中国医科大学学报  2024, Vol. 53 Issue (10): 914-922

文章信息

王小虎, 李亚灵
WANG Xiaohu, LI Yaling
lncRNA SNAI3-AS1调节miR-367-3p/SOX4轴对前列腺癌细胞恶性生物学行为的影响
Effects of lncRNA SNAI3-AS1 on the malignant biological behavior of prostate cancer cells by regulating the miR-367-3p/SOX4 axis
中国医科大学学报, 2024, 53(10): 914-922
Journal of China Medical University, 2024, 53(10): 914-922

文章历史

收稿日期:2023-11-23
网络出版时间:2024-10-10 14:51:37
lncRNA SNAI3-AS1调节miR-367-3p/SOX4轴对前列腺癌细胞恶性生物学行为的影响
王小虎 , 李亚灵     
甘肃省武威凉州医院泌尿外科, 甘肃 武威 733000
摘要目的 探讨长链非编码RNA(lncRNA)SNAI3-AS1调节微RNA(miR)-367-3p/高迁移率族盒蛋白4(SOX4)轴对前列腺癌(PC)细胞恶性生物学行为的影响。方法 实时PCR检测人PCa细胞系DU145、LNCap、PC-3、正常前列腺上皮细胞系RWPE-1以及PC组织、癌旁组织中SNAI3-AS1、miR-367-3p、SOX4 mRNA表达。选取对数生长期的LNCap,设置空白组、阴性对照(vector)组、SNAI3-AS1过表达(vector SNAI3-AS1)组、小干扰RNA(siRNA)阴性对照(si-NC)组、si-SNAI3-AS1组、si-SNAI3-AS1+抑制剂阴性对照(NC inhibitor)组和si-SNAI3-AS1+miR-367-3p inhibitor组。用克隆形成实验、Transwell实验、Hoechst33258染色分别检测细胞克隆形成能力、迁移、侵袭及凋亡;实时PCR检测LNCap中SNAI3-AS1、miR-367-3p、SOX4 mRNA表达;Western blotting检测LNCap中SOX4蛋白表达;报告基因实验验证miR-367-3p与SNAI3-AS1、SOX4的靶向关系。结果 SNAI3-AS1、SOX4 mRNA表达在DU145、LNCap、PC-3及PC组织中显著增加,miR-367-3p表达显著降低(P < 0.05)。与空白组、vector组相比,vector SNAI3-AS1组SNAI3-AS1、SOX4 mRNA及蛋白表达、克隆数、侵袭与迁移显著增加,miR-367-3p表达、凋亡显著降低(P < 0.05);与空白组、si-NC组相比,si-SNAI3-AS1组SNAI3-AS1、SOX4 mRNA及蛋白表达、克隆数、侵袭与迁移显著降低,miR-367-3p表达、凋亡显著增加(P < 0.05);与si-SNAI3-AS1+NC inhibitor组相比,si-SNAI3-AS1+miR-367-3p inhibitor组SOX4 mRNA及蛋白表达、克隆数、侵袭与迁移显著增加,miR-367-3p表达、凋亡显著降低(P < 0.05),SNAI3-AS1表达无统计学差异(P>0.05)。miR-367-3p与SNAI3-AS1、SOX4存在靶向关系。结论 lncRNA SNAI3-AS1通过上调miR-367-3p/SOX4轴抑制PC细胞恶性生物学行为的发展。
Effects of lncRNA SNAI3-AS1 on the malignant biological behavior of prostate cancer cells by regulating the miR-367-3p/SOX4 axis
WANG Xiaohu , LI Yaling     
Department of Urology, Gansu Wuwei Liangzhou Hospital, Wuwei 733000, China
Abstract: Objective To investigate the effect of the long non-coding RNA (lncRNA) SNAI3-AS1 on the malignant biological behavior of prostate cancer (PC) cells by regulating the microRNA (miR) -367-3p/high-mobility group box protein 4 (SOX4) axis. Methods Real-time polymerase chain reaction (PCR) was used to detect SNAI3-AS1, miR-367-3p, and SOX4 mRNA expressions in human PCa cell lines DU145, LNCap, and PC-3, normal prostate epithelial cell line RWPE-1, PC tissue, and adjacent cancer tissues. LNCap in the logarithmic growth phase were collected and assigned to the blank, negative control (vector), SNAI3-AS1 overexpression (vector SNAI3-AS1), small interfering RNA negative control (siRNA) (si-NC), si-SNAI3-AS1 group, si-SNAI3-AS1+inhibitor negative control (NC inhibitor), and si-SNAI3-AS1+miR-367-3p inhibitor groups. Clone formation, transwell, and Hoechst33258 staining were used to detect cell clone formation ability, migration, invasion, and apoptosis, respectively. Real-time PCR was used to detect SNAI3-AS1, miR-367-3p, and SOX4 mRNA expressions in LNCap. Western blotting was used to detect SOX4 protein expression in LNCap, and double luciferase was used to verify the targeting relationship between miR-367-3p and SNAI3-AS1 and SOX4. Results SNAI3-AS1 and SOX4 mRNA expressions increased in DU145, LNCap, PC-3, and PC tissues, whereas miR-367-3p expression significantly decreased (P < 0.05). Compared with the blank and vector groups, the SNAI3-AS1 and SOX4 mRNA and protein expression, clone number, invasion, and migration in the vector SNAI3-AS1 group increased, whereas miR-367-3p expression and apoptosis decreased (P < 0.05). Compared with the blank and si-NC groups, the SNAI3-AS1 and SOX4 mRNA and protein expression, clone number, invasion, and migration in si-SNAI3-AS1 group decreased, whereas miR-367-3p expression and apoptosis increased (P < 0.05). Compared with the si-SNAI3-AS1+NC inhibitor group, the SOX4 mRNA and protein expression, clone number, invasion, and migration in si-SNAI3-AS1+miR-367-3p inhibitor group increased, whereas miR-367-3p expression and apoptosis decreased (P < 0.05); however, SNAI3-AS1 expression had no statistically significant difference (P>0.05). miR-367-3p had a targets SNAI3-AS1 and SOX4. Conclusion SNAI3-AS1 inhibits the development of malignant behavior in PC cells by upregulating the miR-367-3p/SOX4 axis.

前列腺癌(prostate cancer,PC)是男性泌尿系统最常见的恶性肿瘤之一,发病率及死亡率均较高[1]。由于PC早期症状的非特异性以及复杂的发病机制,目前缺乏早期的临床诊断和治疗手段[2],因此迫切需要探索新的有效分子靶点。长链非编码RNA(long chain non-coding RNA,lncRNA)是长度超过200个核苷酸且不具有蛋白质编码能力的转录物,因其在调控肿瘤发生和转移方面的潜力而受到广泛关注[3]。lncRNA SNAI3-AS1已被鉴定为位于扩增的16q24基因的lncRNA,被认为是一种癌基因,在肝癌细胞中表达增加[4],但其在PC中的表达尚未见报道。lncRNA可以作为内源性RNA充当微RNA(microRNA,miRNA)海绵,抑制miRNA对其靶基因RNA的降解作用[5]。生物信息学显示,miR-367-3p与SNAI3-AS1、高迁移率族盒蛋白4(high-mobility group box protein 4,SOX4)存在结合位点,且miR-367-3p在PC组织中表达下调,过表达miR-367-3p可抑制PC细胞的增殖、侵袭和转移[6]。SOX4在PC组织和细胞中高表达,其水平下调显著抑制了PC细胞的增殖[7]。本研究探讨SNAI3-AS1在PC进展中可能发挥的作用,旨在为PC治疗提供潜在靶点。

1 材料与方法 1.1 细胞及组织来源

人PCa细胞系DU145、LNCap、PC-3及正常前列腺上皮细胞系RWPE-1由BeNa培养物保藏中心提供;细胞在含10%胎牛血清DMEM培养基中培养,并在37 ℃,5% CO2培养箱中孵育,每隔3 d更换1次培养基。

35例PC组织和癌旁组织取自我院手术切除的PC患者。所有PC患者由病理检查确诊,且未接受术前放疗或化疗。本研究经我院伦理委员会批准(审批号:2020-140)。PC组织和癌旁组织均保存在-80 ℃的液氮中,用于进一步研究。

1.2 主要材料

PrimeScript RT试剂盒购自日本TaKaRa公司,Hoechst33258染色液购自北京索莱宝科技有限公司,SNAI3-AS1小干扰RNA(si-RNAI3-AS1)和阴性对照(si-NC)、SNAI3-AS1过表达质粒(vector SNAI3-AS1)和阴性对照(vector)购自上海吉玛制药技术有限公司,miR-367-3p抑制剂(miR-367-3p inhibitor)、miR-367-3p模拟物(miR-367-3p mimics)及阴性对照(NC inhibitor、NC mimics)购自广州锐博生物技术有限公司,TRIzol试剂购自美国Invitrogen公司,SOX4抗体购自英国abcam公司。

1.3 细胞分组及处理

取对数生长期的LNCap进行实验,分为空白组、vector组、vector SNAI3-AS1组、si-NC组、si-SNAI3-AS1组、si-SNAI3-AS1+NC inhibitor组、si-SNAI3-AS1+miR-367-3p inhibitor组。除空白组不做处理外,其余各组均通过Lipofectamine™2000转染试剂将上述质粒转染或共转染至细胞中,48 h后通过实时PCR检测转染效率。

1.4 实时PCR检测细胞及组织中SNAI3-AS1、miR-367-3p、SOX4 mRNA表达水平

采用TRIzol试剂从细胞和组织样品中分离总RNA,随后通过PrimeScript RT试剂盒逆转录成第一链cDNA,根据SYBR Premix EX Tap试剂盒进行实时PCR反应。引物序列见表 1。PCR反应条件:95 ℃预变性30 s,95 ℃变性5 s,60 ℃退火30 s,共40个循环。以β-actinU6为参照,采用2-ΔΔCt法计算SNAI3-AS1、miR-367-3p、SOX4 mRNA相对表达量。

表 1 实时PCR引物序列 Tab.1 Sequence of real-time PCR primers
Primer name Direction Primer sequence(5’- 3’)
SNAI3-AS1 Forward GCGTTATGTCGTTTGGTTGATG
Reversed TGGCAGGAATGAGGTGAGC
miR-367-3p Forward TTCTCCGAACTTTGCACGTTT
Reversed ACGTGACACGTTCGGAGAATT
SOX4 Forward GGCCTCGAGCTGGGAATCGC
Reversed GGCCTCGAGCTGGGAATCGC
β-actin Forward CACCATTGGCAATGAGCGGTTC
Reversed AGGTCTTTGCGGATGTCCACGT
U6 Forward CACTGTTCCACCCCTCAGAGC
Reversed GCCACTTGTCGGCGATAAGG

1.5 克隆形成实验检测细胞克隆形成能力

将转染后的细胞接种到6孔板中,用含有10% 胎牛血清的培养基中,在37 ℃、5%CO2培养箱中培养14 d,每2~3 d更新一次培养基,随后用4%多聚甲醛固定细胞,0.1%结晶紫染色,洗去多余染色液,在倒置显微镜下计数染色的细胞克隆。

1.6 Transwell实验检测细胞迁移和侵袭

在Transwell下室中加入含10% 胎牛血清的培养基作为化学引诱剂,在上室中加入不含胎牛血清的细胞悬浮液。孵育24 h后,从上室中取出未能迁移或侵入的细胞,迁移或侵入的细胞用4%多聚甲醛固定10 min,然后用0.5%结晶紫染色。在随机视野中于倒置显微镜下计数细胞。

1.7 Hoechst33258染色检测细胞凋亡

收集1.6中细胞,经醋酸乙醇固定后,加入Hoechst33258染色液染色,随后清洗细胞,加入抗荧光猝灭剂进行封片处理,随机选取视野于荧光显微镜下观察细胞凋亡变化。

1.8 miR-367-3p与SNAI3-AS1、SOX4的靶向关系验证

PCR扩增含有miR-367-3p预测结合位点的SNAI3-AS1和SOX4片段,随后将扩增的SNAI3-AS1、SOX4克隆至双荧光素酶表达载体以构建野生型SNAI3-AS1、SOX4(SNAI3-AS1‐WT、SOX4‐WT),突变型SNAI3-AS1、SOX4(SNAI3-AS1‐MUT、SOX4‐MUT)通过相同的方法构建。随后将WT和MUT质粒与miR-367-3p模拟物、阴性对照一起共转染入LNCap,转染48 h后,裂解细胞,并使用双荧光素酶测定系统评估相对荧光素酶活性。

1.9 Western blotting检测SOX4蛋白表达水平

用含有放射免疫沉淀法裂解缓冲液溶解细胞,高速离心后,收集上清液,在100 ℃水浴中加热10 min使蛋白质变性。然后通过电泳分离蛋白质样品,并转移到PVDF膜上。用5%脱脂牛奶封闭,然后将膜分别与抗SOX4抗体共同孵育。用TBST洗涤膜3次,然后与二抗在室温下孵育。将化学增强发光试剂加入膜中,使用成像系统检测信号,ImageJ软件用于蛋白质定量。

1.10 统计学分析

采用SPSS 26.0软件进行统计分析,数据以x±s表示。多组间比较采用单因素方差分析,进一步行SNK-q检验,2组比较采用t检验。P < 0.05为差异有统计学意义。

2 结果 2.1 细胞及组织中SNAI3-AS1、miR-367-3p和SOX4 mRNA表达水平

与RWPE-1相比,DU145、LNCap、PC-3中SNAI3-AS1、SOX4 mRNA表达显著增加,miR-367-3p表达显著降低(P < 0.05),见表 2。鉴于LNCaP中以上3个基因的表达差异较RWPE-1最大,故选择其作为后续的研究对象。与癌旁组织相比,PC组织中SNAI3-AS1、SOX4 mRNA表达显著增加,但miR-367-3p表达显著降低(P < 0.05)。见表 3

表 2 各组细胞中SNAI3-AS1、miR-367-3p、SOX4 mRNA的表达(x±sn = 6) Tab.2 Comparison of mRNA expression of SNAI3-AS1, miR-367-3p, and SOX4 in cells of each group(x±s, n = 6)
Cell SNAI3-AS1 miR-367-3p SOX4 mRNA
RWPE-1 0.97±0.10 0.96±0.10 0.93±0.10
PC-3 1.42±0.161) 0.62±0.081) 1.38±0.151)
DU145 1.48±0.161) 0.59±0.071) 1.44±0.161)
LNCap 2.01±0.231) 0.42±0.051) 1.94±0.211)
1)P < 0.05 vs. RWPE-1.

表 3 比较组织中SNAI3-AS1、miR-367-3p、SOX4 mRNA表达(x±sn = 35) Tab.3 Comparison of mRNA expression of SNAI3-AS1, miR-367-3p, and SOX4 in tissues (x±s, n = 35)
Group SNAI3-AS1 miR-367-3p SOX4 mRNA
Paracancer tissue 0.94±0.10 0.93±0.10 0.97±0.10
PC tissue 1.96±0.211) 0.43±0.061) 2.07±0.221)
1)P < 0.05 vs. paracancer tissue.

2.2 过表达SNAI3-AS1对LNCap中SNAI3-AS1、miR-367-3p、SOX4表达及生物学行为的影响

与空白组和vector组相比,vector SNAI3-AS1组SNAI3-AS1、SOX4 mRNA及蛋白表达、克隆数、侵袭与迁移显著增加,miR-367-3p表达、凋亡显著降低(P < 0.05),见图 12表 4

A, clonal; B, apoptosis; C, migration and invasion (×200). 图 1 LNCap克隆能力、凋亡、侵袭与迁移变化 Fig.1 Changes of clonal ability, apoptosis, invasion, and migration of LNCap

1, control group; 2, vector group; 3, vector SNAI3-A group. 图 2 细胞中SOX4蛋白表达 Fig.2 Expression of SOX4 protein in cells

表 4 过表达SNAI3-AS1诱导的LNCap中SNAI3-AS1、miR-367-3p、SOX4表达及克隆能力、凋亡、侵袭与迁移变化的比较(x±sn = 6) Tab.4 Comparison of the changes in SNAI3-AS1, miR-367-3p, SOX4 expression and the cloning ability, apoptosis, invasion and migration of LNCap induced by overexpression of SNAI3-AS1 (x±s, n = 6)
Item Control Vector Vector SNAI3-AS1
SNAI3-AS1 0.92±0.10 1.02±0.11 1.64±0.181),2)
miR-367-3p 0.95±0.10 1.06±0.11 0.42±0.061),2)
SOX4 mRNA 0.98±0.10 1.05±0.11 1.65±0.181),2)
SOX4/β-actin 0.46±0.06 0.51±0.07 0.88±0.101),2)
Clone number 125.34±15.34 126.11±15.76 186.52±20.011),2)
Apoptosis rate(%) 8.63±0.89 8.55±0.88 4.22±0.451),2)
Migration number 211.03±23.52 223.13±24.31 300.51±32.051),2)
Invasion number 141.55±15.44 142.31±15.67 216.34±22.371),2)
1)P < 0.05 vs. control group;2)P < 0.05 vs.vector group.

2.3 干扰SNAI3-AS1对LNCap SNAI3-AS1、miR-367-3p、SOX4表达及生物学行为的影响

与空白组和si-NC组相比,si-SNAI3-AS1组SNAI3-AS1、SOX4 mRNA及蛋白表达、克隆数、侵袭与迁移显著降低,miR-367-3p表达、凋亡显著增加(P < 0.05),见图 34表 5

A, clonal; B, apoptosis; C, migration and invasion (×200). 图 3 LNCap克隆能力、凋亡、侵袭与迁移的变化 Fig.3 Changes of clonal ability, apoptosis, invasion, and migration of LNCap

1, control group; 2, si-NC group; 3, si-SNAI3-A group. 图 4 LNCap中SOX4蛋白表达 Fig.4 Expression of SOX4 protein in LNCap

表 5 干扰SNAI3-AS1诱导的LNCap中SNAI3-AS1、miR-367-3p、SOX4表达及克隆能力、凋亡、侵袭与迁移变化的比较(x±sn = 6) Tab.5 Comparison of the changes in the cloning ability, apoptosis, invasion, and migration of LNCap and SNAI3-AS1, miR-367-3p, SOX4 expression induced by knockdown of SNAI3-AS1 (x±s, n = 6)
Item Control si-NC si-SNAI3-AS1
SNAI3-AS1 0.93±0.11 1.05±0.11 0.44±0.061),2)
miR-367-3p 0.96±0.10 1.03±0.11 1.88±0.201),2)
SOX4 mRNA 0.91±0.09 0.99±0.10 0.41±0.061),2)
SOX4/β-actin 0.49±0.06 0.46±0.06 0.13±0.021),2)
Clone number 126.08±15.46 126.24±15.68 84.55±10.211),2)
Apoptosis rate(%) 8.77±0.89 8.62±0.89 15.34±1.661),2)
Migration number 219.11±22.95 213.66±22.78 143.52±15.111),2)
Invasion number 141.77±15.52 141.53±15.42 82.24±9.021),2)
1)P < 0.05 vs. control group;2)P < 0.05 vs. si-NC group.

2.4 miR-367-3p与SNAI3-AS1、SOX4的靶向关系验证

图 56所示,miR-367-3p与SNAI3-AS1、SOX4存在结合位点。

图 5 miR-367-3p与SNAI3-AS1的预测结合位点 Fig.5 Predicted binding sites of miR-367-3p and SNAI3-AS1

图 6 miR-367-3p与SOX4的预测结合位点 Fig.6 Predicted binding sites of miR-367-3p and SOX4

miR-367-3p mimics+SNAI3-AS1-WT组荧光素酶活性(0.42±0.06)较mimics NC+SNAI3-AS1-WT组(1.03±0.11)显著降低(P < 0.05),mimics NC+SNAI3-AS1-MUT组(1.06±0.11)与miR-367-3p mimics+SNAI3-AS1-MUT组(1.04±0.11)荧光素酶活性比较无统计学差异(P > 0.05)。

miR-367-3p mimics+SOX4-WT组荧光素酶活性(0.48±0.06)较mimics NC+SOX4-WT组(1.08±0.11)显著降低(P < 0.05),mimics NC+SOX4-MUT组(1.04±0.11)与miR-367-3p mimics+SOX4-MUT组(1.04±0.11)荧光素酶活性差异无统计学意义(P > 0.05)。

2.5 抑制miR-367-3p逆转干扰SNAI3-AS1对LNCap SNAI3-AS1、miR-367-3p、SOX4表达及生物学行为的影响

与si-SNAI3-AS1+NC inhibitor组相比,si-SNAI3-AS1+miR-367-3p inhibitor组SOX4 mRNA及蛋白表达、克隆数、侵袭与迁移显著增加,miR-367-3p表达、凋亡显著降低(P < 0.05),SNAI3-AS1表达无统计学差异(P > 0.05)。见图 7表 6图 8

A, clonal; B, apoptosis; C, migration and invasion (×200). 图 7 LNCap克隆能力、凋亡、侵袭与迁移变化 Fig.7 Changes of clonal ability, apoptosis, invasion, and migration of LNCap

表 6 抑制miR-367-3p逆转干扰SNAI3-AS1对LNCap基因表达及恶性行为变化的影响(x±sn = 6) Tab.6 Inhibition of miR-367-3p reversed the effect of SNAI3-AS1 on LNCap gene expression and malignant behavioral changes (x±s, n = 6)
Group si-SNAI3-AS1+NC inhibitor si-SNAI3-AS1+miR-367-3p inhibitor
SNAI3-AS1 0.46±0.06 0.45±0.06
miR-367-3p 1.82±0.20 1.24±0.131)
SOX4 mRNA 0.44±0.06 0.99±0.101)
SOX4/β-actin 0.15±0.02 0.42±0.061)
Clone number 84.88±10.19 119.97±12.351)
Apoptosis rate(%) 15.28±1.59 10.42±1.111)
Migration number 142.94±14.89 200.84±20.961)
Invasion number 82.62±8.89 131.77±14.061)
1)P < 0.05 vs. si-SNAI3-AS1+NC inhibitor group.

1, si-SNAI3-AS1+NC inhibitor group; 2, si-SNAI3-AS1+miR-367-3p inhibitor group. 图 8 LNCap中SOX4蛋白表达 Fig.8 Expression of SOX4 protein in LNCap

3 讨论

PC是男性泌尿生殖系统常见的恶性肿瘤之一,由于早期PC缺乏特异性症状,确诊时往往已经发展到中晚期,错过了最佳治疗时间[8]。因此,迫切需要寻找PC新的生物标志物以制定相应的治疗方案,延长患者的生存时间,提高患者的生活质量。

lncRNA是 > 200个核苷酸的RNA转录物,虽然不能编码蛋白质,但在转录后可调节基因表达[9]。研究[10]发现lncRNA在人类多种疾病中异常表达。失调的lncRNA可导致PC进展,如lncRNA CCAT1表达在PC组织中异常上调,lncRNA BLACAT1的抑制可阻止癌细胞增殖、迁移、侵袭,促进细胞凋亡[11]。SNAI3-AS1位于Xp11.23,是新发现的一种lncRNA,研究[12]证明SNAI3‐AS1在肝细胞癌中高表达,并与肝细胞癌患者肿瘤大小和TNM分期显著相关,可能作为癌基因发挥作用。本研究发现SNAI3-AS1在DU145、LNCap、PC-3及PC组织中显著上调,提示SNAI3-AS1异常表达可能与PC的发生发展有关。上调SNAI3-AS1表达能够显著促进LNCap克隆数、侵袭与迁移,其凋亡显著被抑制;干扰SNAI3-AS1表达能够显著抑制LNCap克隆数、侵袭与迁移,促进LNCap凋亡,提示SNAI3-AS1在PC中作为癌基因发挥抑制肿瘤增殖、侵袭与迁移,促进其凋亡的作用。

miRNA是一种长度约为22个核苷酸的非编码RNA,其异常表达与包括PC在内的肿瘤的发生和发展密切相关[13]。miR-367-3p是许多miRNA家族的成员之一,但miR-367-3p与PC的关系鲜有报道。先前过表达的miR-367-3p通过下调SPAG5介导的Wnt/β-连环蛋白信号抑制宫颈癌细胞的侵袭和增殖[14]。miR-367-3p在PC细胞及组织中显著下调,提示miR-367-3p异常表达可能参与PC的发生。

lncRNA可以作为内源竞争RNA发挥miRNA海绵的作用,抑制miRNA对其靶基因RNA的降解作用[15]。如lncRNA SNHG14通过靶向miR-5590-3p调节YY1表达,从而促进PC肿瘤的发生[16]。敲除lncRNA LOXL1-AS1可以通过miR-541-3p/CCND1轴抑制PC的发生和发展[17]。生物信息学分析结果显示,SNAI3-AS1与miR-367-3p之间存在结合位点,且双荧光素酶报告基因实验及实时PCR检测SNAI3-AS1直接与miR-367-3p结合,充当PC细胞中SNAI3-AS1的海绵,靶向负调节miR-367-3p的表达。SOX4是一种重要转录因子,在人类多种恶性肿瘤中过度表达并与不良临床结局相关[18]。多项研究[19-20]表明,SOX4在调节肿瘤细胞的增殖、迁移和侵袭中发挥关键作用。本研究通过双荧光素酶实验及实时PCR检测miR-367-3p可以直接与SOX4的3’非翻译区相互作用,并抑制SOX4在PC细胞中的表达,提示SNAI3-AS1在PC中的抗肿瘤作用是通过上调miR-367-3p/SOX4轴实现的。

为进一步验证实验结论,实验以miR-367-3p抑制剂进行回复验证,结果发现miR-367-3p抑制剂逆转了干扰SNAI3-AS1对LNCap恶性行为的抑制作用,表明干扰SNAI3-AS1可以抑制LNCap克隆、侵袭及迁移,并促进其凋亡,其具体机制可能与上调miR-367-3p/SOX4轴有关。

综上所述,干扰SNAI3-AS1可以通过上调miR-367-3p/SOX4轴抑制LNCap克隆、侵袭及迁移,促进其凋亡,为PC治疗提供潜在生物标志物和治疗靶点,但由于具体机制较为复杂,需要开展相关实验进一步研究探讨。

参考文献
[1]
ZHAO WH, ZHU XS, JIN Q, et al. The lncRNAlncRNA NEAT1/miRNA-766-5p/E2F3 regulatory axis promotes prostate cancer progression[J]. J Oncol, 2022, 2022: 1866972. DOI:10.1155/2022/1866972
[2]
PAN JQ, XU XY, WANG GL. lncRNAlncRNA ZFAS1 is involved in the proliferation, invasion and metastasis of prostate cancer cells through competitively binding to miR-135a-5p[J]. Cancer Manag Res, 2020, 12: 1135-1149. DOI:10.2147/CMAR.S237439
[3]
XIAO SW, SONG B. LncRNAlncRNA HOXA-AS2 promotes the progression of prostate cancer via targeting miR-509-3p/PBX3 axis[J]. Biosci Rep, 2020, 40(8): BSR20193287. DOI:10.1042/BSR20193287
[4]
LI YR, GUO D, LU GF, et al. LncRNA SNAI3lncRNA SNAI3-AS1 promotes PEG10-mediated proliferation and metastasis via decoying of miR-27a-3p and miR-34a-5p in hepatocellular carcinoma[J]. Cell Death Dis, 2020, 11(8): 685. DOI:10.1038/s41419-020-02840-z
[5]
FENG T, SONG CY, WU ZY, et al. Role of lncRNAlncRNA MIAT/miR-361-3p/CCAR2 in prostate cancer cells[J]. Open Med, 2022, 17(1): 1528-1537. DOI:10.1515/med-2021-0380
[6]
DU W, LI D, XIE JH, et al. MiR-367-3p downregulates Rab23 expression and inhibits Hedgehog signaling resulting in the inhibition of the proliferation, migration, and invasion of prostate cancer cells[J]. Oncol Rep, 2021, 46(3): 192. DOI:10.3892/or.2021.8143
[7]
XU GC, MENG Y, WANG LH, et al. miRNA-214-5p inhibits prostate cancer cell proliferation by targeting SOX4[J]. World J Surg Oncol, 2021, 19(1): 338. DOI:10.1186/s12957-021-02449-2
[8]
LI RB, CHEN YC, WU JW, et al. LncRNAlncRNA FGF14-AS2 represses growth of prostate carcinoma cells via modulating miR-96-5p/AJAP1 axis[J]. J Clin Lab Anal, 2021, 35(11): e24012. DOI:10.1002/jcla.24012
[9]
CHI YJ, WANG D, WANG JP, et al. Long non-coding RNA in the pathogenesis of cancers[J]. Cells, 2019, 8(9): 1015. DOI:10.3390/cells8091015
[10]
HUA JT, CHEN SJ, HE HH. Landscape of noncoding RNA in prostate cancer[J]. Trends Genet, 2019, 35(11): 840-851. DOI:10.1016/j.tig.2019.08.004
[11]
CAI XW, DAI YH, GAO P, et al. LncRNAlncRNA CCAT1 promotes prostate cancer cells proliferation, migration, and invasion through regulation of miR-490-3p/FRAT1 axis[J]. Aging, 2021, 13(14): 18527-18544. DOI:10.18632/aging.203300
[12]
LI YR, GUO D, REN MD, et al. Long non-coding RNA SNAI3-AS1 promotes the proliferation and metastasis of hepatocellular carcinoma by regulating the UPF1/Smad7 signalling pathway[J]. J Cell Mol Med, 2019, 23(9): 6271-6282. DOI:10.1111/jcmm.14513
[13]
WU XC, XIAO Y, ZHOU Y, et al. LncRNAlncRNA FOXP4-AS1 is activated by PAX5 and promotes the growth of prostate cancer by sequestering miR-3184-5p to upregulate FOXP4[J]. Cell Death Dis, 2019, 10(7): 472. DOI:10.1038/s41419-019-1699-6
[14]
YANG T, TIAN SJ, WANG LL, et al. MicroRNA-367-3p overexpression represses the proliferation and invasion of cervical cancer cells through downregulation of SPAG5-mediated Wnt/β-catenin signa- ling[J]. Clin Exp Pharmacol Physiol, 2020, 47(4): 687-695. DOI:10.1111/1440-1681.13222
[15]
YOU PH, TANG LY, ZHU YJ, et al. Brevilin A shows an anti-tumor role in prostate cancer via lncRNA H19/miR-194/E2F3 signaling pathway[J]. Aging, 2023, 15(10): 4411-4428. DOI:10.18632/aging.204744
[16]
LUO ZF, PENG Y, LIU FH, et al. Long noncoding RNA SNHG14 promotes malignancy of prostate cancer by regulating with miR-5590-3p/YY1 axis[J]. Eur Rev Med Pharmacol Sci, 2020, 24(9): 4697-4709. DOI:10.26355/eurrev_202005_21158
[17]
LONG B, LI N, XU XX, et al. Long noncoding RNA LOXL1-AS1 regulates prostate cancer cell proliferation and cell cycle progression through miR-541-3p and CCND1[J]. Biochem Biophys Res Commun, 2018, 505(2): 561-568. DOI:10.1016/j.bbrc.2018.09.160
[18]
LIU H, WU Z, ZHOU HB, et al. The SOX4/miR-17-92/RB1 axis promotes prostate cancer progression[J]. Neoplasia, 2019, 21(8): 765-776. DOI:10.1016/j.neo.2019.05.007
[19]
QI M, HU J, CUI YY, et al. CUL4B promotes prostate cancer progression by forming positive feedback loop with SOX4[J]. Oncogene- sis, 2019, 8(3): 23. DOI:10.1038/s41389-019-0131-5
[20]
PHAN NN, MORENO CS, LAI YH. Overexpression of SOX4 indu- ces up-regulation of miR-126 and miR-195 in LNCaP prostate cancer cell line[J]. Cytotechnology, 2020, 72(4): 527-537. DOI:10.1007/s10616-020-00399-3