中国医科大学学报  2023, Vol. 52 Issue (3): 263-268

文章信息

冯子轩, 栾军军, 周华
FENG Zixuan, LUAN Junjun, ZHOU Hua
RNA甲基化在非肿瘤肾脏疾病中的研究进展
Progress in research on RNA methylation in kidney diseases
中国医科大学学报, 2023, 52(3): 263-268
Journal of China Medical University, 2023, 52(3): 263-268

文章历史

收稿日期:2021-10-29
网络出版时间:2023-03-16 09:18:48
RNA甲基化在非肿瘤肾脏疾病中的研究进展
冯子轩 , 栾军军 , 周华     
中国医科大学附属盛京医院肾内科, 沈阳 110004
摘要:RNA甲基化近年来受到越来越多的关注,甲基化能够从多方面影响RNA代谢。RNA甲基化在肿瘤及非肿瘤领域的相关研究促进了疾病的发病机制、诊断和治疗方面的进展。最近的研究发现,RNA甲基化在非肿瘤肾脏疾病中发挥关键作用,本文就mRNA甲基化在非肿瘤肾脏疾病中的作用进行综述。
关键词RNA甲基化    m6A    m5C    非肿瘤肾脏疾病    
Progress in research on RNA methylation in kidney diseases
Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, China
Abstract: RNA methylation has received an increasing amount of attention in recent years. Methylation affects RNA metabolism in many ways, and RNA methylation plays an important role in tumors. Similarly, research on methylation in non-tumor fields has provided new insights into the pathogenesis of diseases and facilitated advances in their diagnosis and treatment. Recent studies have found that RNA methylation plays a key role in kidney diseases. This article reviews the role of mRNA methylation in kidney diseases.
Keywords: RNA methylation    m6A    m5C    kidney diseases in nephrology    

RNA修饰种类丰富,在编码RNA和非编码RNA中约有170余种[1]。目前,虽然已知mRNA甲基化N6-甲基腺嘌呤(N6-methyladenosine,m6A)、C5-甲基胞嘧啶(C5-methylcytosine,m5C)等修饰形式的存在,但对其如何产生功能尚不清楚[2]

近年来,随着高通量测序技术的发展,甲基化研究快速进展,发现了多种能影响RNA修饰的相关蛋白[3]。研究[4]发现,RNA甲基化通过改变细胞生物学功能影响癌症的进展。在非肿瘤肾脏疾病领域内,这些修饰同样也扮演重要角色,参与了肾脏疾病的发生和发展。本文从最常见的mRNA甲基化m6A、m5C等修饰入手,对其在非肿瘤肾脏疾病领域中发挥的作用进行综述。

1 m6A RNA甲基化

m6A修饰是在RNA腺嘌呤上第6个氮原子上进行甲基化修饰,是目前为止真核生物中最丰富和研究最多的mRNA修饰[5]。随着甲基化酶“writer”(如METTL3-METTL4复合体)、去甲基化酶“eraser”(如FTO、ALKBH5),以及结合蛋白“reader”(YTH结构域蛋白、METTL3、IGF2BP2)等的发现,证明了m6A是一种动态修饰过程,影响包括mRNA的稳定、核输出、翻译和剪接等,参与疾病的发生和发展[6]。在非肿瘤肾脏疾病领域内,m6A甲基化修饰同样扮演着重要角色,参与了肾脏疾病的发生和发展(表 1)。

表 1 m6A RNA甲基化及相关肾脏疾病 Tab.1 m6A in kidney diseases
Disease Materials Enzymes Mechanism
Acute kidney disease Cisplatin-induced AKI mice METTL3/14↑ p53↑
Cisplatin-treated HK-2 cells FTO↓ apoptosis↑
I/R-induced AKI mice METTL3↑ foxd1 mRNA↑
H/R-treated NRE-52K cells
I/R-induced AKI mice METTL14↑ YAP1↓
H/R-treated HK-2 cells
Chronic kidney disease UUO-induced CKD mice METTL3/METTL14↓FTO↑ -
UUO-induced CKD mice ALKBH5↓ Snail↑
TGF-β-treated HK-2 cells EMT↑
obstructive nephropathy patients’ renal biopsies METLL3/METTL14/WTAP↑ lncRNA MALAT1↑→miR145/FAK
UUO-induced CKD mice
TGF-β-treated HK-2 cells
CKD patients’ peripheral blood mononuclear cells - m6A↑
Diabetic kidney disease HG-treated MPC5 cells METTL3↓ PTEN↑→PI3K/Akt Pyroptosis↑
HG-treated HK-2 cells METTL14↓ PTEN↑→PI3K/Akt→HDAC5↑
STZ-induced DKD mice EMT↑
Drug-induced kidney injury Colistin-treated mTECs METTL3↓ DCGR8→miR-873-5p↓→Keap↑/Nrf2↓ Regulate oxidative stress
Alcohol-induced kidney injury Alcohol-treated mice FTO↓ PPAR-α↓→NLRP3↑
Alcohol-treated HK-2 cells YTHDF2↑
Autosomal dominant polycystic kidney disease ADPKD transgenesis mice METTL3↑ c-myc/cAMP
mIMCD3,Pkd1RC/-,and Pkd1RC/+ cells cyst growth

1.1 m6A RNA甲基化在急性肾损伤(acute kidney injury,AKI)中的作用

AKI是常见的临床综合征,能导致其他器官功能衰竭,死亡率高达50%~80%,每年导致全球170万人死亡[7]。AKI的特征是肾功能短时间内突然降低至正常值以下,同时伴随尿量减少,血肌酐、血尿素氮水平显著升高和水电解质酸碱平衡紊乱[8]。AKI的发病机制仍不完全清楚,缺少有效的治疗方法。近年的研究发现,m6A RNA甲基化修饰参与了AKI的发病机制。在顺铂诱导的AKI模型中,去甲基化酶FTO表达降低,导致m6A修饰增加。在顺铂处理的HK-2细胞中,通过甲氯芬酸抑制FTO,可引起p53表达增加,促进凋亡,加重AKI [9]。在缺血再灌注模型中,甲基转移酶METTL3表达增加,从而增高 foxd1 mRNA m6A甲基化水平[10]。在肾脏缺血再灌注模型的研究[11]中发现,增加的METTL14通过升高YAP1 mRNA m6A甲基化水平,抑制YAP1表达,从而促进肾脏损伤。

1.2 m6A RNA甲基化在慢性肾脏病(chronic kidney disease,CKD)中的作用

CKD是十大疾病死亡原因之一,在我国发病率为10.8%[12]。越来越多的CKD患者逐渐发展成为终末期肾脏病(end-stage renal disease,ESRD),需要肾脏替代治疗。肾脏间质纤维化导致细胞外基质的沉积和瘢痕形成是CKD的重要病理特征[13]。研究[14]发现,m6A参与肾间质纤维化形成,如在单侧输尿管梗阻(unilateral ureteral obstruction,UUO)模型中,m6A甲基化水平以及相关酶METTL3、METTL14的表达水平随着模型时间进程逐渐下降,FTO表达逐渐升高。另一项关于UUO模型的研究[13]证明,m6A去甲基化酶ALKBH5降低,导致m6A水平升高,增加间质标志物Snail表达,从而促进了上皮-间质转化。在TGF-β处理的人肾小管上皮细胞中,m6A表达水平升高,甲基转移酶METTL3、METLL14、WTAP水平升高,METTL3能调控MALAT1表达,参与MALAT1/miR-145/FAK介导的肾脏纤维化过程[15]。CKD患者更易发生血管钙化,并发心血管疾病的概率更高,最终导致最严重的CKD并发症,增加了CKD的死亡率[16]。RNA m6A甲基化不仅参与CKD的发病,同时也参与了CKD并发症心血管疾病的发生[17]。研究[18]发现,在吲哚硫酸盐诱导的人平滑肌细胞血管钙化模型中,血管保护基因Klotho mRNA m6A甲基化水平升高,且该改变受METTL14调节,最终使Klotho表达下降。还有研究[19]发现,在CKD患者外周血中性粒细胞中,RNA m6A甲基化水平下降。RNA m6A甲基化通过多种不同途径,影响不同基因的表达,参与CKD的发病机制,以上研究结果提供了靶向RNA m6A甲基化治疗CKD的一个新策略。

1.3 m6A RNA甲基化在其他非肿瘤肾脏疾病中的作用

糖尿病肾病(diabetic kidney disease,DKD)是糖尿病最常见的微血管并发症之一。近半数糖尿病患者可能出现肾脏损害[20-21]。DKD主要表现为肾小球硬化、肾小管间质纤维化和肾血管损伤[22]。足细胞是肾小球中的重要细胞类型,在维持肾小球滤过屏障正常功能的过程中扮演重要角色,足细胞的损伤被认为参与DKD的发生。在高糖处理的小鼠足细胞中发现足细胞焦亡参与DKD的发展,黄蜀葵提取物能够通过增加METTL3表达,提高m6A甲基化水平,降低PTEN表达,调节PI3K/Akt通路,改善足细胞焦亡和损伤[23]。早期的DKD以肾小球病变为主,而随着病情发展肾小管也受累,肾小管发生纤维化,最终发展成为ESRD,造成这种后果的病因中也包括m6A甲基化。在高糖处理的HK-2细胞中,METTL14表达下降,同时m6A甲基化水平降低,PTEN表达增加,影响PI3K/Akt信号通路,HDAC5表达上调,引起肾小管细胞上皮间质转化,参与DKD进展[24]。提示在相同疾病影响的不同细胞亚型中,不同的甲基转移酶能影响相同基因表达改变。

除了DKD,一些产生肾毒性的药物和毒物同样可通过m6A甲基化影响肾脏疾病的发展进程。在鼠肾小管上皮细胞中,甲基转移酶METTL3能够以m6A依赖性方式与DGCR8结合,上调miRNA-873-5p,调节Keap1/Nrf2通路,减轻黏菌素介导的肾损伤[25]。在乙醇介导的肾损伤中,去甲基化酶FTO表达降低,导致PPAR-α m6A甲基化水平升高,同时YTHDF2表达增加,识别m6A位点,下调PPAR-α,进而活化NLRP3炎性小体,加重肾损伤[26]

m6A RNA甲基化作为一种表观遗传学机制,也参与遗传性肾病的发生发展。有研究[27]发现,METTL3能通过增加促囊肿形成的c-mycAvpr2 mRNA m6A修饰,激活c-myc和cAMP通路,参与常染色体显性遗传性多囊肾的发生发展。

2 m5C RNA甲基化

m5C是在RNA胞嘧啶第5位碳原子上进行甲基化修饰,是最早被发现存在于多个物种的修饰之一。m5C可控制mRNA出核[28],调控翻译,影响蛋白质合成[29]。在m5C发挥作用的过程中,也会发生动态的修饰过程,该过程受甲基转移酶“writer”、去甲基酶“eraser”、结合蛋白“reader”等多种酶调控。“writer”包括NSUN1-7、DNMT2、TRM4A/B,“eraser”主要包括TET2、ALKBH1,“reader”包括ALYREF、YBX1。见图 1

图 1 RNA m5C相关酶 Fig.1 RMA m5C related enzymes

2.1 m5C RNA甲基转移酶

与m5C相关的甲基转移酶包括DNA甲基转移酶同系物DNMT2(又名TRDMT1)以及NSUN家族的7个成员(NSUN1,NSUN2,NSUN3,NSUN4,NSUN5,NSUN6和NSUN7)[30]。以上酶中,目前只有NSUN2和DNMT2参与mRNA的代谢过程[31]。NSUN2是NOP2/SUN结构域家族第2个成员,是核仁甲基转移酶,在某些肿瘤中高表达,通过抑制NSUN2表达,抑制胆囊癌细胞的增殖[32]。NSUN2介导的m5C能促进膀胱尿路上皮癌发生[33]。这些过程都与NSUN2可作为m5C的甲基转移酶密切相关。但NSUN2在肾脏病领域的作用依然未知。TRDMT1最早被认为是DNA的甲基转移酶,后来发现TRDMT1对DNA的作用很小,而对tRNA有甲基化酶的作用[34]。最近的研究[31]发现,在HEK293T细胞中敲低TRDMT1能降低UGP2 mRNA m5C水平。

2.2 m5C RNA去甲基化酶

TET2是依赖于α-酮戊二酸和Fe2+的双加氧酶[35],能够作为m5C去甲基化酶将DNA的m5C催化成为hm5C。TETs也能作用于HEK293T细胞中RNA的m5C,过表达的TETs能够增加RNA hm5C水平[36]。TET2催化产生的RNA hm5C参与RNA的降解,提示了其在转录后调控的作用[37]。TET2与肾脏疾病有关,在缺血再灌注诱导的AKI模型中,TET2敲除可加重肾损伤[38],盐酸多柔比星诱导的局灶节段性肾小球硬化模型中TET2表达降低[39]。然而,在高糖诱导的足细胞模型以及DKN动物模型中TET2表达升高[40]。这些不同的结果可能与TET2既能作用于DNA m5C修饰,也能作用于RNA m5C修饰,以及作用的靶基因不同等原因有关。TET2在肾脏疾病中的作用仍需进一步研究探讨。

2.3 m5C RNA甲基化结合蛋白

目前发现的RNA m5C结合蛋白有ALYREF和YBX1。ALYREF是mRNA输出蛋白复合体TREX的关键成分[41]。ALYREF受其靶标mRNA甲基化水平的影响,能够在核内与靶基因的m5C位点结合,促进mRNA出核[28]。在Hela细胞中敲除ALYREF后发现,具有m5C甲基化的mRNA滞留在核内,而缺少m5C修饰的mRNA未发现有出核现象[28]。此外,近期研究[42]发现,在膀胱癌中,ALYREF能够以m5C依赖的方式与PKM2 mRNA结合,稳定mRNA,促进糖酵解,最终导致肿瘤细胞增殖。

与ALYREF不同的是,YBX1常在细胞质内发挥其潜在的m5C结合蛋白功能。YBX1是一种DNA/RNA结合蛋白,由多种结构域组成,能够在细胞核内作为转录因子与目标基因启动子Y盒结合,还能通过其冷休克结构域(cold shock domain,CSD)在细胞质结合RNA,同时也存在于细胞外。YBX1通过其众多的角色参与肿瘤细胞的增殖和侵袭[43]、药物耐受[44]、DNA修复[45],以及RNA剪接、转录、翻译和细胞外信号应激反应等生物学过程[46]。YBX1在肾脏疾病中同样发挥重要作用。纤维化是肾脏疾病常见病理表现,YBX1参与纤维化相关因子的调节,如YBX1在系膜细胞中通过增加COLA1 mRNA稳定性促进翻译,介导促纤维化作用[47],在肾小管上皮细胞中通过与TGF-β1 mRNA 5’-UTR结合,促进TGF-β1翻译,参与慢性肾脏疾病的发生发展[48]。然而,当YBX1存在于细胞核中,则能通过抑制COL1a1、α-SMA/Acta2转录[49],促进MMP2转录,发挥抗纤维化的作用,这些均与YBX1能够作为转录因子发挥作用有关[50]。有研究认为,在正常情况下,肾小管的YBX1通常在细胞质表达,肾小球的YBX1主要在细胞核表达。YBX1的作用主要取决于其亚细胞定位,在细胞质中,YBX1具有致纤维化作用,在细胞核中,则具有抗纤维化作用。研究[51-52]发现,通过药物强制增加YBX1细胞核内水平,减少异位,可减轻UUO肾脏模型的纤维化程度。YBX1除参与纤维化的调节,也是调节炎症信号的重要枢纽,YBX1在肝、肾损伤中可抑制Cxcl1表达,减轻肾脏损害[53]。内源性细胞的YBX1参与炎症细胞的浸润,单核-巨噬细胞YBX1通过产生白细胞介素-10(interlukin-10,IL-10)等抗炎因子调节炎症过程[54]。同时,在狼疮肾炎中,也发现了新的YBX1修饰形式,即胍基化的YBX1通过Notch3增加IL-10 mRNA的转录,发挥抗炎作用[55]。此外,在CKD中,YBX1被发现作为转录因子参与细胞周期的调节[56]。综上,YBX1在肾脏疾病中扮演着多种角色,在细胞核内作为转录因子发挥作用,而在细胞质内则能调节翻译。最近的研究[33]发现,YBX1可做为m5C的“reader”发挥作用,YBX1通过靶向结合癌基因HDGF mRNA m5C位点,并募集mRNA稳定因子ELAVL1,促进膀胱癌的增殖和转移。细胞质中的YBX1是否是通过甲基化依赖的方式增加mRNA稳定性,促进翻译过程,需要进一步考证。

3 结论及展望

RNA甲基化修饰参与多种癌症的发生、发展,而在非肿瘤疾病中究竟扮演何种角色仍有待更多的研究。m6A RNA甲基化可能在非肿瘤肾脏疾病的发病机制中发挥重要功能,而m5C、N1-甲基腺嘌呤(N1-methyladenosine,m1A)、N7-甲基鸟嘌呤(N7-methylguanosine,m7G)等众多RNA修饰的作用尚有待发掘。RNA甲基化修饰是否也能同长链非编码RNA一样成为疾病诊断的标志物以及治疗的靶点,是研究者未来需要攻克的难题。

参考文献
[1]
BOCCALETTO P, MACHNICKA MA, PURTA E, et al. MODOMICS: a database of RNA modification pathways. 2017 update[J]. Nucleic Acids Res, 2018, 46(D1): D303-D307. DOI:10.1093/nar/gkx1030
[2]
CHEN X, SUN YZ, LIU H, et al. RNA methylation and diseases: experimental results, databases, Web servers and computational mo-dels[J]. Brief Bioinform, 2019, 20(3): 896-917. DOI:10.1093/bib/bbx142
[3]
SHI HL, WEI JB, HE C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers[J]. Mol Cell, 2019, 74(4): 640-650. DOI:10.1016/j.molcel.2019.04.025
[4]
MA S, CHEN C, JI X, et al. The interplay between m6A RNA methy-lation and noncoding RNA in cancer[J]. J Hematol Oncol, 2019, 12(1): 121. DOI:10.1186/s13045-019-0805-7
[5]
SUN T, WU RY, MING L. The role of m6A RNA methylation in cancer[J]. Biomed Pharmacother, 2019, 112: 108613. DOI:10.1016/j.biopha.2019.108613
[6]
PAN YT, MA P, LIU Y, et al. Multiple functions of m6A RNA methylation in cancer[J]. J Hematol Oncol, 2018, 11(1): 48. DOI:10.1186/s13045-018-0590-8
[7]
BOUCHARD J, ACHARYA A, CERDA J, et al. A prospective international multicenter study of AKI in the intensive care unit[J]. Clin J Am Soc Nephrol, 2015, 10(8): 1324-1331. DOI:10.2215/CJN.04360514
[8]
KELLUM JA, et al. The definition of acute kidney injury[J]. Lancet, 2018, 391(10117): 202-203. DOI:10.1016/S0140-6736(17)31630-6
[9]
ZHOU PH, WU M, YE CY, et al. Meclofenamic acid promotes cisplatin-induced acute kidney injury by inhibiting fat mass and obesity-associated protein-mediated m6A abrogation in RNA[J]. J Biol Chem, 2019, 294(45): 16908-16917. DOI:10.1074/jbc.RA119.011009
[10]
MENG FH, LIU YG, CHEN QY, et al. METTL3 contributes to renal ischemia-reperfusion injury by regulating Foxd1 methylation[J]. Am J Physiol Renal Physiol, 2020, 319(5): F839-F847. DOI:10.1152/ajprenal.00222.2020
[11]
XU Y, YUAN XD, WU JJ, et al. The N6-methyladenosine mRNA methylase METTL14 promotes renal ischemic reperfusion injury via suppressing YAP1[J]. J Cell Biochem, 2020, 121(1): 524-533. DOI:10.1002/jcb.29258
[12]
ZHANG LX, WANG F, WANG L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey[J]. Lancet, 2012, 379(9818): 815-822. DOI:10.1016/S0140-6736(12)60033-6
[13]
NING YC, CHEN J, SHI YQ, et al. Genistein ameliorates renal fibrosis through regulation snail via m6A RNA demethylase ALKBH5[J]. Front Pharmacol, 2020, 11: 579265. DOI:10.3389/fphar.2020.579265
[14]
LI XY, FAN X, YIN XM, et al. Alteration of N6-methyladenosine epitranscriptome profile in unilateral ureteral obstructive nephropathy[J]. Epigenomics, 2020, 12(14): 1157-1173. DOI:10.2217/epi-2020-0126
[15]
LIU PH, ZHANG B, CHEN Z, et al. m6A-induced lncRNA MALAT1 aggravates renal fibrogenesis in obstructive nephropathy through the miR-145/FAK pathway[J]. Aging, 2020, 12(6): 5280-5299. DOI:10.18632/aging.102950
[16]
REISS AB, MIYAWAKI N, MOON J, et al. CKD, arterial calcification, atherosclerosis and bone health: inter-relationships and controversies[J]. Atherosclerosis, 2018, 278: 49-59. DOI:10.1016/j.atherosclerosis.2018.08.046
[17]
HUNG SC, KUO KL, WU CC, et al. Indoxyl sulfate: a novel cardiovascular risk factor in chronic kidney disease[J]. J Am Heart Assoc, 2017, 6(2): e005022. DOI:10.1161/JAHA.116.005022
[18]
CHEN J, NING YC, ZHANG H, et al. METTL14-dependent m6A regulates vascular calcification induced by indoxyl sulfate[J]. Life Sci, 2019, 239: 117034. DOI:10.1016/j.lfs.2019.117034
[19]
WANG CY, LIN TA, HO MY, et al. Regulation of autophagy in leukocytes through RNA N6-adenosine methylation in chronic kidney disease patients[J]. Biochem Biophys Res Commun, 2020, 527(4): 953-959. DOI:10.1016/j.bbrc.2020.04.138
[20]
PARVING HH, LEWIS JB, RAVID M, et al. Prevalence and risk factors for microalbuminuria in a referred cohort of typeⅡdiabetic patients: a global perspective[J]. Kidney Int, 2006, 69(11): 2057-2063. DOI:10.1038/sj.ki.5000377
[21]
THOMAS MC, BROWNLEE M, SUSZTAK K, et al. Diabetic kidney disease[J]. Nat Rev Dis Primers, 2015, 1: 15018. DOI:10.1038/nrdp.2015.18
[22]
ALICIC RZ, ROONEY MT, TUTTLE KR. Diabetic kidney disease: challenges, progress, and possibilities[J]. Clin J Am Soc Nephrol, 2017, 12(12): 2032-2045. DOI:10.2215/CJN.11491116
[23]
LIU BH, TU Y, NI GX, et al. Total flavones of Abelmoschus manihot ameliorates podocyte pyroptosis and injury in high glucose conditions by targeting METTL3-dependent m6A modification-mediated NLRP3-inflammasome activation and PTEN/PI3K/Akt signaling[J]. Front Pharmacol, 2021, 12: 667644. DOI:10.3389/fphar.2021.667644
[24]
XU ZX, JIA KQ, WANG H, et al. METTL14-regulated PI3K/Akt signaling pathway via PTEN affects HDAC5-mediated epithelial-mesenchymal transition of renal tubular cells in diabetic kidney disease[J]. Cell Death Dis, 2021, 12(1): 32. DOI:10.1038/s41419-020-03312-0
[25]
WANG J, ISHFAQ M, XU L, et al. METTL3/m6A/miRNA-873-5p attenuated oxidative stress and apoptosis in colistin-induced kidney injury by modulating Keap1/Nrf2 pathway[J]. Front Pharmacol, 2019, 10: 517. DOI:10.3389/fphar.2019.00517
[26]
YU JT, HU XW, CHEN HY, et al. DNA methylation of FTO promotes renal inflammation by enhancing m6A of PPAR-α in alcohol-induced kidney injury[J]. Pharmacol Res, 2021, 163: 105286. DOI:10.1016/j.phrs.2020.105286
[27]
RAMALINGAM H, KASHYAP S, COBO-STARK P, et al. A methionine-Mettl3-N6-methyladenosine axis promotes polycystic kidney disease[J]. Cell Metab, 2021, 33(6): 1234-1247. DOI:10.1016/j.cmet.2021.03.024
[28]
YANG X, YANG Y, SUN BF, et al. 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m5C reader[J]. Cell Res, 2017, 27(5): 606-625. DOI:10.1038/cr.2017.55
[29]
WANG N, TANG H, WANG X, et al. Homocysteine upregulates interleukin-17A expression via NSun2-mediated RNA methylation in T lymphocytes[J]. Biochem Biophys Res Commun, 2017, 493(1): 94-99. DOI:10.1016/j.bbrc.2017.09.069
[30]
BOHNSACK K, HÖBARTNER C, BOHNSACK M. Eukaryotic 5-methylcytosine (m5C) RNA methyltransferases: mechanisms, cellular functions, and links to disease[J]. Genes, 2019, 10(2): 102. DOI:10.3390/genes10020102
[31]
XUE SL, XU H, SUN Z, et al. Depletion of TRDMT1 affects 5-methylcytosine modification of mRNA and inhibits HEK293 cell proliferation and migration[J]. Biochem Biophys Res Commun, 2019, 520(1): 60-66. DOI:10.1016/j.bbrc.2019.09.098
[32]
GAO Y, WANG Z, ZHU YD, et al. NOP2/Sun RNA methyltransferase 2 promotes tumor progression via its interacting partner RPL6 in gallbladder carcinoma[J]. Cancer Sci, 2019, 110(11): 3510-3519. DOI:10.1111/cas.14190
[33]
CHEN X, LI A, SUN BF, et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs[J]. Nat Cell Biol, 2019, 21(8): 978-990. DOI:10.1038/s41556-019-0361-y
[34]
GOLL MG, KIRPEKAR F, MAGGERT KA, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2[J]. Science, 2006, 311(5759): 395-398. DOI:10.1126/science.1120976
[35]
CIMMINO L, DOLGALEV I, WANG YB, et al. Restoration of TET2 function blocks aberrant self-renewal and leukemia progression[J]. Cell, 2017, 170(6): 1079-1095. DOI:10.1016/j.cell.2017.07.032
[36]
FU LJ, GUERRERO CR, ZHONG N, et al. Tet-mediated formation of 5-hydroxymethylcytosine in RNA[J]. J Am Chem Soc, 2014, 136(33): 11582-11585. DOI:10.1021/ja505305z
[37]
GUALLAR D, BI XJ, PARDAVILA JA, et al. RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells[J]. Nat Genet, 2018, 50(3): 443-451. DOI:10.1038/s41588-018-0060-9
[38]
YAN H, TAN L, LIU YQ, et al. Ten-eleven translocation methyl-cytosine dioxygenase 2 deficiency exacerbates renal ischemia-reperfusion injury[J]. Clin Epigenetics, 2020, 12(1): 98. DOI:10.1186/s13148-020-00892-8
[39]
WAN F, TANG YW, TANG XL, et al. TET2 mediated demethylation is involved in the protective effect of triptolide on podocytes[J]. Am J Transl Res, 2021, 13(3): 1233-1244.
[40]
YANG LL, ZHANG Q, WU Q, et al. Effect of TET2 on the pathogenesis of diabetic nephropathy through activation of transforming growth factor β1 expression via DNA demethylation[J]. Life Sci, 2018, 207: 127-137. DOI:10.1016/j.lfs.2018.04.044
[41]
SHI M, ZHANG H, WU XD, et al. ALYREF mainly binds to the 5' and the 3' regions of the mRNA in vivo[J]. Nucleic Acids Res, 2017, 45(16): 9640-9653. DOI:10.1093/nar/gkx597
[42]
WANG JZ, ZHU W, HAN J, et al. The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer[J]. Cancer Commun (Lond), 2021, 41(7): 560-575. DOI:10.1002/cac2.12158
[43]
ZHAO XL, ZHAO ZH, XU WC, et al. Circ-SAR1A promotes renal cell carcinoma progression through miR-382/YBX1 axis[J]. Cancer Manag Res, 2020, 12: 7353-7361. DOI:10.2147/CMAR.S245918
[44]
SHIBATA T, WATARI K, KAWAHARA A, et al. Targeting phosphorylation of Y-box-binding protein YBX1 by TAS0612 and everolimus in overcoming antiestrogen resistance[J]. Mol Cancer Ther, 2020, 19(3): 882-894. DOI:10.1158/1535-7163.MCT-19-0690
[45]
KIM ER, SELYUTINA AA, BULDAKOV IA, et al. The proteolytic YB-1 fragment interacts with DNA repair machinery and enhances survival during DNA damaging stress[J]. Cell Cycle, 2013, 12(24): 3791-3803. DOI:10.4161/cc.26670
[46]
BATES M, BOLAND A, MCDERMOTT N, et al. YB-1:the key to personalised prostate cancer management?[J]. Cancer Lett, 2020, 490: 66-75. DOI:10.1016/j.canlet.2020.07.006
[47]
HANSSEN L, FRYE BC, OSTENDORF T, et al. Y-box binding protein-1 mediates profibrotic effects of calcineurin inhibitors in the kidney[J]. J Immunol, 2011, 187(1): 298-308. DOI:10.4049/jimmunol.1100382
[48]
FRASER DJ, PHILLIPS AO, ZHANG X, et al. Y-box protein-1 controls transforming growth factor-beta1 translation in proximal tubular cells[J]. Kidney Int, 2008, 73(6): 724-732. DOI:10.1038/sj.ki.5002719
[49]
ZHANG AW, LIU XY, COGAN JG, et al. YB-1 coordinates vascular smooth muscle alpha-actin gene activation by transforming growth factor beta1 and thrombin during differentiation of human pulmonary myofibroblasts[J]. Mol Biol Cell, 2005, 16(10): 4931-4940. DOI:10.1091/mbc.e05-03-0216
[50]
MERTENS PR, HARENDZA S, POLLOCK AS, et al. Glomerular mesangial cell-specific transactivation of matrix metalloproteinase 2 transcription is mediated by YB-1[J]. J Biol Chem, 1997, 272(36): 22905-22912. DOI:10.1074/jbc.272.36.22905
[51]
WANG JL, GIBBERT L, DJUDJAJ S, et al. Therapeutic nuclear shuttling of YB-1 reduces renal damage and fibrosis[J]. Kidney Int, 2016, 90(6): 1226-1237. DOI:10.1016/j.kint.2016.07.008
[52]
GIBBERT L, HERMERT D, WANG JL, et al. YB-1 increases glomerular, but decreases interstitial fibrosis in CNI-induced nephropathy[J]. Clin Immunol, 2018, 194: 67-74. DOI:10.1016/j.clim.2018.07.002
[53]
HERMERT D, MARTIN IV, REISS LK, et al. The nucleic acid binding protein YB-1-controlled expression of CXCL-1 modulates kidney damage in liver fibrosis[J]. Kidney Int, 2020, 97(4): 741-752. DOI:10.1016/j.kint.2019.10.024
[54]
BERNHARDT A, FEHR A, BRANDT S, et al. Inflammatory cell infiltration and resolution of kidney inflammation is orchestrated by the cold-shock protein Y-box binding protein-1[J]. Kidney Int, 2017, 92(5): 1157-1177. DOI:10.1016/j.kint.2017.03.035
[55]
BREITKOPF DM, JANKOWSKI V, OHL K, et al. The YB-1:Notch-3 axis modulates immune cell responses and organ damage in systemic lupus erythematosus[J]. Kidney Int, 2020, 97(2): 289-303. DOI:10.1016/j.kint.2019.09.031
[56]
WANG L, ZHU N, JIA JS, et al. Trimethylamine N-oxide mediated Y-box binding protein-1 nuclear translocation promotes cell cycle progression by directly downregulating Gadd45a expression in a cellular model of chronic kidney disease[J]. Life Sci, 2021, 271: 119173. DOI:10.1016/j.lfs.2021.119173