发现西洛他唑联合塞来昔布治疗通过激活IL-10和SOCS3协同作用来抑制RA患者滑膜成纤维细胞中促炎细胞因子的分泌。本研究结果显示,敲减SOCS3逆转了API对CIA大鼠滑膜损伤的改善作用,也逆转了API对CIA大鼠Treg/Th17细胞失衡的改善作用。
综上所述,API对RA诱导的关节损伤具有改善作用;其机制可能是通过下调miR-181a-5p表达上调其下游靶基因SOCS3表达,从而改善Treg/Th17细胞失衡状态来实现的。然而,本研究仅验证了敲减SOCS3部分逆转API对RA诱导的关节损伤的改善作用,API是否介导miR-181a-5p调节SOCS3表达发挥作用有待在后续实验中进一步验证。
[1] |
JANG S, KWON EJ, LEE JJ. Rheumatoid arthritis: pathogenic roles of diverse immune cells[J]. Int J Mol Sci, 2022, 23(2): 905. DOI:10.3390/ijms23020905 |
[2] |
MIN HK, KIM S, LEE JY, et al. IL-18 binding protein suppresses IL-17-induced osteoclastogenesis and rectifies type 17 helper T cell/regulatory T cell imbalance in rheumatoid arthritis[J]. J Transl Med, 2021, 19(1): 392. DOI:10.1186/s12967-021-03071-2 |
[3] |
FAN ZX, ROSS RP, STANTON C, et al. Lactobacillus casei CCFM1074 alleviates collagen-induced arthritis in rats via balancing treg/Th17 and modulating the metabolites and gut microbiota[J]. Front Immunol, 2021, 12: 680073. DOI:10.3389/fimmu.2021.680073 |
[4] |
PARADOWSKA-GORYCKA A, WAJDA A, ROMANOWSKA-PRÓCHNICKA K, et al. Th17/treg-related transcriptional factor expression and cytokine profile in patients with rheumatoid arthritis[J]. Front Immunol, 2020, 11: 572858. DOI:10.3389/fimmu.2020.572858 |
[5] |
XU K, MA D, ZHANG GL, et al. Human umbilical cord mesenchymal stem cell-derived small extracellular vesicles ameliorate collagen-induced arthritis via immunomodulatory T lymphocytes[J]. Mol Immunol, 2021, 135: 36-44. DOI:10.1016/j.molimm.2021.04.001 |
[6] |
SALEHI B, VENDITTI A, SHARIFI-RAD M, et al. The therapeutic potential of apigenin[J]. Int J Mol Sci, 2019, 20(6): 1305. DOI:10.3390/ijms20061305 |
[7] |
LI YX, YANG B, BAI JY, et al. The roles of synovial hyperplasia, angiogenesis and osteoclastogenesis in the protective effect of apigenin on collagen-induced arthritis[J]. Int Immunopharmacol, 2019, 73: 362-369. DOI:10.1016/j.intimp.2019.05.024 |
[8] |
GINWALA R, BHAVSAR R, MOORE P, et al. Apigenin modulates dendritic cell activities and curbs inflammation via RelB inhibition in the context of neuroinflammatory diseases[J]. J Neuroimmune Pharmacol, 2021, 16(2): 403-424. DOI:10.1007/s11481-020-09933-8 |
[9] |
ZHAO C, LI XY, YANG Y, et al. An analysis of Treg/Th17 cells imbalance associated microRNA networks regulated by moxibustion therapy on Zusanli (ST36) and Shenshu (BL23) in mice with collagen induced arthritis[J]. Am J Transl Res, 2019, 11(7): 4029-4045. |
[10] |
SUN YW, BAO Y, YU H, et al. Anti-rheumatoid arthritis effects of flavonoids from Daphne genkwa[J]. Int Immunopharmacol, 2020, 83: 106384. DOI:10.1016/j.intimp.2020.106384 |
[11] |
JIN SW, CHEN HJ, LI YS, et al. Maresin 1 improves the Treg/Th17 imbalance in rheumatoid arthritis through miR-21[J]. Ann Rheum Dis, 2018, 77(11): 1644-1652. DOI:10.1136/annrheumdis-2018-213511 |
[12] |
XIE MX, WANG JZ, GONG W, et al. NF-κB-driven miR-34a impairs Treg/Th17 balance via targeting Foxp3[J]. J Autoimmun, 2019, 102: 96-113. DOI:10.1016/j.jaut.2019.04.018 |
[13] |
SHI DM, YANG J, WANG Q, et al. SOCS3 ablation enhances DC-derived Th17 immune response against Candida albicans by activating IL-6/STAT3 in vitro[J]. Life Sci, 2019, 222: 183-194. DOI:10.1016/j.lfs.2019.03.009 |
[14] |
ZHAO C, LI XY, LI ZY, et al. Moxibustion regulates T-regulatory/T-helper 17 cell balance by modulating the microRNA-221/suppressor of cytokine signaling 3 axis in a mouse model of rheumatoid arthritis[J]. J Integr Med, 2022, 20(5): 453-462. DOI:10.1016/j.joim.2022.06.002 |
[15] |
AARTS J, ROELEVELD DM, HELSEN MM, et al. Systemic overexpression of interleukin-22 induces the negative immune-regulator SOCS3 and potently reduces experimental arthritis in mice[J]. Rheumatology, 2021, 60(4): 1974-1983. DOI:10.1093/rheumatology/keaa589 |
[16] |
LEE YS, LEE SY, PARK SY, et al. Cilostazol add-on therapy for celecoxib synergistically inhibits proinflammatory cytokines by activating IL-10 and SOCS3 in the synovial fibroblasts of patients with rheumatoid arthritis[J]. Inflammopharmacology, 2019, 27(6): 1205-1216. DOI:10.1007/s10787-019-00605-5 |