中国医科大学学报  2022, Vol. 51 Issue (12): 1126-1130

文章信息

董超, 张丽君
DONG Chao, ZHANG Lijun
E3泛素连接酶WWP2通过蛋白酶体途径调控p21的稳定性
E3 ubiquitin ligase WWP2 regulates the stability of p21 through the proteasome pathway
中国医科大学学报, 2022, 51(12): 1126-1130
Journal of China Medical University, 2022, 51(12): 1126-1130

文章历史

收稿日期:2022-03-01
网络出版时间:2022-12-08 10:35:27
E3泛素连接酶WWP2通过蛋白酶体途径调控p21的稳定性
董超 , 张丽君     
中国医科大学附属第一医院血液内科, 沈阳 110001
摘要目的 探讨含WW结构域的E3泛素蛋白连接酶2(WWP2)调控p21稳定性的潜在作用机制。方法 通过免疫共沉淀及Western blotting检测HEK 293T细胞中WWP2与p21的结合情况。用蛋白酶体抑制剂(MG132)和放线菌酮(CHX)处理过表达或敲减WWP2 HEK 293T细胞0、4、8 h, 通过Western blotting检测p21的表达情况。结果 WWP2与p21间存在结合。过表达WWP2的293T细胞中, p21的表达水平明显降低, 且随WWP2表达量增加逐渐降低。敲减WWP2的293T细胞中, p21表达水平增加。随着CHX作用时间延长, 对照组和实验组的p21表达水平均逐渐下降。过表达组p21半衰期较对照组缩短; 敲减组p21半衰期较对照组延长。随着MG132作用时间延长, 对照组和实验组p21表达水平均逐渐上升。空载组较过表达组、敲减组较对照组p21积累均更显著。结论 E3泛素连接酶WWP2可与p21结合, 并通过蛋白酶体途径降解p21。
关键词含WW结构域的E3泛素蛋白连接酶2    p21    泛素化    
E3 ubiquitin ligase WWP2 regulates the stability of p21 through the proteasome pathway
DONG Chao , ZHANG Lijun     
Department of Hematology, The First Hospital of China Medical University, Shenyang 110001, China
Abstract: Objective To explore the potential mechanism of regulation of p21 stability by WW domain containing E3 ubiquitin protein ligase 2(WWP2). Methods The binding between WWP2 and p21 in HEK 293T cells was detected by coimmunoprecipitation and Western blotting. HEK 293T cells overexpressing WWP2 or with a knocked-down WWP2 gene were treated with the proteasome inhibitor MG132 and cycloheximide(CHX) for 0, 4, and 8 h; the expression of p21 was then detected by Western blotting. Results It was observed that WWP2 interacts with p21. Additionally, cells overexpressing WWP2 showed significantly decreased expression levels of p21, which gradually decreased with the increase in WWP2 expression. Consistently, WWP2 knockdown cells showed increased levels of p21. The expression level of p21 in both the control and experimental groups decreased gradually with the prolongation of the CHX effect time. The half-life of p21 in the overexpression group was shorter than in the control group; whereas it was longer in the knockdown group than in the control group. With the prolongation of MG132 action time, the expression levels of p21 in both the control and experimental groups gradually increased. Compared with the overexpression and knockdown groups, the accumulation of p21 in the empty vector group was more significant than in the control group. Conclusion The E3 ubiquitin ligase WWP2 can bind p21 and degrade it through the proteasome pathway.

含WW结构域的E3泛素蛋白连接酶2(WW domain containing E3 ubiquitin protein ligase 2,WWP2)是NEDD4样蛋白家族中的一种E3泛素连接酶[1-2]。它可将泛素连接至靶蛋白,并促使蛋白酶体降解靶蛋白[3-4]。E3泛素化连接酶参与了氧化应激相关过程,在多种疾病的发生发展中发挥重要的调控作用[3-5]。研究[6-9]表明,泛素化与肿瘤的发生密切相关,与血液系统疾病,如淋巴瘤、骨髓瘤、再生障碍性贫血、急性白血病也有一定联系。p21,也称CDKN1A/CIP1/WAF1/SDI1,是首个被鉴定出的细胞周期蛋白依赖性激酶(cyclin-dependent kinase,CDK)复合物抑制剂[10],最近的研究发现,p21在抑制肿瘤中发挥重要作用,可能成为新治疗策略的重点。目前已报道的WWP2底物有Gsc、PTEN、TGFβ、Smads、EGR2以及Oct4等[11-15]。然而,WWP2与p21之间的作用尚不清楚。因此,本研究拟探讨E3泛素连接酶WWP2与p21的相互作用,及WWP2通过蛋白酶体途径降解p21的机制,为肿瘤的治疗及研究提供新思路。

1 材料与方法 1.1 材料

HEK 293T细胞系(人肾上皮细胞系衍生株)来自中国医科大学健康科学研究所心血管内科研究室。MG132、放线菌酮(cycloheximide,CHX)购自美国ApexBio公司;WWP2质粒购自中国锐博生物公司;anti-HA、anti-GAPDH、anti-p21、二抗试剂购自美国Proteintech公司;anti-WWP2购自美国Santa Cruz Biotechnology公司。

1.2 方法

1.2.1 细胞培养

用含10%胎牛血清、1%青霉素-链霉素的DMEM高糖培养液,在37 ℃、5%CO2饱和湿度孵箱中培养HEK 293T细胞。根据细胞生长状态、生长密度换液、传代。

1.2.2 细胞转染

用PBS缓冲液洗涤待转染的细胞(生长密度约70%),并更换新鲜培养基,用Lipofectamine 3000转染试剂行过表达WWP2质粒转染。室温下孵育15~20 min,缓慢将转染体系吹匀后滴入培养基中并晃匀,置入孵箱继续培养6~8 h后,更换培养液,继续培养至转染后48 h,收取细胞进行后续实验。用PBS缓冲液洗涤待转染的细胞(生长密度约70%),并更换新鲜培养基,用jetPrime转染试剂进行WWP2 siRNA转染。室温下孵育15~20 min,缓慢将转染体系吹匀后滴入培养基中并晃匀,置入孵箱继续培养12~24 h,更换培养液,继续培养至转染后72 h,收取细胞进行后续实验。

1.2.3 Western blotting

用蛋白质合成抑制剂CHX(50 μmol/L)或蛋白酶体抑制剂MG132(50 μmol/L)处理过表达或敲减WWP2的293T细胞0、4、8 h后,收集细胞并裂解,4 ℃、13 300 r/s离心20 min,收集蛋白。BCA法行蛋白定量后上样,行SDS电泳,4 ℃、恒流200 mA、120 min将蛋白转至PVDF膜。5%BSA室温封闭1 h。加入一抗(用含有1%BSA的TBST试剂1∶1 000稀释),4 ℃孵育过夜。TBST缓冲液洗膜3次,加入对应的二抗,室温孵育1 h,TBST缓冲液漂洗膜3次。过氧化物酶法显色,用Image J软件测量条带灰度值。GAPDH作内参照。

1.2.4 免疫共沉淀(co-immunoprecipitation,Co-IP)实验

蛋白制备及定量步骤同Western blotting。在Co-IP蛋白样品中加入1~3 μL相应抗体后,于4 ℃混转3 h后,加入30 μL beads并混匀,4 ℃混转过夜。弃上清,加入1 mL细胞裂解液,4 ℃混转10~15 min,重复3次。加入25~30 μL 2×Loading Buffer,与input同在沸水中加热7 min,瞬离后备用。后续实验步骤同Western blotting。

1.3 统计学分析

所有图片用Photoshop2019、Adobe Illustrator 2019软件处理后,以GraphPad Prism8作图,并采用SPSS 25.0软件进行统计分析。数据以x±s表示,2组间比较采用t检验,多组间比较采用One-way ANOVA分析。P < 0.05为差异有统计学意义。

2 结果 2.1 WWP2与p21相互作用

通过Co-IP及Western blotting检测293T细胞中WWP2与p21的结合情况。结果显示,WWP2与p21之间存在结合(图 1)。

A, anti-WWP2 antibody and IgG control for co-immunoprecipitation experiment; B, anti-p21 antibody and IgG control for co-immunoprecipitation experiment. 图 1 WWP2与p21相互作用 Fig.1 Interaction between WWP2 and p21

2.2 WWP2可调节p21的表达水平

Western blotting结果显示,在293T细胞中过表达WWP2,p21的表达水平明显降低(图 2A)。且随着WWP2表达量的增加,p21的表达水平相应降低(图 2C)。而敲减WWP2后,p21的表达水平相应增加(图 2B)。以上结果说明WWP2可影响p21的表达水平,调控p21的稳定性,提示WWP2可能通过蛋白酶体途径降解p21。

A, the overexpression of WWP2; B, the knockdown of WWP2; C, the gradient overexpression of WWP2; D, the gray value comparison of HA-WWP2 and p21 bands after gradient overexpression of WWP2. The experiment was repeated three times. * P < 0.000 1. 图 2 WWP2对p21的表达存在负向影响 Fig.2 The expression level of WWP2 gene had a negative effect on the expression of p21

2.3 CHX处理WWP2过表达及敲减细胞系

用CHX处理过表达WWP2的293T细胞0、4、8 h。如图 3A所示,随着CHX作用时间延长,对照组和过表达组p21的表达水平均逐渐下降。过表达WWP2使p21的半衰期缩短,表明过表达WWP2可降低p21蛋白的稳定性。用CHX处理敲减WWP2的293T细胞0、4、8 h。如图 3C所示,随着CHX作用时间的延长,对照组和敲减组p21的表达水平均逐渐升高。敲减WWP2使p21的半衰期延长,表明敲减WWP2能增加p21蛋白的稳定性。以上结果提示,WWP2能降低p21的表达水平。

A, overexpressed WWP2 and treated with CHX for 0, 4, and 8 h; B, the remaining p21 in cells overexpressed WWP2 and treated with CHX; C, knocked down WWP2 and treated with CHX for 0, 4, and 8 h; D, the remaining p21 in cells knocked down WWP2 and treated with CHX. 图 3 CHX处理WWP2过表达及敲减293T细胞系 Fig.3 CHX-treated WWP2 overexpressed or knockdown 293T cell lines

2.4 MG132处理WWP2过表达及敲减细胞系

MG132作用WWP2过表达293T细胞0、4、8 h,用Western blotting检测WWP2、p21和内参GAPDH的表达情况。结果如图 4A所示,随着MG132作用时间的延长,对照组和过表达组p21的表达水平均逐渐上升。相对于过表达组,HA-空载组p21蛋白表达在MG132处理后变化更显著。说明WWP2能降低p21的表达水平,MG132可阻断WWP2对p21的负性调控,使内源性p21的累积增加。

A, overexpressed WWP2 and treated with MG132 for 0, 4, and 8 h; B, the remaining p21 in cells overexpressed WWP2 and treated with MG132;C, knocked down WWP2 and treated with MG132 for 0, 4, and 8 h; D, the remaining p21 in cells knocked down WWP2 and treated with MG132. 图 4 MG132处理WWP2过表达及敲减细胞系 Fig.4 MG132-treated WWP2 overexpressed and knockdown cell lines

MG132作用WWP2敲减293T细胞0、4、8 h,用Wes-tern blotting检测WWP2、p21和内参GAPDH的表达情况。结果如图 4C所示,随着MG132作用时间的延长,对照组和敲减组p21的表达水平均逐渐上升。相对于未敲减组,敲减组p21蛋白表达在MG132处理后变化更显著。说明WWP2使p21的表达水平下降。

以上均提示体系中p21的降解依赖于蛋白酶体途径,证实了WWP2通过蛋白酶体途径介导p21的降解。

3 讨论

WWP2可将泛素连接至靶蛋白,并促使蛋白酶体降解靶蛋白[3]。研究表明,泛素化不仅与肿瘤的发病密切相关[4],还与抗癌药物的耐药性相关[16]。近年来,细胞周期蛋白依赖性激酶抑制剂p21在抑瘤功能中的重要性突显,并因此成为研究治疗策略的重点。

WWP2是泛素-蛋白酶体系统(ubiquitin-proteasome system,UPS)的成员之一,该系统是蛋白质降解的主要通路之一,多种蛋白的调节功能与这一系统密切相关。本研究结果发现,WWP2与p21之间存在结合。过表达WWP2使293T细胞p21蛋白表达水平降低,敲减WWP2则使293T细胞p21蛋白表达水平增加,提示WWP2可调节p21的表达水平。

为了进一步确定蛋白酶体途径是否与p21蛋白降解过程有关,本研究应用蛋白质合成抑制剂CHX处理293T细胞,结果发现,对照组与实验组p21表达水平均随CHX作用时间延长而减少;且过表达WWP2后p21的半衰期缩短,敲减WWP2则使p21的半衰期延长。以上均证实WWP2并非在翻译合成的方向调控p21。

为了进一步检测293T细胞中p21的降解情况,本研究应用蛋白酶体抑制剂MG132处理293T细胞。MG132是蛋白酶体特异性抑制剂,主要通过抑制蛋白酶体系统而使相应蛋白在体内积累。结果发现,对照组和实验组p21表达水平均随MG132作用时间延长呈梯度增加。说明体系中p21的降解依赖于蛋白酶体途径。相对于过表达组,HA-空载组在MG132处理后p21变化水平更为明显。相对于未敲减组,敲减组在MG132处理后p21变化水平更为明显。表明WWP2可通过蛋白酶体途径降解p21。

综上所述,本研究首次发现E3泛素连接酶WWP2可通过蛋白酶体途径调控p21的稳定性。本研究结果有望推动WWP2及泛素化的研究,为疾病的诊疗提供理论依据。

参考文献
[1]
FUKUMOTO C, NAKASHIMA D, KASAMATSU A, et al. WWP2 is overexpressed in human oral cancer, determining tumor size and poor prognosis in patients: downregulation of WWP2 inhibits the AKT signaling and tumor growth in mice[J]. Oncoscience, 2014, 1(12): 807-820. DOI:10.18632/oncoscience.101
[2]
LIU J, WAN LX, LIU J, et al. Cdh1 inhibits WWP2-mediated ubiquitination of PTEN to suppress tumorigenesis in an APC-independent manner[J]. Cell Discov, 2016, 2: 15044. DOI:10.1038/celldisc.2015.44
[3]
ZHANG R, ZHANG JW, LUO W, et al. WWP2 is one promising novel oncogene[J]. Pathol Oncol Res, 2019, 25(2): 443-446. DOI:10.1007/s12253-018-0506-5
[4]
CHOI BH, CHE X, CHEN CY, et al. WWP2 is required for normal cell cycle progression[J]. Genes Cancer, 2015, 6(9/10): 371-377. DOI:10.18632/genesandcancer.83
[5]
QIAN H, ZHANG Y, WU BQ, et al. Structure and function of HECT E3 ubiquitin ligases and their role in oxidative stress[J]. J Transl Int Med, 2020, 8(2): 71-79. DOI:10.2478/jtim-2020-0012
[6]
YU ZL, LI T, WANG C, et al. Gamabufotalin triggers c-Myc degradation via induction of WWP2 in multiple myeloma cells[J]. Oncotarget, 2016, 7(13): 15725-15737. DOI:10.18632/oncotarget.7398
[7]
LONGO V, BRUNETTI O, D'ORONZO S, et al. Therapeutic approaches to myeloma bone disease: an evolving story[J]. Cancer Treat Rev, 2012, 38(6): 787-797. DOI:10.1016/j.ctrv.2012.03.004
[8]
WU YL, ZHU HC, WU H. PTEN in regulating hematopoiesis and leukemogenesis[J]. Cold Spring Harb Perspect Med, 2020, 10(10): a036244. DOI:10.1101/cshperspect.a036244
[9]
ALI MS, PANUZZO C, CALABRESE C, et al. The giant HECT E3 ubiquitin ligase HERC1 is aberrantly expressed in myeloid related disorders and it is a novel BCR-ABL1 binding partner[J]. Cancers, 2021, 13(2): 341. DOI:10.3390/cancers13020341
[10]
PARVEEN A, AKASH MSH, REHMAN K, et al. Dual role of p21 in the progression of cancer and its treatment[J]. Crit Rev Eukaryot Gene Expr, 2016, 26(1): 49-62. DOI:10.1615/CritRevEukaryotGeneExpr.v26.i1.60
[11]
CHANTRY A. WWP2 ubiquitin ligase and its isoforms: new biological insight and promising disease targets[J]. Cell Cycle, 2011, 10(15): 2437-2439. DOI:10.4161/cc.10.15.16874
[12]
LIAO B, JIN Y. Wwp2 mediates Oct4 ubiquitination and its own auto-ubiquitination in a dosage-dependent manner[J]. Cell Res, 2010, 20(3): 332-344. DOI:10.1038/cr.2009.136
[13]
CHEN W, JIANG XF, LUO Z. WWP2:a multifunctional ubiquitin ligase gene[J]. Pathol Oncol Res, 2014, 20(4): 799-803. DOI:10.1007/s12253-014-9838-y
[14]
WANG K, LIU J, ZHAO XH, et al. WWP2 regulates proliferation of gastric cancer cells in a PTEN-dependent manner[J]. Biochem Biophys Res Commun, 2020, 521(3): 652-659. DOI:10.1016/j.bbrc.2019.10.179
[15]
LI HC, ZHANG PF, ZHANG QY, et al. WWP2 is a physiological ubiquitin ligase for phosphatase and tensin homolog(PTEN) in mice[J]. J Biol Chem, 2018, 293(23): 8886-8899. DOI:10.1074/jbc.RA117.001060
[16]
NARAYANAN S, CAI CY, ASSARAF YG, et al. Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance[J]. Drug Resist Updat, 2020, 48: 100663. DOI:10.1016/j.drup.2019.100663