中国医科大学学报  2023, Vol. 52 Issue (1): 86-89, 93

文章信息

王朔, 柯炜炜, 卢再鸣
WANG Shuo, KE Weiwei, LU Zaiming
甲基转移酶3在肝细胞癌中的研究进展
Research progress of methyltransferase-like 3 in hepatocellular carcinoma
中国医科大学学报, 2023, 52(1): 86-89, 93
Journal of China Medical University, 2023, 52(1): 86-89, 93

文章历史

收稿日期:2022-01-16
网络出版时间:2023-01-18 09:11:20
甲基转移酶3在肝细胞癌中的研究进展
王朔 , 柯炜炜 , 卢再鸣     
中国医科大学附属盛京医院放射科, 沈阳 110004
摘要:肝细胞癌(HCC)是最常见的恶性肿瘤之一,居癌症发病率第四位,是全球第二大癌症死亡原因。N6-甲基腺嘌呤(m6A)甲基化是信使RNA(mRNA)最普遍的修饰,而甲基转移酶3(METTL3)是m6A RNA甲基化的核心酶。作为致癌基因,METTL3在HCC中多处于过表达状态。METTL3的过表达可增强HCC的增殖、侵袭及转移能力,降低患者的预后水平。此外,METTL3介导不同基因表达也为HCC的治疗提供诸多靶点。本文对近十年来METTL3在HCC中的研究进展进行综述,系统分析METTL3在HCC发生、治疗及预后中的作用,以期为HCC的治疗提供新的思路及方案。
关键词甲基转移酶3    N6-甲基腺苷    肝细胞癌    基因表达调控    信号通路    
Research progress of methyltransferase-like 3 in hepatocellular carcinoma
Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
Abstract: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. N6-methyl adenine (m6A) methylation is the most common modification of messenger RNA (mRNA), while methyltransferase-like 3 (METTL3) is the core enzyme of m6A RNA methylation. As an oncogene, METTL3 is mostly overexpressed in HCC cells; it enhances the proliferation, invasion, and metastasis of HCC cells, and reduces the prognosis and survival rate of patients. In addition, METTL3 provides several therapeutic targets for liver cancer. Therefore, in the study of tumor pathogenesis, increasing attention has been paid to the mechanism of METTL3. This paper reviews the research progress of METTL3 in HCC over the past 10 years, and systematically analyzes the role of METTL3 in the occurrence, treatment, and prognosis of HCC with the goal to provide new ideas and plans for the treatment of HCC.

原发性肝癌居癌症发病率第四位[1-2],是全球仅次于胰腺癌的第二大癌症死亡原因[3]。其中,肝细胞癌(hepatocellular carcinoma,HCC)是肝脏最常见的原发性恶性肿瘤,约占所有原发性肝癌的90%[4]。HCC的主要危险因素包括乙型肝炎病毒,丙型肝炎病毒,酗酒,肥胖,黄曲霉毒素感染等[5-6]。HCC患者诊断时常为晚期,中位生存期不超过2年,且HCC患者术后的肿瘤复发率和转移率高,因此总体预后较差,5年生存率低,严重威胁人们的生命健康[7-8]

N6-甲基腺苷(N6-methyladenosine,m6A)于1974年被发现[9],是一种可逆的转录后修饰。m6A作为真核细胞最普遍的RNA甲基化修饰[10],占甲基化核糖核苷酸的50%,可影响信使RNA(messenger RNA,mRNA)的加工、转运、翻译、降解等[11]。转录物的修饰水平由甲基转移酶、结合蛋白和去甲基化酶动态调节。甲基转移酶包括甲基转移酶3(methyltransferase-like 3,METTL3),甲基转移酶14(methyltransferase-like 4,METTL14),病毒样甲基转移酶相关蛋白(vir-like m6A methyltransferase associated protein,KIAA1429/VIRMA),核糖核酸结合蛋白15(ribonucleic acid binding motif protein 15,RBM15),肾母细胞瘤1相关蛋白(Wilms’ tumor 1-associating protein,WTAP),含有CCCH型锌指结构域的蛋白13(zinc finger CCCH-type containing 13,ZC3H13)等。结合蛋白包括异构核核糖核蛋白(heterogeneous nu-clear ribonucleoprotein,HNRNP)和YT521-B同源性(YT521-B homology,YTH)结构域家族成员,如YTH结构域1(YTH domain-containing 1,YTHDC1),YTHm6A结合蛋白1(YTH N6-methyladenosine RNA binding protein 1,YTHDF1)等。去甲基化酶包括ALKB同系物5(ALKB homolog 5,ALKBH5)、脂肪量和肥胖相关蛋白(fat mass and obesity-associated protein,FTO)等[12]

m6A甲基转移酶METTL3作为多组分甲基转移酶复合物(multicomponent methyltransferase complex,MTC)的核心之一[13],在多种肿瘤的发生发展及治疗中起重要作用。例如,METTL3可通过介导MYC基因过度表达促进前列腺癌的发展[14]。METTL3介导的分泌型肝癌衍生生长因子(hepatoma-derived growth factor,HDGF)mRNA甲基化修饰,可通过激活血管生成通路,促进胃癌的进展及转移[15]。基于生物信息学综合分析的结果显示,METTL3的表达与HCC的发病风险呈正相关,可成为预测HCC预后的基因标记。随着HCC分级的提高,METTL3的表达也逐渐升高[16]。本文对近十年来METTL3在HCC中的研究进展进行综述,系统分析METTL3在HCC发生、治疗及预后中的作用,以期为HCC的治疗提供新的思路。

1 METTL3在HCC发生发展中的作用

HCC的发病机制复杂,与遗传学、表观遗传学和转录变化之间的相互作用均有关。METTL3可通过作用于不同靶点,调节下游调控因子的表达,进而调控肝癌的发生发展。

代谢紊乱可通过影响HCC细胞能量供应、大分子生物合、氧化还原等方式抑制HCC细胞的生长和增殖[17]。LINC00958是一种与脂肪生成相关的长链非编码RNA(long noncoding RNA,lncRNA),可通过分泌miR-3619-5p上调HDGF的表达,促进HCC的脂肪生成和进展[18-19]。有研究[18]表明,METTL3介导的m6A修饰,可通过稳定其RNA转录物上调LINC00958。此外,通过评估METTL3在100例HCC病例标本和TCGA数据集中的表达发现,HCC中METTL3的RNA和蛋白表达均显著上调。METTL3的表达与糖酵解基因的表达呈高度正相关。在Huh-7和SMMC-7721等HCC细胞系中,下调METTL3可通过减少细胞的葡萄糖摄取和乳酸产生,抑制细胞的糖酵解能力。METTL3的下调与糖酵解抑制剂2-脱氧葡萄糖(2-deoxyglucose,2-DG)可协同抑制体外肿瘤生长[20]。另有研究[21]表明,敲除METTL3可通过降低丙酮酸脱氢酶激酶(pyruvate dehydrogenase,PDK4)降低糖酵解,从而抑制HCC和宫颈癌细胞的生长。YANG等[22]研究发现,乙肝病毒X相互作用蛋白(hepatitis B virus X-interacting protein,HBXIP)在HCC组织中上调,通过METTL3介导的缺氧诱导因子-1α(hypoxia inducible factor-1,HIF‐1α)的m6A修饰驱动HCC细胞代谢重编程,促进HCC的发生。

在HCC中,METTL3介导的m6A修饰可下调MEG3,促进HCC细胞增殖、侵袭和转移[23]。Snail是上皮-间质转化(epithelial-to-mesenchymal transition,EMT)的关键转录因子。METTL3可通过SUMO1化增加Snail的表达,促进HCC的迁移和侵袭[24-25]。细胞因子信号抑制因子2(suppressor of cytokine signaling 2,SOCS2)是细胞因子信号抑制(suppressor of cytokine signaling,SOCS)家族成员之一,具有抑癌作用。转录组测序m6A-seq和m6A MeRIP qRT-PCR结果显示,SOCS2为METTL3下游目标,在细胞因子信号抑制中起重要作用。METTL3通过m6A-YTHDF2依赖途径降低SOCS2 mRNA的稳定性,进而促进HCC细胞增殖和转移[16]。血管生成拟态(vasculogenic mimicry,VM)与经典肿瘤血管生成途径不同,是不依赖机体内皮细胞的全新肿瘤微循环模式[26]。QIAO等[27]研究发现,HCC组织中METTL3与VM呈正相关。对METTL3基因敲除的3D培养细胞的转录组测序分析结果显示,m6A通过Hippo途径介导VM形成,促进HCC的增殖、侵袭和转移。METTL3和胰岛素样生长因子2 mRNA结合蛋白2(insulin-like growth factor 2 mRNA binding protein 2,IGF2BP2)是m6A信号通路中的关键基因,在HCC组织中均处于上调状态。机制研究[28]表明,METTL3-IGF2BP2通过增强瓣状核酸内切酶(flap endonuclease,FEN1)的表达,促进HCC增殖。综上可知,METTL3通过作用于EMT、VM、FEN1等多种信号通路,促进HCC的发生发展。

2 METTL3在HCC治疗中的作用

近年来,随着METTL3的研究不断深入,越来越多的METTL3作用通路成为研究治疗HCC的新靶点。例如,在研究METTL3与糖代谢的关系时,研究者首次阐明下调METTL3的表达可以抑制糖酵解,而这一途径可成为对抗HCC的潜在治疗策略[20]。FEN1作为IGF2BP2的下游靶点,在肺癌、胃癌、乳腺癌等多种癌症中表达均处于上调状态[29-31]。因此,在IGF2BP2的研究中,研究者认为METTL3-IGF2BP2-FEN1轴可作为潜在的HCC治疗靶点[28]。免疫系统在HCC发生中起重要作用[32]。HCC细胞中METTL3低表达可增加免疫细胞浸润,从而增强抗肿瘤免疫应答[33]。由于炎症亚型的免疫检查点通路的激活和上调,免疫炎症表型的患者更可能受益于免疫治疗[34]。METTL3与其他肿瘤免疫治疗也密切相关。例如,METTL3缺陷型肿瘤,通过抗程序性细胞死亡蛋白(programmed cell death-1,PD-1)抗体治疗,减缓CT26结直肠癌和B16黑色素瘤小鼠的肿瘤生长[35]。在人索拉非尼耐药的HCC细胞中,METTL3显著下调。在培养的HCC细胞中,METTL3可促进索拉非尼耐药和血管生成基因的表达,并激活自噬相关途径。机制研究[36]表明,METTL3可以通过下调FOXO3提高HCC对索拉非尼的耐药性。

3 METTL3与HCC预后的关系

近年来,越来越多的学者通过分析数据和构建模型,研究m6A相关基因与肿瘤预后的关系,结果表明METTL3在预测HCC的预后中有重要意义。有研究[12]基于肿瘤基因组图谱(The Cancer Genome Atlas,TCGA)数据库,通过生物信息学分析发现,METTL3高表达的患者存活率较低。单因素和多因素Cox回归分析及受试者操作特征(receiver operating characteristic,ROC)曲线下面积的计算结果显示,METTL3可成为HCC预后指标。通过独立数据分析研究,METTL3和YTHDF1过表达与总生存率降低密切相关,具有独立预测HCC预后的意义[37-38]。HUANG等[39]通过建立由m6A相关基因组成的HCC预后模型,发现与正常组织相比,HCC中的METTL3等m6A基因表达存在统计学差异,并与HCC的预后明显相关。METTL3等m6A RNA甲基化调控子与HCC的世界卫生组织(World Health Organization,WHO)分期显著相关,也是总生存率的独立预后标志物,其中METTL3是HCC恶性进展的关键参与者,在预后和治疗决策方面具有潜在价值[40]。WU等[41]通过分析374例HCC患者的基因表达特征,确定预测基因并进行LASSO分析,最终开发了1种由METTL3YTHDF2YTHDF1KIAA1429ZC3H13组成的预后标志物。HCC高危患者中风险基因(METTL3KIAA1429YTHDF1YTHDF2)呈高表达状态,而保护性基因ZC3H13呈低表达状态,由此可从基因水平鉴别出HCC高危的患者。

4 展望

METTL3作为m6A甲基化修饰关键的调控基因,可通过介导MYCSnail等基因的表达,激活血管生成通路等途径,在体内发挥重要作用。已有多项研究[13-14]证实,在前列腺癌、胃癌等肿瘤中,METTL3均存在异常表达。在HCC中,METTL3的表达多处于上调状态,且与HCC的病理分级呈正相关。机制研究[26]证实,METTL3在HCC的发生发展中发挥重要作用,可通过调控肿瘤微循环模式促进HCC的恶性转归。此外,METTL3在HCC中的高表达状态,也被证实可预测患者的不良预后。鉴于METTL3在HCC中的重要作用,目前已通过免疫治疗方法调控METTL3,增强PD-1等药物对HCC的疗效,或降低肝癌对索拉菲尼的耐药性,提高化疗药物的治疗。然而,目前尚无针对METTL3的靶向药物。在未来深入探究METTL3在HCC发生发展及治疗中的作用机制,开发可靶向针对METTL3的化合物,或可为HCC的治疗提供新的思路与方案。

参考文献
[1]
YANG JD, HAINAUT P, GORES GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604. DOI:10.1038/s41575-019-0186-y
[2]
YANG JD, HEIMBACH JK. New advances in the diagnosis and management of hepatocellular carcinoma[J]. BMJ, 2020, 371: m3544. DOI:10.1136/bmj.m3544
[3]
JEMAL A, WARD EM, JOHNSON CJ, et al. Annual report to the nation on the status of cancer, 1975-2014, featuring survival[J]. J Natl Cancer Inst, 2017, 109(9): djx030. DOI:10.1093/jnci/djx030
[4]
CHANG Y, JEONG SW, YOUNG JANG J, et al. Recent updates of transarterial chemoembolilzation in hepatocellular carcinoma[J]. Int J Mol Sci, 2020, 21(21): 8165. DOI:10.3390/ijms21218165
[5]
SINGAL AG, EL-SERAG HB. Hepatocellular carcinoma from epidemiology to prevention: translating knowledge into practice[J]. Clin Gastroenterol Hepatol, 2015, 13(12): 2140-2151. DOI:10.1016/j.cgh.2015.08.014
[6]
MARENGO A, ROSSO C, BUGIANESI E. Liver cancer: connections with obesity, fatty liver, and cirrhosis[J]. Annu Rev Med, 2016, 67: 103-117. DOI:10.1146/annurev-med-090514-013832
[7]
CHEN VL, XU DB, WICHA MS, et al. Utility of liquid biopsy analysis in detection of hepatocellular carcinoma, determination of prognosis, and disease monitoring: a systematic review[J]. Clin Gastroenterol Hepatol, 2020, 18(13): 2879-2902. DOI:10.1016/j.cgh.2020.04.019
[8]
ZHANG Q, RONG Y, YI KZ, et al. Circulating tumor cells in hepatocellular carcinoma: single-cell based analysis, preclinical models, and clinical applications[J]. Theranostics, 2020, 10(26): 12060-12071. DOI:10.7150/thno.48918
[9]
DESROSIERS R, FRIDERICI K, ROTTMAN F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells[J]. Proc Natl Acad Sci USA, 1974, 71(10): 3971-3975. DOI:10.1073/pnas.71.10.3971
[10]
MEYER KD, SALETORE Y, ZUMBO P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons[J]. Cell, 2012, 149(7): 1635-1646. DOI:10.1016/j.cell.2012.05.003
[11]
YANG Y, HSU PJ, CHEN YS, et al. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism[J]. Cell Res, 2018, 28(6): 616-624. DOI:10.1038/s41422-018-0040-8
[12]
LIU J, SUN GL, PAN SL, et al. The Cancer Genome Atlas (TCGA) based m6A methylation-related genes predict prognosis in hepatocellular carcinoma[J]. Bioengineered, 2020, 11(1): 759-768. DOI:10.1080/21655979.2020.1787764
[13]
LIU XX, QIN J, GAO TY, et al. Analysis of METTL3 and METTL14 in hepatocellular carcinoma[J]. Aging, 2020, 12(21): 21638-21659. DOI:10.18632/aging.103959
[14]
YUAN Y, DU Y, WANG L, et al. The M6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation[J]. J Cancer, 2020, 11(12): 3588-3595. DOI:10.7150/jca.42338
[15]
WANG Q, CHEN C, DING QQ, et al. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance[J]. Gut, 2020, 69(7): 1193-1205. DOI:10.1136/gutjnl-2019-319639
[16]
CHEN MN, WEI L, LAW CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018, 67(6): 2254-2270. DOI:10.1002/hep.29683
[17]
DE MATTEIS S, RAGUSA A, MARISI G, et al. Aberrant metabolism in hepatocellular carcinoma provides diagnostic and therapeutic opportunities[J]. Oxid Med Cell Longev, 2018, 2018: 7512159. DOI:10.1155/2018/7512159
[18]
ZUO XL, CHEN ZQ, GAO W, et al. M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma[J]. J Hematol Oncol, 2020, 13(1): 5. DOI:10.1186/s13045-019-0839-x
[19]
DJEBALI S, DAVIS CA, MERKEL A, et al. Landscape of transcription in human cells[J]. Nature, 2012, 489(7414): 101-108. DOI:10.1038/nature11233
[20]
LIN Y, WEI XL, JIAN ZX, et al. METTL3 expression is associated with glycolysis metabolism and sensitivity to glycolytic stress in hepatocellular carcinoma[J]. Cancer Med, 2020, 9(8): 2859-2867. DOI:10.1002/cam4.2918
[21]
LI ZH, PENG YX, LI JX, et al. N6-methyladenosine regulates glycolysis of cancer cells through PDK4[J]. Nat Commun, 2020, 11(1): 2578. DOI:10.1038/s41467-020-16306-5
[22]
YANG NM, WANG T, LI QJ, et al. HBXIP drives metabolic reprogramming in hepatocellular carcinoma cells via METTL3-mediated m6A modification of HIF-1α[J]. J Cell Physiol, 2021, 236(5): 3863-3880. DOI:10.1002/jcp.30128
[23]
WU J, PANG RH, LI MN, et al. m6A-induced LncRNA MEG3 suppresses the proliferation, migration and invasion of hepatocellular carcinoma cell through miR-544b/BTG2 signaling[J]. Onco Targets Ther, 2021, 14: 3745-3755. DOI:10.2147/OTT.S289198
[24]
XU HF, WANG H, ZHAO W, et al. SUMO1 modification of methyltransferase-like 3 promotes tumor progression via regulating Snail mRNA homeostasis in hepatocellular carcinoma[J]. Theranostics, 2020, 10(13): 5671-5686. DOI:10.7150/thno.42539
[25]
LIN XY, CHAI GS, WU YM, et al. RNA m6A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail[J]. Nat Commun, 2019, 10(1): 2065. DOI:10.1038/s41467-019-09865-9
[26]
MANIOTIS AJ, FOLBERG R, HESS A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry[J]. Am J Pathol, 1999, 155(3): 739-752. DOI:10.1016/S0002-9440(10)65173-5
[27]
QIAO KL, LIU YT, XU Z, et al. RNA m6A methylation promotes the formation of vasculogenic mimicry in hepatocellular carcinoma via Hippo pathway[J]. Angiogenesis, 2021, 24(1): 83-96. DOI:10.1007/s10456-020-09744-8
[28]
PU J, WANG JC, QIN ZB, et al. IGF2BP2 promotes liver cancer growth through an m6A-FEN1-dependent mechanism[J]. Front Oncol, 2020, 10: 578816. DOI:10.3389/fonc.2020.578816
[29]
HE LF, LUO LB, ZHU H, et al. FEN1 promotes tumor progression and confers cisplatin resistance in non-small-cell lung cancer[J]. Mol Oncol, 2017, 11(6): 640-654. DOI:10.1002/1878-0261.12058
[30]
CHEN B, ZHANG YZ, WANG Y, et al. Curcumin inhibits proliferation of breast cancer cells through Nrf2-mediated down-regulation of Fen1 expression[J]. J Steroid Biochem Mol Biol, 2014, 143: 11-18. DOI:10.1016/j.jsbmb.2014.01.009
[31]
LIU L, ZHOU CC, ZHOU LQ, et al. Functional FEN1 genetic variants contribute to risk of hepatocellular carcinoma, esophageal cancer, gastric cancer and colorectal cancer[J]. Carcinogenesis, 2012, 33(1): 119-123. DOI:10.1093/carcin/bgr250
[32]
TANG XF, SHU ZY, ZHANG WC, et al. Clinical significance of the immune cell landscape in hepatocellular carcinoma patients with different degrees of fibrosis[J]. Ann Transl Med, 2019, 7(20): 528. DOI:10.21037/atm.2019.09.122
[33]
SHEN S, YAN JY, ZHANG YZ, et al. N6-methyladenosine (m6A) mediated messenger RNA signatures and the tumor immune microenvironment can predict the prognosis of hepatocellular carcinoma[J]. Ann Transl Med, 2021, 9(1): 59. DOI:10.21037/atm-20-7396
[34]
JOB S, RAPOUD D, DOS SANTOS A, et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma[J]. Hepatology, 2020, 72(3): 965-981. DOI:10.1002/hep.31092
[35]
WANG LL, HUI H, AGRAWAL K, et al. m6 A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy[J]. EMBO J, 2020, 39(20): e104514. DOI:10.15252/embj.2020104514
[36]
LIN ZY, NIU Y, WAN A, et al. RNA m6A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy[J]. EMBO J, 2020, 39(12): e103181. DOI:10.15252/embj.2019103181
[37]
ZHAO ZW, YANG LL, FANG SJ, et al. The effect of m6A methylation regulatory factors on the malignant progression and clinical prognosis of hepatocellular carcinoma[J]. Front Oncol, 2020, 10: 1435. DOI:10.3389/fonc.2020.01435
[38]
ZHOU Y, YIN Z, HOU BH, et al. Expression profiles and prognostic significance of RNA N6-methyladenosine-related genes in patients with hepatocellular carcinoma: evidence from independent datasets[J]. Cancer Manag Res, 2019, 11: 3921-3931. DOI:10.2147/CMAR.S191565
[39]
HUANG HC, BAI Y, LU X, et al. N6-methyladenosine associated prognostic model in hepatocellular carcinoma[J]. Ann Transl Med, 2020, 8(10): 633. DOI:10.21037/atm-20-2894
[40]
QU NF, QIN SY, ZHANG XM, et al. Multiple m6A RNA methylation modulators promote the malignant progression of hepatocellular carcinoma and affect its clinical prognosis[J]. BMC Cancer, 2020, 20(1): 165. DOI:10.1186/s12885-020-6638-5
[41]
WU XM, ZHANG XJ, TAO LL, et al. Prognostic value of an m6A RNA methylation regulator-based signature in patients with hepatocellular carcinoma[J]. Biomed Res Int, 2020, 2020: 2053902. DOI:10.1155/2020/2053902