文章信息
- 王朔, 柯炜炜, 卢再鸣
- WANG Shuo, KE Weiwei, LU Zaiming
- 甲基转移酶3在肝细胞癌中的研究进展
- Research progress of methyltransferase-like 3 in hepatocellular carcinoma
- 中国医科大学学报, 2023, 52(1): 86-89, 93
- Journal of China Medical University, 2023, 52(1): 86-89, 93
-
文章历史
- 收稿日期:2022-01-16
- 网络出版时间:2023-01-18 09:11:20
原发性肝癌居癌症发病率第四位[1-2],是全球仅次于胰腺癌的第二大癌症死亡原因[3]。其中,肝细胞癌(hepatocellular carcinoma,HCC)是肝脏最常见的原发性恶性肿瘤,约占所有原发性肝癌的90%[4]。HCC的主要危险因素包括乙型肝炎病毒,丙型肝炎病毒,酗酒,肥胖,黄曲霉毒素感染等[5-6]。HCC患者诊断时常为晚期,中位生存期不超过2年,且HCC患者术后的肿瘤复发率和转移率高,因此总体预后较差,5年生存率低,严重威胁人们的生命健康[7-8]。
N6-甲基腺苷(N6-methyladenosine,m6A)于1974年被发现[9],是一种可逆的转录后修饰。m6A作为真核细胞最普遍的RNA甲基化修饰[10],占甲基化核糖核苷酸的50%,可影响信使RNA(messenger RNA,mRNA)的加工、转运、翻译、降解等[11]。转录物的修饰水平由甲基转移酶、结合蛋白和去甲基化酶动态调节。甲基转移酶包括甲基转移酶3(methyltransferase-like 3,METTL3),甲基转移酶14(methyltransferase-like 4,METTL14),病毒样甲基转移酶相关蛋白(vir-like m6A methyltransferase associated protein,KIAA1429/VIRMA),核糖核酸结合蛋白15(ribonucleic acid binding motif protein 15,RBM15),肾母细胞瘤1相关蛋白(Wilms’ tumor 1-associating protein,WTAP),含有CCCH型锌指结构域的蛋白13(zinc finger CCCH-type containing 13,ZC3H13)等。结合蛋白包括异构核核糖核蛋白(heterogeneous nu-clear ribonucleoprotein,HNRNP)和YT521-B同源性(YT521-B homology,YTH)结构域家族成员,如YTH结构域1(YTH domain-containing 1,YTHDC1),YTHm6A结合蛋白1(YTH N6-methyladenosine RNA binding protein 1,YTHDF1)等。去甲基化酶包括ALKB同系物5(ALKB homolog 5,ALKBH5)、脂肪量和肥胖相关蛋白(fat mass and obesity-associated protein,FTO)等[12]。
m6A甲基转移酶METTL3作为多组分甲基转移酶复合物(multicomponent methyltransferase complex,MTC)的核心之一[13],在多种肿瘤的发生发展及治疗中起重要作用。例如,METTL3可通过介导MYC基因过度表达促进前列腺癌的发展[14]。METTL3介导的分泌型肝癌衍生生长因子(hepatoma-derived growth factor,HDGF)mRNA甲基化修饰,可通过激活血管生成通路,促进胃癌的进展及转移[15]。基于生物信息学综合分析的结果显示,METTL3的表达与HCC的发病风险呈正相关,可成为预测HCC预后的基因标记。随着HCC分级的提高,METTL3的表达也逐渐升高[16]。本文对近十年来METTL3在HCC中的研究进展进行综述,系统分析METTL3在HCC发生、治疗及预后中的作用,以期为HCC的治疗提供新的思路。
1 METTL3在HCC发生发展中的作用HCC的发病机制复杂,与遗传学、表观遗传学和转录变化之间的相互作用均有关。METTL3可通过作用于不同靶点,调节下游调控因子的表达,进而调控肝癌的发生发展。
代谢紊乱可通过影响HCC细胞能量供应、大分子生物合、氧化还原等方式抑制HCC细胞的生长和增殖[17]。LINC00958是一种与脂肪生成相关的长链非编码RNA(long noncoding RNA,lncRNA),可通过分泌miR-3619-5p上调HDGF的表达,促进HCC的脂肪生成和进展[18-19]。有研究[18]表明,METTL3介导的m6A修饰,可通过稳定其RNA转录物上调LINC00958。此外,通过评估METTL3在100例HCC病例标本和TCGA数据集中的表达发现,HCC中METTL3的RNA和蛋白表达均显著上调。METTL3的表达与糖酵解基因的表达呈高度正相关。在Huh-7和SMMC-7721等HCC细胞系中,下调METTL3可通过减少细胞的葡萄糖摄取和乳酸产生,抑制细胞的糖酵解能力。METTL3的下调与糖酵解抑制剂2-脱氧葡萄糖(2-deoxyglucose,2-DG)可协同抑制体外肿瘤生长[20]。另有研究[21]表明,敲除METTL3可通过降低丙酮酸脱氢酶激酶(pyruvate dehydrogenase,PDK4)降低糖酵解,从而抑制HCC和宫颈癌细胞的生长。YANG等[22]研究发现,乙肝病毒X相互作用蛋白(hepatitis B virus X-interacting protein,HBXIP)在HCC组织中上调,通过METTL3介导的缺氧诱导因子-1α(hypoxia inducible factor-1,HIF‐1α)的m6A修饰驱动HCC细胞代谢重编程,促进HCC的发生。
在HCC中,METTL3介导的m6A修饰可下调MEG3,促进HCC细胞增殖、侵袭和转移[23]。Snail是上皮-间质转化(epithelial-to-mesenchymal transition,EMT)的关键转录因子。METTL3可通过SUMO1化增加Snail的表达,促进HCC的迁移和侵袭[24-25]。细胞因子信号抑制因子2(suppressor of cytokine signaling 2,SOCS2)是细胞因子信号抑制(suppressor of cytokine signaling,SOCS)家族成员之一,具有抑癌作用。转录组测序m6A-seq和m6A MeRIP qRT-PCR结果显示,SOCS2为METTL3下游目标,在细胞因子信号抑制中起重要作用。METTL3通过m6A-YTHDF2依赖途径降低SOCS2 mRNA的稳定性,进而促进HCC细胞增殖和转移[16]。血管生成拟态(vasculogenic mimicry,VM)与经典肿瘤血管生成途径不同,是不依赖机体内皮细胞的全新肿瘤微循环模式[26]。QIAO等[27]研究发现,HCC组织中METTL3与VM呈正相关。对METTL3基因敲除的3D培养细胞的转录组测序分析结果显示,m6A通过Hippo途径介导VM形成,促进HCC的增殖、侵袭和转移。METTL3和胰岛素样生长因子2 mRNA结合蛋白2(insulin-like growth factor 2 mRNA binding protein 2,IGF2BP2)是m6A信号通路中的关键基因,在HCC组织中均处于上调状态。机制研究[28]表明,METTL3-IGF2BP2通过增强瓣状核酸内切酶(flap endonuclease,FEN1)的表达,促进HCC增殖。综上可知,METTL3通过作用于EMT、VM、FEN1等多种信号通路,促进HCC的发生发展。
2 METTL3在HCC治疗中的作用近年来,随着METTL3的研究不断深入,越来越多的METTL3作用通路成为研究治疗HCC的新靶点。例如,在研究METTL3与糖代谢的关系时,研究者首次阐明下调METTL3的表达可以抑制糖酵解,而这一途径可成为对抗HCC的潜在治疗策略[20]。FEN1作为IGF2BP2的下游靶点,在肺癌、胃癌、乳腺癌等多种癌症中表达均处于上调状态[29-31]。因此,在IGF2BP2的研究中,研究者认为METTL3-IGF2BP2-FEN1轴可作为潜在的HCC治疗靶点[28]。免疫系统在HCC发生中起重要作用[32]。HCC细胞中METTL3低表达可增加免疫细胞浸润,从而增强抗肿瘤免疫应答[33]。由于炎症亚型的免疫检查点通路的激活和上调,免疫炎症表型的患者更可能受益于免疫治疗[34]。METTL3与其他肿瘤免疫治疗也密切相关。例如,METTL3缺陷型肿瘤,通过抗程序性细胞死亡蛋白(programmed cell death-1,PD-1)抗体治疗,减缓CT26结直肠癌和B16黑色素瘤小鼠的肿瘤生长[35]。在人索拉非尼耐药的HCC细胞中,METTL3显著下调。在培养的HCC细胞中,METTL3可促进索拉非尼耐药和血管生成基因的表达,并激活自噬相关途径。机制研究[36]表明,METTL3可以通过下调FOXO3提高HCC对索拉非尼的耐药性。
3 METTL3与HCC预后的关系近年来,越来越多的学者通过分析数据和构建模型,研究m6A相关基因与肿瘤预后的关系,结果表明METTL3在预测HCC的预后中有重要意义。有研究[12]基于肿瘤基因组图谱(The Cancer Genome Atlas,TCGA)数据库,通过生物信息学分析发现,METTL3高表达的患者存活率较低。单因素和多因素Cox回归分析及受试者操作特征(receiver operating characteristic,ROC)曲线下面积的计算结果显示,METTL3可成为HCC预后指标。通过独立数据分析研究,METTL3和YTHDF1过表达与总生存率降低密切相关,具有独立预测HCC预后的意义[37-38]。HUANG等[39]通过建立由m6A相关基因组成的HCC预后模型,发现与正常组织相比,HCC中的METTL3等m6A基因表达存在统计学差异,并与HCC的预后明显相关。METTL3等m6A RNA甲基化调控子与HCC的世界卫生组织(World Health Organization,WHO)分期显著相关,也是总生存率的独立预后标志物,其中METTL3是HCC恶性进展的关键参与者,在预后和治疗决策方面具有潜在价值[40]。WU等[41]通过分析374例HCC患者的基因表达特征,确定预测基因并进行LASSO分析,最终开发了1种由METTL3、YTHDF2、YTHDF1、KIAA1429、ZC3H13组成的预后标志物。HCC高危患者中风险基因(METTL3、KIAA1429、YTHDF1、YTHDF2)呈高表达状态,而保护性基因ZC3H13呈低表达状态,由此可从基因水平鉴别出HCC高危的患者。
4 展望METTL3作为m6A甲基化修饰关键的调控基因,可通过介导MYC、Snail等基因的表达,激活血管生成通路等途径,在体内发挥重要作用。已有多项研究[13-14]证实,在前列腺癌、胃癌等肿瘤中,METTL3均存在异常表达。在HCC中,METTL3的表达多处于上调状态,且与HCC的病理分级呈正相关。机制研究[26]证实,METTL3在HCC的发生发展中发挥重要作用,可通过调控肿瘤微循环模式促进HCC的恶性转归。此外,METTL3在HCC中的高表达状态,也被证实可预测患者的不良预后。鉴于METTL3在HCC中的重要作用,目前已通过免疫治疗方法调控METTL3,增强PD-1等药物对HCC的疗效,或降低肝癌对索拉菲尼的耐药性,提高化疗药物的治疗。然而,目前尚无针对METTL3的靶向药物。在未来深入探究METTL3在HCC发生发展及治疗中的作用机制,开发可靶向针对METTL3的化合物,或可为HCC的治疗提供新的思路与方案。
[1] |
YANG JD, HAINAUT P, GORES GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604. DOI:10.1038/s41575-019-0186-y |
[2] |
YANG JD, HEIMBACH JK. New advances in the diagnosis and management of hepatocellular carcinoma[J]. BMJ, 2020, 371: m3544. DOI:10.1136/bmj.m3544 |
[3] |
JEMAL A, WARD EM, JOHNSON CJ, et al. Annual report to the nation on the status of cancer, 1975-2014, featuring survival[J]. J Natl Cancer Inst, 2017, 109(9): djx030. DOI:10.1093/jnci/djx030 |
[4] |
CHANG Y, JEONG SW, YOUNG JANG J, et al. Recent updates of transarterial chemoembolilzation in hepatocellular carcinoma[J]. Int J Mol Sci, 2020, 21(21): 8165. DOI:10.3390/ijms21218165 |
[5] |
SINGAL AG, EL-SERAG HB. Hepatocellular carcinoma from epidemiology to prevention: translating knowledge into practice[J]. Clin Gastroenterol Hepatol, 2015, 13(12): 2140-2151. DOI:10.1016/j.cgh.2015.08.014 |
[6] |
MARENGO A, ROSSO C, BUGIANESI E. Liver cancer: connections with obesity, fatty liver, and cirrhosis[J]. Annu Rev Med, 2016, 67: 103-117. DOI:10.1146/annurev-med-090514-013832 |
[7] |
CHEN VL, XU DB, WICHA MS, et al. Utility of liquid biopsy analysis in detection of hepatocellular carcinoma, determination of prognosis, and disease monitoring: a systematic review[J]. Clin Gastroenterol Hepatol, 2020, 18(13): 2879-2902. DOI:10.1016/j.cgh.2020.04.019 |
[8] |
ZHANG Q, RONG Y, YI KZ, et al. Circulating tumor cells in hepatocellular carcinoma: single-cell based analysis, preclinical models, and clinical applications[J]. Theranostics, 2020, 10(26): 12060-12071. DOI:10.7150/thno.48918 |
[9] |
DESROSIERS R, FRIDERICI K, ROTTMAN F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells[J]. Proc Natl Acad Sci USA, 1974, 71(10): 3971-3975. DOI:10.1073/pnas.71.10.3971 |
[10] |
MEYER KD, SALETORE Y, ZUMBO P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons[J]. Cell, 2012, 149(7): 1635-1646. DOI:10.1016/j.cell.2012.05.003 |
[11] |
YANG Y, HSU PJ, CHEN YS, et al. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism[J]. Cell Res, 2018, 28(6): 616-624. DOI:10.1038/s41422-018-0040-8 |
[12] |
LIU J, SUN GL, PAN SL, et al. The Cancer Genome Atlas (TCGA) based m6A methylation-related genes predict prognosis in hepatocellular carcinoma[J]. Bioengineered, 2020, 11(1): 759-768. DOI:10.1080/21655979.2020.1787764 |
[13] |
LIU XX, QIN J, GAO TY, et al. Analysis of METTL3 and METTL14 in hepatocellular carcinoma[J]. Aging, 2020, 12(21): 21638-21659. DOI:10.18632/aging.103959 |
[14] |
YUAN Y, DU Y, WANG L, et al. The M6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation[J]. J Cancer, 2020, 11(12): 3588-3595. DOI:10.7150/jca.42338 |
[15] |
WANG Q, CHEN C, DING QQ, et al. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance[J]. Gut, 2020, 69(7): 1193-1205. DOI:10.1136/gutjnl-2019-319639 |
[16] |
CHEN MN, WEI L, LAW CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018, 67(6): 2254-2270. DOI:10.1002/hep.29683 |
[17] |
DE MATTEIS S, RAGUSA A, MARISI G, et al. Aberrant metabolism in hepatocellular carcinoma provides diagnostic and therapeutic opportunities[J]. Oxid Med Cell Longev, 2018, 2018: 7512159. DOI:10.1155/2018/7512159 |
[18] |
ZUO XL, CHEN ZQ, GAO W, et al. M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma[J]. J Hematol Oncol, 2020, 13(1): 5. DOI:10.1186/s13045-019-0839-x |
[19] |
DJEBALI S, DAVIS CA, MERKEL A, et al. Landscape of transcription in human cells[J]. Nature, 2012, 489(7414): 101-108. DOI:10.1038/nature11233 |
[20] |
LIN Y, WEI XL, JIAN ZX, et al. METTL3 expression is associated with glycolysis metabolism and sensitivity to glycolytic stress in hepatocellular carcinoma[J]. Cancer Med, 2020, 9(8): 2859-2867. DOI:10.1002/cam4.2918 |
[21] |
LI ZH, PENG YX, LI JX, et al. N6-methyladenosine regulates glycolysis of cancer cells through PDK4[J]. Nat Commun, 2020, 11(1): 2578. DOI:10.1038/s41467-020-16306-5 |
[22] |
YANG NM, WANG T, LI QJ, et al. HBXIP drives metabolic reprogramming in hepatocellular carcinoma cells via METTL3-mediated m6A modification of HIF-1α[J]. J Cell Physiol, 2021, 236(5): 3863-3880. DOI:10.1002/jcp.30128 |
[23] |
WU J, PANG RH, LI MN, et al. m6A-induced LncRNA MEG3 suppresses the proliferation, migration and invasion of hepatocellular carcinoma cell through miR-544b/BTG2 signaling[J]. Onco Targets Ther, 2021, 14: 3745-3755. DOI:10.2147/OTT.S289198 |
[24] |
XU HF, WANG H, ZHAO W, et al. SUMO1 modification of methyltransferase-like 3 promotes tumor progression via regulating Snail mRNA homeostasis in hepatocellular carcinoma[J]. Theranostics, 2020, 10(13): 5671-5686. DOI:10.7150/thno.42539 |
[25] |
LIN XY, CHAI GS, WU YM, et al. RNA m6A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail[J]. Nat Commun, 2019, 10(1): 2065. DOI:10.1038/s41467-019-09865-9 |
[26] |
MANIOTIS AJ, FOLBERG R, HESS A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry[J]. Am J Pathol, 1999, 155(3): 739-752. DOI:10.1016/S0002-9440(10)65173-5 |
[27] |
QIAO KL, LIU YT, XU Z, et al. RNA m6A methylation promotes the formation of vasculogenic mimicry in hepatocellular carcinoma via Hippo pathway[J]. Angiogenesis, 2021, 24(1): 83-96. DOI:10.1007/s10456-020-09744-8 |
[28] |
PU J, WANG JC, QIN ZB, et al. IGF2BP2 promotes liver cancer growth through an m6A-FEN1-dependent mechanism[J]. Front Oncol, 2020, 10: 578816. DOI:10.3389/fonc.2020.578816 |
[29] |
HE LF, LUO LB, ZHU H, et al. FEN1 promotes tumor progression and confers cisplatin resistance in non-small-cell lung cancer[J]. Mol Oncol, 2017, 11(6): 640-654. DOI:10.1002/1878-0261.12058 |
[30] |
CHEN B, ZHANG YZ, WANG Y, et al. Curcumin inhibits proliferation of breast cancer cells through Nrf2-mediated down-regulation of Fen1 expression[J]. J Steroid Biochem Mol Biol, 2014, 143: 11-18. DOI:10.1016/j.jsbmb.2014.01.009 |
[31] |
LIU L, ZHOU CC, ZHOU LQ, et al. Functional FEN1 genetic variants contribute to risk of hepatocellular carcinoma, esophageal cancer, gastric cancer and colorectal cancer[J]. Carcinogenesis, 2012, 33(1): 119-123. DOI:10.1093/carcin/bgr250 |
[32] |
TANG XF, SHU ZY, ZHANG WC, et al. Clinical significance of the immune cell landscape in hepatocellular carcinoma patients with different degrees of fibrosis[J]. Ann Transl Med, 2019, 7(20): 528. DOI:10.21037/atm.2019.09.122 |
[33] |
SHEN S, YAN JY, ZHANG YZ, et al. N6-methyladenosine (m6A) mediated messenger RNA signatures and the tumor immune microenvironment can predict the prognosis of hepatocellular carcinoma[J]. Ann Transl Med, 2021, 9(1): 59. DOI:10.21037/atm-20-7396 |
[34] |
JOB S, RAPOUD D, DOS SANTOS A, et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma[J]. Hepatology, 2020, 72(3): 965-981. DOI:10.1002/hep.31092 |
[35] |
WANG LL, HUI H, AGRAWAL K, et al. m6 A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy[J]. EMBO J, 2020, 39(20): e104514. DOI:10.15252/embj.2020104514 |
[36] |
LIN ZY, NIU Y, WAN A, et al. RNA m6A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy[J]. EMBO J, 2020, 39(12): e103181. DOI:10.15252/embj.2019103181 |
[37] |
ZHAO ZW, YANG LL, FANG SJ, et al. The effect of m6A methylation regulatory factors on the malignant progression and clinical prognosis of hepatocellular carcinoma[J]. Front Oncol, 2020, 10: 1435. DOI:10.3389/fonc.2020.01435 |
[38] |
ZHOU Y, YIN Z, HOU BH, et al. Expression profiles and prognostic significance of RNA N6-methyladenosine-related genes in patients with hepatocellular carcinoma: evidence from independent datasets[J]. Cancer Manag Res, 2019, 11: 3921-3931. DOI:10.2147/CMAR.S191565 |
[39] |
HUANG HC, BAI Y, LU X, et al. N6-methyladenosine associated prognostic model in hepatocellular carcinoma[J]. Ann Transl Med, 2020, 8(10): 633. DOI:10.21037/atm-20-2894 |
[40] |
QU NF, QIN SY, ZHANG XM, et al. Multiple m6A RNA methylation modulators promote the malignant progression of hepatocellular carcinoma and affect its clinical prognosis[J]. BMC Cancer, 2020, 20(1): 165. DOI:10.1186/s12885-020-6638-5 |
[41] |
WU XM, ZHANG XJ, TAO LL, et al. Prognostic value of an m6A RNA methylation regulator-based signature in patients with hepatocellular carcinoma[J]. Biomed Res Int, 2020, 2020: 2053902. DOI:10.1155/2020/2053902 |