文章信息
- 张晨阳, 邵冬雪, 郑曦, 苏敬阳, 胡聪, 佟欣, 田兴, 古丽仙, 常心怡, 郝丽英
- ZHANG Chenyang, SHAO Dongxue, ZHENG Xi, SU Jingyang, HU Cong, TONG Xin, TIAN Xing, GU Lixian, CHANG Xinyi, HAO Liying
- 钙调蛋白结构域来源小分子多肽的构建
- Construction of small molecule short polypeptides derived from the calmodulin domain
- 中国医科大学学报, 2021, 50(8): 714-718
- Journal of China Medical University, 2021, 50(8): 714-718
-
文章历史
- 收稿日期:2020-08-17
- 网络出版时间:2021-07-27 16:16
钙调蛋白(calmodulin,CaM)是一种普遍存在的Ca2+传感器分子,它通过钙依赖性调节方式介导大量蛋白质的信号级联反应[1]。CaM空间结构呈哑铃型,由2个球形末端(N-lobe和C-lobe)相连组成,每个结构均由2个Ca2+结合结构域(EF-hands)构成,每个EF-hand结构域可以结合1个钙离子[2],其中N-lobe包括EF-hand 1和EF-hand 2结构域,C-lobe包括EF-hand 3和EF-hand 4结构域。
电压门控钙离子通道(the voltage-gated Ca2+channels,CaVs)通过控制细胞钙离子流入在许多细胞中发挥重要作用[3]。CaVs开关受Ca2+调节,包括钙依赖性易化(Ca2+-dependent facilitation,CDF)和钙依赖性失活(Ca2+-dependent inactivation,CDI)调节机制[4]。当细胞内钙离子浓度升高或发生反复短暂去极化时,CDF会增强钙通道的开放度;CDI是Ca2+内流持续增加时钙通道失活的过程,有助于防止钙超载[5]。CDI发生可以由CaM和CaV1.2钙离子通道α1亚单位的C末端(包括EF-hand,preIQ和IQ基序)结合而介导[6-8],但CaM各EF-hand结构域的作用机制还有待进一步研究。目前研究[9-10]发现,位于或接近于C-lobe的EF-hand 4结构域内某些位点突变可引起CDI异常,从而可能导致心律失常等心血管疾病。本研究通过固相合成法构建CaM结构域来源小分子多肽(EF-hand 4,a.a 113-148),为进一步探讨CaM结构域来源EF-hand 4在CDI中的作用机制及生物学功能提供材料基础。
1 材料与方法 1.1 材料及仪器EF-hand 4(南京肽业合成),氨基酸序列为GEKLTDEEVDEMIREADIDGDGQVNYEEFVQMMTAK;丙烯酰胺(acrylamide,Acr)、N,N’-甲叉双丙烯酰胺、三(羟甲基)甲基甘氨酸[N-tris(hydroxymethyl)methylglycine,Tricine]、三(羟甲基)氨基甲烷[tris(hydroxymethyl)aminomethane,Tris]、十二烷基硫酸钠(sodium dodecyl sulfate,SDS)、甘油、过硫酸铵(ammonium persulphate,AP)、TEMED、溴酚蓝、巯基乙醇、考马斯亮蓝R250、乙醇、冰醋酸均为国产分析纯试剂;蛋白标准品(Marker,Prestained Protein Lader,Product#26619,美国Thermo公司);超纯水。电泳仪和Min-protein垂直电泳槽(美国Bio-Rad公司),凝胶成像仪(Microteck扫描仪,上海中晶科技有限公司)。
1.2 Tricine-SDS-PAGE凝胶电泳 1.2.1 溶液配制Tricine-SDS-PAGE凝胶贮存液和Tricine-SDS-PAGE电泳缓冲液配制见表 1、2。
| Item | Acr | N,N’-methylene bis acrylamide |
| 49.5%T,3%C | 240.0 | 7.5 |
| 49.5%T,6%C | 232.5 | 15.0 |
| T,the total percentage concentration of Acr and N,N’-methylene bis acrylamide. C,the percentage concentration of the crosslinker relative to the total concentration T. The volume of the gel storage solution was fixed to 500 mL,and then filtered. | ||
| Item | Tris(g) | Tricine(g) | SDS(g) | pH |
| Positive buffer(×10) | 121.90 | - | - | 8.90 |
| Negative buffer(×10) | 60.55 | 89.58 | 5.0 | 8.25 |
| Tris-SDS buffer solution(×3) | 181.50 | - | 1.5 | 8.45 |
1.2.2 凝胶配制
Tricine-SDS-PAGE分离胶和浓缩胶配制见表 3。
| Item | 49.5%T,3%C | 49.5%T,6%C | Tris-SDS | H2O | glycerinum | 10%AP | TEMED |
| Stacking gel | 0.41 | - | 0.765 | 1.95 | - | 0.03 | 0.003 |
| Separation gel | - | 1.67 | 1.670 | 1.10 | 0.545 | 0.05 | 0.003 |
| T,the total percentage concentration of Acr and N,N’-methylene bis acrylamide;C,the percentage concentration of the crosslinker relative to the total concentration T. | |||||||
1.2.3 电泳
取EF-hand 4(0.45 mg/mL)10 μL,加入2 μL PBS和3 μL样品缓冲液(×5);以12 μL PBS加3 μL样品缓冲液(×5)作为阴性对照。上样前煮沸5 min。将正极缓冲液(×10)、负极缓冲液(×10)稀释,Tricine-SDS-PAGE内槽倒入稀释的负极缓冲液(×1),外槽倒入稀释的正极缓冲液(×1)。取蛋白标准品(2 μL)加样,EF-hand 4样品(15 μL)加样。浓缩胶恒压(60 V)电泳,样品进入分离胶后保持恒压(120 V)电泳,至溴酚蓝指示剂迁移到凝胶底部时结束电泳。考马斯亮蓝R250染色液染色过夜,脱色液脱色至条带清晰,背景干净,凝胶扫描仪扫描拍照。同样方式处理EF-hand 4样品并于常规15% 甘氨酸(glycine)-SDS-PAGE凝胶中上样,正常电泳后染色、脱色,扫描胶图。
1.3 GST pull-down分别取GST-IQ 40 μL于6个EP管(容积2 mL)内,依次加入0.10、0.35、0.70、1.40、2.10、3.50 μmol/L的EF-hand 4,在2 mmol/L [Ca2+]条件下4 ℃旋转孵育4 h。将孵育好的样品800 r/min离心3 min,用含2 mmol/L [Ca2+]的Tris缓冲液洗2遍,加入15 μL样品缓冲液,煮沸5 min,上清加入16.5% Tricine-SDS-PAGE凝胶电泳,检测EF-hand 4生物活性。
2 结果 2.1 质谱分析EF-hand 4质谱检测EF-hand 4结果显示,[M-3H]3-、[M-4H]4-、[M-5H]5-、[M-6H]6-的质荷比分别为1 377.50、1 033.15、826.40、688.35,计算可得小分子多肽分子量为4.13×103。见图 1。
|
| 图 1 EF-hand 4质谱分析报告 Fig.1 Mass spectrum of EF-hand 4 |
2.2 Tricine-SDS-PAGE凝胶电泳检测EF-hand 4分子量和纯度
15% Glycine-SDS-PAGE电泳对EF-hand 4进行检测,胶图显示10×103处可见清晰条带,与理论值4.13×103相差较远,说明15% Glycine-SDS-PAGE无法对EF-hand 4进行分离检测。见图 2A。
|
| A,Glycine-SDS-PAGE electrophoresis results of EF-hand 4,the EF-hand 4 band was located around 10×103;B,Tricine-SDS-PAGE electrophoresis results of EF-hand 4,the EF-hand 4 band was located around 4×103;C,analysis results of the EF-hand 4 band of Tricine-SDS-PAGE electrophoresis,only one distinct peak in the figure,with a gray value of 11 220. 图 2 EF-hand 4电泳结果及其Tricine-SDS-PAGE电泳条带分析结果 Fig.2 Tricine-SDS-PAGE electrophoresis and analysis results of EF-hand 4 |
Tricine-SDS-PAGE凝胶电泳结果如图 2B所示,在约4×103处见清晰蛋白条带,为EF-hand 4,与质谱得到的分子量结果一致。CS Analyzer 3.0软件分析Tricine-SDS-PAGE凝胶电泳条带灰度值及其纯度结果显示,EF-hand 4有1个明显的主峰图(2C),软件分析结果表明其灰度值为11 220,所占比例为100%,即经Tricine-SDS-PAGE凝胶电泳检测该多肽纯度为100%。表明Tricine-SDS-PAGE凝胶电泳法可以有效检测EF-hand 4分子量及纯度。
2.3 GST pull-down鉴定EF-hand 4活性GST pull-down实验结果显示,EF-hand 4在2 mmol/L [Ca2+]条件下能够和GST-IQ呈浓度依赖性结合,表明经固相合成法合成的EF-hand 4具有与CaV1.2通道结合的生物活性。见图 3。
|
| 图 3 EF-hand 4与GST-IQ结合的Tricine-SDS-PAGE电泳结果 Fig.3 Tricine-SDS-PAGE electrophoresis of EF-hand 4 bound to GST-IQ |
3 讨论
Glycine-SDS-PAGE电泳是用于蛋白质分析检测的常用技术之一,有效分离范围取决于聚丙烯酰胺的浓度和交联度,可以有效分离分子量为(10~200)×103的蛋白,但是较高浓度的聚丙烯酰胺凝胶也难以有效分离10×103以下的蛋白,且蛋白条带容易扩散丢失[11]。本研究采用Tricine代替Glycine,并在分离胶中加入甘油,能够有效浓缩小分子肽蛋白,特别是在低丙烯酰胺浓度下分离(1~20)×103的蛋白质效果较好[11-12]。Tricine-SDS-PAGE弥补了Glycine-SDS-PAGE凝胶对于小分子多肽分离度不高的缺点,建立了一种可以快速、直观、方便且相对准确鉴定EF-hand 4的电泳方法。
CaM是一种Ca2+结合蛋白,可以参与调节许多与心脏生理病理学相关的靶点,对细胞的生存及生长至关重要[13]。CaM突变可引起心律失常(儿茶酚胺能性多态室性心动过速、长QT综合征等),然而导致心律失常的CaM突变体对细胞活力和心律的具体影响还不明确,有研究显示位于C-lobe的EF-hand 4结构域的某些位点突变与心脏生理疾病相关[13-17]。本研究仅初步检测了EF-hand 4可以结合到CaV1.2通道IQ片段,EF-hand 4与CaV1.2通道结合后能否起到调节通道功能的作用以及如何调节通道功能还需要深入研究,能否用于因EF-hand 4结构域位点突变相关的心脏疾病防治也有待进一步探讨。
综上所述,本研究成功构建了EF-hand 4,而且EF-hand 4具有较高的纯度和与CaV1.2通道结合的生物学活性,为深入研究CaM结构域来源EF-hand 4的生物学功能提供了材料基础,可用于CaM突变体诱发心律失常等疾病机制、治疗和预防等相关研究中。
| [1] |
LIMPITIKUL WB, DICK IE, JOSHI-MUKHERJEE R, et al. Calmodulin mutations associated with long QT syndrome prevent inactivation of cardiac L-type Ca (2+) currents and promote proarrhythmic behavior in ventricular myocytes[J]. J Mol Cell Cardiol, 2014, 74: 115-124. DOI:10.1016/j.yjmcc.2014.04.022 |
| [2] |
BADONE B, RONCHI C, SALA L, et al. Calmodulinopathy: functional effects of CALM mutations and their relationship with clinical phenotypes[J]. Front Cardiovasc Med, 2018, 5: 176. DOI:10.3389/fcvm.2018.00176 |
| [3] |
HOFMANN F, FLOCKERZI V, KAHL S, et al. L-type CaV1.2 calcium channels: from in vitro findings to in vivo function[J]. Physiol Rev, 2014, 94(1): 303-326. DOI:10.1152/physrev.00016.2013 |
| [4] |
SHAO D, ZHAO M, XU J, et al. The individual N- and C-lobes of calmodulin tether to the Cav1.2 channel and rescue the channel activity from run-down in ventricular myocytes of guinea-pig hear[J]. FEBS Lett,, 2014, 588(21): 3855-3861. DOI:10.1016/j.febslet.2014.09.029 |
| [5] |
CATTERALL WA. Structure and regulation of voltage-gated Ca2+channels[J]. Annu Rev Cell Dev Biol, 2000, 16: 521-555. DOI:10.1146/annurev.cellbio.16.1.521 |
| [6] |
PITT GS, HUDMON A, SCHULMAN H, et al. Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+channels[J]. J Biol Chem, 2001, 276(33): 30794-30802. DOI:10.1074/jbc.M104959200 |
| [7] |
HAN DY, MINOBE E, WANG WY, et al. Calmodulin- and Ca2+-dependent facilitation and inactivation of the Cav1.2 Ca2+channels in guinea-pig ventricular myocytes[J]. J Pharmacol Sci, 2010, 112(3): 310-319. DOI:10.1254/jphs.09282fp |
| [8] |
SALVESON I, ANDERSON DE, HELL JW, et al. Chemical shift assignments of a calmodulin intermediate with two Ca2+bound in complex with the IQ-motif of voltage-gated Ca2+channels (Cav1.2)[J]. Biomol NMR Assign, 2019, 13(1): 233-237. DOI:10.1007/s12104-019-09883-0 |
| [9] |
BOCZEK NJ, GOMEZ-HURTADO N, YE D, et al. Spectrum and prevalence of CALM1-, CALM2-, and CALM3-encoded calmodulin variants in long QT syndrome and functional characterization of a novel long QT syndrome-associated calmodulin missense variant, E141G[J]. Circ Cardiovasc Genet, 2016, 9(2): 136-146. DOI:10.1161/CIRCGENETICS.115.001323 |
| [10] |
ROCCHETTI M, SALA L, DREIZEHNTER L, et al. Elucidating arrhythmogenic mechanisms of long-QT syndrome CALM1-F142L mutation in patient-specific induced pluripotent stem cell-derived cardiomyocytes[J]. Cardiovasc Res, 2017, 113(5): 531-541. DOI:10.1093/cvr/cvx006 |
| [11] |
周伟, 易荣大, 彭文, 等. Tricine-SDS-PAGE分析抑肽酶相对分子质量的方法初探[J]. 天津药学, 2015, 27(3): 11-13. |
| [12] |
JIANG SY, LIU SQ, ZHAO CJ, et al. Developing protocols of tricine-SDS-PAGE for separation of polypeptides in the mass range 1-30 kDa with minigel electrophoresis system[J]. Int J Electrochem Sci, 2016, 11: 640-649. |
| [13] |
BERCHTOLD MW, ZACHARIAS T, KULEJ K, et al. The arrhythmogenic calmodulin mutation D129G dysregulates cell growth, calmodulin-dependent kinaseⅡactivity, and cardiac function in zebrafish[J]. J Biol Chem, 2016, 291(52): 26636-26646. DOI:10.1074/jbc.m116.758680 |
| [14] |
SØNDERGAARD MT, TIAN X, LIU Y, et al. Arrhythmogenic calmodulin mutations affect the activation and termination of cardiac ryanodine receptor-mediated Ca2+release[J]. J Biol Chem, 2015, 290(43): 26151-26162. DOI:10.1074/jbc.m115.676627 |
| [15] |
MAKITA N, YAGIHARA N, CROTTI L, et al. Novel calmodulin mutations associated with congenital arrhythmia susceptibility[J]. Circ Cardiovasc Genet, 2014, 7(4): 466-474. DOI:10.1161/circgenetics.113.000459 |
| [16] |
CROTTI L, JOHNSON CN, GRAF E, et al. Calmodulin mutations associated with recurrent cardiac arrest in infants[J]. Circulation, 2013, 127(9): 1009-1017. DOI:10.1161/circulationaha.112.001216 |
| [17] |
SØNDERGAARD MT, LIU Y, LARSEN KT, et al. The arrhythmogenic calmodulin p.Phe142Leu mutation impairs C-domain Ca2+ binding but not calmodulin-dependent inhibition of the cardiac ryanodine receptor[J]. J Biol Chem, 2017, 292(4): 1385-1395. DOI:10.1074/jbc.m116.766253 |
2021, Vol. 50



