中国医科大学学报  2022, Vol. 51 Issue (6): 502-507

文章信息

赵蔓嘉, 范世光, 赵爱农, 梁再赋, 傅炜昕
ZHAO Manjia, FAN Shiguang, ZHAO Ainong, LIANG Zaifu, FU Weixin
神经肽P物质通过Ca2+和CREB诱导自然杀伤细胞的活化作用
The neuropeptide substance P activates natural killer cells through Ca2+ and CREB
中国医科大学学报, 2022, 51(6): 502-507
Journal of China Medical University, 2022, 51(6): 502-507

文章历史

收稿日期:2021-06-23
网络出版时间:2022-06-01 17:34
神经肽P物质通过Ca2+和CREB诱导自然杀伤细胞的活化作用
中国医科大学科学实验中心,沈阳 110122
摘要目的 体外研究神经肽P物质(SP) 对自然杀伤(NK) 细胞的活化作用,并探讨SP受体NK-1R在SP调控NK细胞活性中的作用及可能的信号分子机制。方法 采用MTT释放法检测SP对NK92-MI细胞增殖和杀伤活性的影响,荧光定量PCR和流式细胞术检测NK-1R的mRNA表达水平和膜表达,Fura-2/AM荧光探针法测定NK92-MI细胞胞质钙浓度,Western blotting测定环磷酸腺苷(cAMP) 反应元件结合蛋白(CREB) 磷酸化水平。结果 10-12 mol/L SP可促进NK92-MI细胞的增殖和杀伤活性,NK-1R拮抗剂可完全或大部分阻断SP的促进作用。10-12 mol/L SP作用下,NK92-MI细胞的NK-1R表达上调,胞质钙浓度升高,提示SP通过增加NK-1R的表达及激活Ca2+信号通路发挥对NK92-MI细胞活性的调节作用。10-12 mol/L SP使NK92-MI细胞CREB磷酸化水平明显增高,表明SP可诱导CREB在ser133位点磷酸化而激活。结论 cAMP信号通路参与了NK-1R介导的SP对NK92-MI细胞的活化作用,且Ca2+和CREB是关键信号分子。
关键词神经肽P物质    自然杀伤细胞    NK-1R    
The neuropeptide substance P activates natural killer cells through Ca2+ and CREB
Science Experiment Center, China Medical University, Shenyang 11012, China
Abstract: Objective The aims of this study were to investigate the effects of substance P (SP) on natural killer (NK) cell activation in vitro and to explore the role of neurokinin-1 receptor (NK-1R) in the regulation of NK cell activity by SP and the associated signaling mechanism. Methods An MTT release assay was used to determine the effects of SP on the proliferation and killing activity of NK92-MI cells. The mRNA levels of NK-1R were measured by real-time polymerase chain reaction and the membrane localization of NK-1R was analyzed by flow cytometry. A Fura-2/AM fluorescent probe was used to determine the concentration of intracellular Ca2+. Levels of phosphorylated cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were measured using western blotting. Results SP, at a concentration of 10-12 mol/L, significantly increased the proliferation and killing activity of NK92-MI cells. NK-1R antagonists completely or mostly blocked these effects of SP. The expression levels of NK-1R in NK92-MI cells were significantly upregulated and the cytoplasmic Ca2+concentration also significantly increased after treatment with 10-12 mol/L SP. These data indicated that SP regulated the activity of NK92-MI cells by increasing the expression levels of NK-1R and activating the Ca2+ signaling pathway. The phosphorylation levels of CREB also significantly increased in NK92-MI cells treated with 10-12 mol/L SP, indicating that SP induced the phosphorylation of CREB at Ser133. Conclusion The cAMP signaling pathway is involved in the SP-induced activation of NK92-MI cells through NK-1R. Ca2+ and CREB are the key signaling molecules in this process.
Keywords: neuropeptide substance P    natural killer cell    NK-1R    

P物质(substance P,SP) 最初被认为是感觉神经递质,广泛分布于中枢和外周神经系统,可参与机体多种生理病理过程,包括疼痛感知,免疫细胞增殖、趋化及炎症等,并在心血管、呼吸和消化系统中发挥作用[1-3]。许多免疫细胞也可产生SP,SP在免疫系统中以旁分泌和自分泌的形式调节免疫细胞功能,如促进免疫细胞增殖和分化,影响免疫球蛋白的合成及细胞因子分泌等[4-5]。SP还通过调节趋化因子和黏附分子的表达,对免疫细胞的迁移发挥重要调节作用[5-6]。SP的生物学功能由3种受体NK-1R、NK-2R、NK-3R介导,其中NK-1R与SP的亲和力最高,故NK-1R为主要介导者[7-8]。研究[9]表明,NK-1R信号转导通路是T细胞活化的最佳Ca2+通量所必需的。CD4和CD8 T细胞都表达功能性NK-1R,在同源T细胞活化过程中自分泌/旁分泌的SP激活NK-1R信号转导通路,从而增加T细胞受体(T cell receptor,TCR) 信号转导后的Ca2+通量,这种作用对于后续的启动白细胞介素-2 (interleukin-2,IL-2) 合成、T细胞存活以及辅助性T (helper T,Th) 细胞1和Th17细胞极化的下游信号通路是必需的。

自然杀伤(natural killer,NK) 细胞是固有免疫的主要承担者,在机体早期抗感染、抗肿瘤免疫中发挥重要作用[10-11]。NK细胞识别靶细胞后激活,受控于自身共表达的活化性受体和抑制性受体的动态信号平衡[11-13]。研究[14-15]证明,SP对NK细胞功能具有调节作用,SP可刺激NK细胞迁移及细胞毒活性[6, 15]。另有研究[16]发现,某些病理状态下,循环SP浓度升高可损伤NK细胞功能,抑制NK细胞杀伤活性。说明SP在不同条件下对NK细胞的作用不同,提示SP对NK细胞的调控作用具有复杂性和多样性,SP主要通过NK-1R调节NK细胞功能[16-17],但确切的信号通路及机制还不十分明确。本研究选用NK92-MI细胞作为研究体系,体外研究SP对NK92-MI细胞增殖、杀伤活性的影响,并探讨SP受体NK-1R在SP调控NK细胞活性中的作用及可能的信号分子机制。

1 材料与方法 1.1 材料

NK92-MI细胞为非IL-2依赖的NK92细胞株,购自中科院上海细胞库。SP购自美国Sigma公司。抗NK-1R单克隆抗体、抗环磷酸腺苷反应元件结合蛋白(cyclic adenosine monophosphate response element binding protein,CREB)/p-CREB单克隆抗体购自美国abcam公司。FITC标记的二抗购自北京鼎国昌盛生物技术有限公司。

1.2 方法

1.2.1 细胞培养

用含12.5%胎牛血清和12.5%马血清的α-MEM培养基(不含RNA和DNA),在37 ℃、5%CO2培养箱中传代培养NK92-MI细胞。

1.2.2 MTT释放法检测SP对NK92-MI细胞增殖的影响

NK92-MI细胞(1×105/mL) 接种于96孔培养板(100 µL/孔),加入10-12 mol/L的SP (100 µL/孔),于37 ℃、5%CO2培养箱中孵育;分别于孵育24、48和72 h加入MTT液,继续孵育4 h;加入DMSO和甘氨酸缓冲液溶解甲臜结晶,用酶标仪于570 nm处测定吸光度(optical density,OD) 值。用特异性NK-1R拮抗剂[D-Arg1,D-Phe5,D-Trp7,D-Trp9,Leu11] SP (10-7 mol/L) 预处理NK92-MI细胞30 min,再用10-12 mol/L SP作用48 h,MTT法检测NK92-MI细胞的增殖活性。

1.2.3 MTT释放法检测SP对NK92-MI杀伤活性的影响

(1) 将4×105/mL的NK92-MI细胞作为效应细胞接种至96孔培养板(100 µL /孔),加入10-12 mol/L SP (100 µL /孔) 作用24 h;将1×105/mL的K562细胞作为靶细胞,接种至实验孔(100 µL /孔),使效靶细胞比为4∶1;效靶细胞共同孵育4 h后,加入MTT液孵育4 h;加入DMSO和甘氨酸缓冲液,振荡15~20 min后,用酶标仪测定570 nm OD值。计算NK-92MI细胞对K562细胞的杀伤率,杀伤率(%) = [1-(杀伤实验组OD值-效应细胞对照组OD值) /靶细胞对照组OD值]×100。(2) 用特异性NK-1R拮抗剂预处理NK92-MI细胞30 min,再用10-12 mol/L SP作用24 h,MTT法检测NK92-MI细胞对K562细胞的杀伤活性。

1.2.4 荧光定量PCR

采用TRIzol法提取NK92-MI细胞总RNA,经37 ℃、15 min反转录,反应体系10 μL [5×Prime ScriptTM Buffer 4.0 μL,Prime ScriptTM Enzyme MixⅠ 0.5 μL,50 μmol/L Oligo dT primer 0.5 μL,100 μmol/L random 6 mers 0.5 μL,total RNA (﹤500 ng) 1.0 μL,RNase Free dH2O 3.5 μL]。PCR反应为两步法,95 ℃30 s预变性;95 ℃5 s,60 ℃34 s,40个循环。PCR反应体系20 μL [SYBY Primix Ex TaqTM (2×) 10 μL,PCR上下游引物(10 μmol/L) 各0.4 μL,ROX Reference Dye Ⅱ (50×) 0.4 μL,模版cDNA 2.0 μL,dH2O 6.8 μL]。用Primer Premier 5.0软件设计NK-1R引物,由金思特科技有限公司(南京) 合成。引物序列,正向5’-tccactaacacctcggaacc-3’,反向5’-acaggccgtagtaccattgg-3’。应用ABI PRISM 7500 Real-Time PCR System进行检测,以18SrRNA作为参照基因,用2-ΔΔCt法比较实验组相对表达量与对照组的倍数差异[18],ΔΔCt =实验组ΔCt-对照组ΔCt。

1.2.5 流式细胞术检测NK-1R的膜表达

用10-12 mol/L SP处理NK-92MI细胞24 h,收集、洗涤细胞,加入无标记的抗NK-1R单克隆抗体,4 ℃孵育40 min;洗涤细胞后,再加入FITC标记的二抗,4 ℃继续孵育40 min,洗涤细胞后应用FACScan流式细胞仪进行检测分析。

1.2.6 Fura-2/AM荧光探针法检测NK92-MI细胞胞质钙浓度

用10-12 mol/L SP处理NK-92MI细胞1 h,收集、洗涤细胞,加入Fura-2/AM/DMSO液(终浓度为5 μmol/L),37 ℃避光振荡孵育30 min;洗涤细胞后于25 ℃放置30 min,使Fura-2/AM完全去酯化;上机测定荧光强度F,加入10%Triton X-100 (10 μL),测定饱和Ca2+溶液的荧光强度Fmax;各管加入EGTA 10 μL,测定零Ca2+溶液的荧光强度Fmin。按下列双波长探针测定的计算公式计算胞质Ca2+浓度,钙含量[Ca2+] = Kd× (R-Rmin) / (R-Rmax)×F2min/F2max,R=Fλ1/ Fλ2,Rmin = F1min/F2min,Rmax= F1max/F2max。Fλ1和Fλ2分别为在波长λ1与λ2时的荧光强度;F1min和F2min分别为零Ca2+溶液在波长λ1与λ2时的荧光强度;F1max和F2max分别为饱和Ca2+溶液在波长λ1与λ2时的荧光强度。

1.2.7 Western blotting测定CREB磷酸化水平

用10-12 mol/L SP作用NK-92MI细胞1 h,收集1×107个细胞,提取细胞总蛋白并定量,行聚丙烯酰胺凝胶电泳。室温、50 V (100 mA) 转印PVDF膜3 h。转印膜漂洗后,加入封闭液(10%牛奶) 于4 ℃摇床封闭过夜。加入抗CREB/p-CREB单克隆抗体(1∶1 000稀释),室温孵育2.5 h;漂洗后,加入二抗(1∶2 000稀释) 孵育1 h。以β-actin作为内参照。用ECL试剂显影、检测。

1.3 统计学分析

采用SPSS 13.0软件进行统计学分析。数据以x±s表示,组间比较采用单因素方差分析。P < 0.05为差异有统计学意义。

2 结果 2.1 SP促进NK92-MI细胞增殖活性

MTT结果显示,10-12 mol/L SP可促进NK92-MI细胞的增殖活性,且作用48 h促增殖活性最强(图 1A)。NK-1R拮抗剂可完全阻断SP的促增殖活性(图 1B)。提示SP通过NK-1R发挥其对NK细胞的促增殖活性。

A, NK92-MI cells were treated by SP at concentrations of 10-12 mol/L for 24, 48 and 72 h, NK92-MI cell viability (OD value) was measured using MTT test; B, effects of NK1R antagonist on SP increases proliferation of NK92-MI cells. * P < 0.05 vs control. 图 1 SP对NK-92MI细胞增殖活性的影响 Fig.1 Effects of SP on NK-92MI cell proliferation

2.2 SP对NK92-MI细胞杀伤活性的影响

MTT结果显示,经10-12 mol/L SP作用24 h后,NK92-MI细胞对K562细胞的杀伤活性(效靶细胞比为4∶1) 明显增强(P < 0.01),且NK-1R拮抗剂可大部分阻断SP的增强作用(图 2)。

图 2 SP对NK92-MI细胞杀伤活性的影响 Fig.2 Effects of SP on NK-92MI cell killing activity

2.3 SP启动NK-1R受体及Ca2+信号通路

荧光定量PCR结果显示,10-12 mol/L SP作用1 h即可促进NK92-MI细胞的NK-1R mRNA表达,作用4 h使NK-1R mRNA表达上调至最高水平;至24 h时,NK-1R mRNA表达水平回落至正常(图 3A)。10-12 mol/L SP作用1~4 h,NK92-MI细胞的NK-1R膜表达无明显变化,作用至24 h,NK-1R的膜表达明显增加(图 3B3D)。同时发现,SP作用1 h即可引起NK92-MI细胞胞质Ca2+浓度明显升高,而作用至24 h,Ca2+浓度回落至基础水平(图 3C)。上述结果表明,SP通过增加NK-1R的表达及激活Ca2+信号通路,发挥对NK92-MI细胞活性的调节作用。

A, mRNA expression of NK-1R in NK92-MI cells; B, expression of NK-1R on NK92-MI cells treated by SP for 24 h; C, concentrations of intracellular Ca2+ in NK92-MI cells treated by SP for 1 h. **P < 0.01, * P < 0.05 vs control. 图 3 SP对NK-1R及Ca2+信号通路的作用 Fig.3 Effects of SP on NK-1R and Ca2+ signaling pathway

A,expressions of CREB and p-CREB were detected by Western blotting;B,relative quantification of p-CREB. * compared with control,P < 0.05. 图 4 SP诱导NK-92MI细胞CREB磷酸化 Fig.4 SP induces CREB phosphorylation in NK-92MI cells

2.4 SP诱导NK92-MI细胞CREB磷酸化

选择NK-1R mRNA表达水平和Ca2+浓度均增高的时间点,检测CREB的磷酸化状态。结果显示,未受SP作用的NK92-MI细胞p-CREB水平较低,10-12 mol/L SP作用1 h后p-CREB的水平明显增高,表明SP可诱导CREB磷酸化而活化CREB。

3 讨论

本研究发现,SP可有效促进NK92-MI细胞的增殖和杀伤活性,且该促进作用可被SP受体(NK-1R) 拮抗剂完全阻断和大部分阻断。另一方面,SP可诱导NK92-MI细胞NK-1R的表达增加,说明SP可通过NK-1R的表达来介导其对NK92-MI细胞活性的促进作用。

NK-1R广泛分布于神经系统和免疫系统,且在免疫系统中主要参与介导调节功能[6, 19]。NK-1R为G蛋白耦联受体(G protein-coupled receptors,GPCRs),与高亲和性配体相互作用,通过不同的G蛋白产生不同的第二信使而发挥作用。主要有2条下游信号转导途径,环磷酸腺苷(cyclic adenosine monophosphate,cAMP) 信号途径和磷脂酰肌醇信号途径。NK-1R与Gαq蛋白作用诱导磷酯酶C活化,导致胞内三磷酸肌醇(inositol triphosphate,IP3) 和甘油二酯迅速产生,并增加胞质Ca2+作为第二信使[9, 11, 20]。cAMP则被与NK-1R结合的Gαs蛋白激活[5, 11]。NK-1R与SP结合活化可激活几种第二信使,包括钙(Ca2+)、IP3、蛋白激酶C、促分裂原活化蛋白激酶和转录因子核因子κB及CREB等[20-21]。SP与NK-1R结合通过Gαs激活腺苷环化酶,使cAMP水平升高,而激活依赖于cAMP的蛋白激酶A (protein kinase A,PAK);活化的PAK进入细胞核内,使转录因子CREB磷酸化,从而具有转录活性,启动下游基因的转录,完成信号转导途径[21-22]

前期研究[17]结果显示,SP通过NK-1R介导胞质Gαs的上调和Cαi信号通路参与了其增强NK92-MI细胞杀伤活性及对杀伤介质穿孔素和颗粒酶B表达的促进作用。本研究结果表明,SP可促进NK92-MI细胞胞质Ca2+浓度迅速升高,提示Ca2+依赖的信号通路启动了NK-1R,或部分参与了NK-1R介导的SP活化NK92-MI细胞的信号转导。

本研究结果显示,SP通过增加CREB的磷酸化而活化CREB。CREB是一种碱性亮氨酸拉链转录因子,可由细胞外调节蛋白激酶、Ca2+和应急刺激等信号通过Ser133位点的磷酸化来激活,继而选择性活化一系列下游基因[23-24]。前期研究数据表明,SP可在转录水平调节NK细胞的活性,即上调杀伤介质穿孔素、颗粒酶B以及受体NCRsNKG2DNKG2A的mRNA水平。

综上所述,本研究发现cAMP通路参与了NK-1R介导的SP对NK92-MI细胞的活化,且Ca2+和CREB是关键信号分子,这些结果有助于更好地了解SP调控NK细胞功能的作用机制。

参考文献
[1]
GRAEFE S, MOHIUDDIN SS. Biochemistry, substance P[M]. Treasure Island (FL): StatPearls Publishing, 2022.
[2]
MISTROVA E, KRUZLIAK P, CHOTTOVA DVORAKOVA M. Role of substance P in the cardiovascular system[J]. Neuropeptides, 2016, 58: 41-51. DOI:10.1016/j.npep.2015.12.005
[3]
WEINSTOCK JV. Substance P and the regulation of inflammation in infections and inflammatory bowel disease[J]. Acta Physiol (Oxf), 2015, 213(2): 453-461. DOI:10.1111/apha.12428
[4]
SUVAS S. Role of substance P neuropeptide in inflammation, wound healing, and tissue homeostasis[J]. J Immunol, 2017, 199(5): 1543-1552. DOI:10.4049/jimmunol.1601751
[5]
MASHAGHI A, MARMALIDOU A, TEHRANI M, et al. Neuropeptide substance P and the immune response[J]. Cell Mol Life Sci, 2016, 73(22): 4249-4264. DOI:10.1007/s00018-016-2293-z
[6]
LANG K, DRELL TL, NIGGEMANN B, et al. Neurotransmitters regu-late the migration and cytotoxicity in natural killer cells[J]. Immunol Lett, 2003, 90(2/3): 165-172. DOI:10.1016/j.imlet.2003.09.004
[7]
PENNEFATHER JN, LECCI A, CANDENAS ML, et al. Tachykinins and tachykinin receptors: a growing family[J]. Life Sci, 2004, 74(12): 1445-1463. DOI:10.1016/j.lfs.2003.09.039
[8]
DOUGLAS SD, LEEMAN SE. Neurokinin-1 receptor: functional significance in the immune system in reference to selected infections and inflammation[J]. Ann N Y Acad Sci, 2011, 1217: 83-95. DOI:10.1111/j.1749-6632.2010.05826.x
[9]
MORELLI AE, SUMPTER TL, ROJAS-CANALES DM, et al. Neurokinin-1 receptor signaling is required for efficient Ca2+ flux in T-cell-receptor-activated T cells[J]. Cell Rep, 2020, 30(10): 3448-3465. DOI:10.1016/j.celrep.2020.02.054
[10]
ABEL AM, YANG C, THAKAR MS, et al. Natural killer cells: development, maturation, and clinical utilization[J]. Front Immunol, 2018, 9: 1869. DOI:10.3389/fimmu.2018.01869
[11]
MEZA GUZMAN LG, KEATING N, NICHOLSON SE. Natural killer cells: tumor surveillance and signaling[J]. Cancers, 2020, 12(4): 952. DOI:10.3390/cancers12040952
[12]
SIVORI S, OLIVE D, LÓPEZ-BOTET M, et al. NK receptors: tools for a polyvalent cell family[J]. Front Immunol, 2014, 5: 617. DOI:10.3389/fimmu.2014.00617
[13]
MARRAS F, BOZZANO F, DE MARIA A. Involvement of activating NK cell receptors and their modulation in pathogen immunity[J]. J Biomed Biotechnol, 2011, 2011: 152430. DOI:10.1155/2011/152430
[14]
FU WX, QIN B, ZHOU AP, et al. Regulation of NK92-MI cell cytotoxicity by substance P[J]. Scand J Immunol, 2011, 74(2): 107-113. DOI:10.1111/j.1365-3083.2011.02550.x
[15]
FEISTRITZER C, CLAUSEN J, STURN DH, et al. Natural killer cell functions mediated by the neuropeptide substance P[J]. Regul Pept, 2003, 116(1/3): 119-126. DOI:10.1016/s0167-0115(03)00193-9
[16]
MONACO-SHAWVER L, SCHWARTZ L, TULUC F, et al. Substance P inhibits natural killer cell cytotoxicity through the neurokinin-1 receptor[J]. J Leukoc Biol, 2011, 89(1): 113-125. DOI:10.1189/jlb.0410200
[17]
HOU DD, SUN KF, FU WX, et al. The role of Gαs in activation of NK92-MI cells by neuropeptide substance P[J]. Neuropeptides, 2014, 48(1): 1-5. DOI:10.1016/j.npep.2013.12.001
[18]
LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-delta delta C (T)) method[J]. Methods, 2001, 25(4): 402-408. DOI:10.1006/meth.2001.1262
[19]
TULUC F, LAI JP, KILPATRICK LE, et al. Neurokinin 1 receptor isoforms and the control of innate immunity[J]. Trends Immunol, 2009, 30(6): 271-276. DOI:10.1016/j.it.2009.03.006
[20]
ROELSE M, DE RUIJTER NCA, VROUWE EX, et al. A generic microfluidic biosensor of G protein-coupled receptor activation-monitoring cytoplasmic[Ca (2+) ] changes in human HEK293 cells[J]. Biosens Bioelectron, 2013, 47: 436-444. DOI:10.1016/j.bios.2013.03.065
[21]
ZACCOLO M, ZERIO A, LOBO MJ. Subcellular organization of the cAMP signaling pathway[J]. Pharmacol Rev, 2021, 73(1): 278-309. DOI:10.1124/pharmrev.120.000086
[22]
LIU SB, LI Y, KIM S, et al. Phosphodiesterases coordinate cAMP propagation induced by two stimulatory G protein-coupled receptors in hearts[J]. Proc Natl Acad Sci USA, 2012, 109(17): 6578-6583. DOI:10.1073/pnas.1117862109
[23]
ROSETHORNE EM, NAHORSKI SR, CHALLISS RAJ. Regulation of cyclic AMP response-element binding-protein (CREB) by Gq/11-protein-coupled receptors in human SH-SY5Y neuroblastoma cells[J]. Biochem Pharmacol, 2008, 75(4): 942-955. DOI:10.1016/j.bcp.2007.10.015
[24]
TAN YW, ZHANG SJ, HOFFMANN T, et al. Increasing levels of wild-type CREB up-regulates several activity-regulated inhibitor of death (AID) genes and promotes neuronal survival[J]. BMC Neurosci, 2012, 13: 48. DOI:10.1186/1471-2202-13-48