中国医科大学学报  2020, Vol. 49 Issue (8): 685-689, 693

文章信息

李野, 李斌超, 张雅琳, 刘宁, 刘祖望, 孔娟
LI Ye, LI Binchao, ZHANG Yalin, LIU Ning, LIU Zuwang, KONG Juan
胆维丁乳对急性肺损伤小鼠肺表面活性物质的影响
Effect of cholecalciterol cholesterol emulsion on pulmonary surfactant in a mouse model of acute lung injury
中国医科大学学报, 2020, 49(8): 685-689, 693
Journal of China Medical University, 2020, 49(8): 685-689, 693

文章历史

收稿日期:2019-06-25
网络出版时间:2020-07-28 15:55
胆维丁乳对急性肺损伤小鼠肺表面活性物质的影响
中国医科大学附属盛京医院临床营养科, 沈阳 110004
摘要目的 探讨维生素D前体胆维丁乳(CCE)对脂多糖(LPS)造成的急性肺损伤肺表面活性物质的影响。方法 将36只雄性BALB/c小鼠随机分为正常对照组、CCE组、LPS组、LPS+CCE组。检测血清中钙磷含量,监测生存曲线,通过计算肺湿/干质量比及组织HE染色,观察肺水肿及肺组织损伤情况,通过Western blotting、实时PCR检测小鼠肺组织维生素D受体(VDR)及肺表面活性物质结合蛋白(SP)-A、SP-B、SP-C、SP-D表达情况。结果 与LPS组相比,LPS+CCE组肺水肿及肺组织损伤情况减轻,小鼠的生存时间延长,肺SP的表达增加。结论 CCE能缓解LPS造成的急性肺损伤,可能与其增加了肺表面活性物质的表达有关。
关键词维生素D    胆维丁乳    脂多糖    急性肺损伤    肺泡表面活性物质    
Effect of cholecalciterol cholesterol emulsion on pulmonary surfactant in a mouse model of acute lung injury
Department of Clinical Nutrition, Shengjing Hospital, China Medical University, Shenyang 110004, China
Abstract: Objective To investigate the effect of the vitamin D precursor, cholecalciterol cholesterol emulsion (CCE) on pulmonary surfactant in acute lung injury induced by lipopolysaccharide (LPS). Methods Thirty-six male BALB/c mice were randomly divided into a control group, CCE group, LPS group, and LPS+CCE group. The serum contents of calcium and phosphorus were measured and the survival curve was monitored. Lung edema and lung tissue injury were assessed by calculating the wet-dry weight ratio of the lungs and tissue staining by hematoxylin and eosin. The expression of vitamin D receptor and surfactant proteins (SP-A, SP-B, SP-C and SP-D) were detected by real-time PCR and Western blotting, respectively. Results Compared with the results observed in the LPS group, CCE alleviated pulmonary edema and lung tissue damage, prolonged the survival time of mice, and increased the expression of pulmonary surfactant. Conclusion CCE can reduce acute lung injury and this may be related to the increasing expression of pulmonary surfactant.

急性肺损伤(acute lung injury,ALI)是肺泡上皮细胞和肺毛细血管内皮细胞受损的急性肺部炎症综合征(acute respiratory distress syndrome,ARDS)[1],是一种高死亡率的急危重症。通过气管滴注脂多糖(lipopolysaccharides,LPS)可建立ALI小鼠模型[2]

肺表面活性物质由Ⅱ型肺泡上皮细胞分泌,主要成分为二棕榈酰卵磷脂和肺表面活性物质结合蛋白(surfactant protein,SP),分布于肺泡液体分子层表面,能降低肺泡表面张力,维持大小肺泡容量的相对稳定[3],阻止肺泡毛细血管中液体向肺泡内滤出,是治疗ALI的有效手段[4]。目前已知的SP有SP-ASP-BSP-CSP-D 4种。维生素D是一种脂溶性类固醇激素,在钙磷平衡和骨代谢中起重要作用[5-7],并可通过其受体(vitamin D receptor,VDR)调控多种生理反应[2, 8-16]。研究[17-19]发现,维生素D3能调节Ⅱ型肺泡上皮细胞增殖。胆维丁乳(cholecalciterol cholesterol emulsion,CCE)是一种新型的活性维生素D前体,临床上常用于治疗婴幼儿维生素D缺乏性佝偻病。SP在维生素D缺乏小鼠的肺中表达减少[20]。本研究拟探讨CCE对LPS所致ALI肺表面活性物质的影响。

1 材料与方法 1.1 制作动物模型与分组

将36只健康雄性BALB/c小鼠随机分为正常对照组、CCE组、LPS组、LPS+CCE组,每组9只。正常对照组和LPS组给予饮用水,CCE组和LPS+CCE组小鼠给予10%CCE水溶液(避光,购自中国医科大学附属盛京医院)。饲喂14 d后,LPS组和LPS+CCE组小鼠行气管切开,滴注LPS(10 mg/kg),24 h后取血清、肺泡灌洗液及肺组织备用。

1.2 检测血清钙、磷的含量

从小鼠心脏取血,分离血清,采用钙测试盒(带标准)微板法(C004-2,南京建成生物工程研究所)、无机磷测试盒(C006-1,南京建成生物工程研究所)检测各组小鼠血清钙、磷含量。

1.3 测定小鼠肺组织湿/干质量比

取4组小鼠的右下肺,用吸水纸吸干肺组织表面血迹,立即称质量,记为“湿质量”。置于80 ℃恒温干燥箱内烘干,48 h后称质量,记为“干质量”。计算肺湿/干质量比。

1.4 肺组织HE染色

4%多聚甲醛固定肺组织,石蜡包埋并切片,脱蜡,HE染色,封片,光镜下观察并拍照。

1.5 实时PCR

用TRIzol试剂盒(美国Invitrogen公司)提取肺组织总RNA,按照产品说明书操作。用生物分光光度计测定RNA浓度和纯度。取2 μg RNA样本,用TaKaRa逆转录试剂盒(A2302-1,日本TaKaRa公司)进行逆转录合成cDNA,并以此为模板进行PCR扩增反应。逆转录和PCR反应条件按照试剂盒说明书设置。引物由上海生工生物工程公司合成,见表 1

表 1 PCR引物序列 Tab.1 PCR primer sequence
Gene name Primer sequence
VDR Forward primer 5’- TGACCCTGGAGACTTTGACC -3’
Reverse primer 5’- GTTGAAGGGGCAGGTGAATA -3’
GAPDH Forward primer 5’- ACCACAGTCCATGCCATCAC -3’
Reverse primer 5’- TCCACCACCCTGTTGCTGTA -3’
SP-A Forward primer 5’- AATGGGAGTCCTCAGCTTGC -3’
Reverse primer 5’- CCGGCTCTGGTACACATCTC -3’
SP-B Forward primer 5’- TGCTTGATGTCTACCTGCCC -3’
Reverse primer 5’- AGCAGGAGAACTGTGTAGCG -3’
SP-C Forward primer 5’- TGATGGAGAGTCCACCGGAT -3’
Reverse primer 5’- CCACCACAACCACGATGAGA -3’
SP-D Forward primer 5’- CGAGCCTGACAAACAGAGGT -3’
Reverse primer 5’- GGAGAGAAAGGGCAGCATGT -3’

1.6 Western blotting

取肺组织,研磨匀浆后,蛋白裂解,BCA法检测总蛋白浓度。取50 μg总蛋白,行SDS-PAGE电泳,电转至PVDF膜,用5%脱脂奶粉封闭1 h。加入一抗(VDR抗体1:1 000稀释,购自美国SANTA CRUZ BIOTECHNOLOGY公司;GAPDH抗体1:5 000稀释,购自美国Proteintech公司),4 ℃孵育过夜。TBST洗3次,室温孵育二抗1 h,ECL显色。Image J图像分析软件对条带进行定量分析比较。

1.7 绘制生存曲线

另取健康雄性BALB/c小鼠20只,分为LPS组、LPS+CCE组,每组10只,处置同1.1,绘制并分析2组小鼠生存时间曲线。

1.8 统计学分析

采用Graph Pad Prism 5.0软件进行统计学分析,计量结果均采用x±s表示,采用方差分析或配对t检验进行组间比较。P < 0.05为差异有统计学意义。

2 结果 2.1 CCE对ALI模型小鼠血清钙、磷含量的影响

表 2所示,喂饲CCE 2周后,4组小鼠血清钙、磷水平无统计学差异。说明CCE对LPS所致ALI模型小鼠血清钙、磷的影响较小,故可排除血清钙、磷水平的高低对实验结果的干扰。

表 2 4组小鼠血清钙、磷含量(x±sn = 9) Tab.2 Serum calcium and phosphorus contents in 4 groups(x±s, n = 9)
Item Control group CCE group LPS group LPS+CCE group P
Serum calcium(mmol/L) 2.216±0.421 2.051±0.219 2.256±0.466 2.033±0.348 0.491
Serum phosphorus(mmol/L) 2.618±0.490 2.854±0.217 2.799±0.487 2.678±0.210 0.535
CCE,cholecalciterol cholesterol emulsion;LPS,lipopolysaccharides.

2.2 CCE对ALI模型小鼠生存时间的影响

图 1所示,LPS+CCE组小鼠平均生存时间长于LPS组,小鼠死亡的首发时间晚于LPS组,给予LPS处理后25 h,LPS+CCE组小鼠仍有80%存活,LPS组则有40%小鼠死亡;53 h以内LPS组小鼠全部死亡,2组小鼠生存时间有显著的统计学差异(P < 0.05)。表明CCE能显著延长ALI小鼠的生存时间,对ALI起保护作用。

图 1 Kaplan-Meier法测定LPS诱导的ALI小鼠生存曲线(n = 10) Fig.1 The survival curve of ALI mice induced by LPS determined by Kaplan-Meier method (n = 10)

2.3 CCE对ALI模型小鼠肺组织及肺水肿的影响

肉眼观察可见,与正常对照组相比,LPS组小鼠双肺肿胀,体积变大,肺表面可见出血区。光镜下(图 2A)可见,正常对照组与CCE组小鼠肺泡结构完整,肺泡腔和间隙内无炎症细胞浸润;LPS组小鼠肺泡和肺间质广泛充血、水肿、大量炎性渗出液,肺泡腔可见破裂的红细胞和渗出物,肺泡结构紊乱,肺泡腔狭窄,肺泡间隔增厚;与LPS组相比,LPS+CCE组小鼠肺泡和肺间质微血管充血扩张程度及炎症细胞浸润减轻,肺泡腔内红细胞减少。

A, the protective effect of CCE on acute lung injury in mice(HE staining×200);B, wet-dry weight ratio of lung in different groups of mice(n = 9). *P < 0.05;**P < 0.01. CON, control group. 图 2 CCE对ALI小鼠肺组织病理变化及水肿程度的影响 Fig.2 The effect of CCE on the pathological changes of lung tissue and the degree of edema in ALI mice

为了观察ALI时肺泡和肺间质充血、水肿的程度,本研究进一步检测了肺湿/干质量比。结果如图 2B所示,LPS组小鼠肺湿/干质量高于正常对照组,差异有统计学意义(P < 0.01);LPS+CCE组较LPS组显著降低,差异有统计学意义(P = 0.023)。提示CCE能改善ALI肺组织水肿程度。

2.4 CCE对ALI模型小鼠肺中VDR表达的影响

Western blotting和实时PCR结果如图 3所示,CCE组小鼠肺组织中VDR蛋白表达水平高于正常对照组,LPS+CCE组VDR蛋白表达水平高于LPS组,差异有统计学意义(P = 0.012,P = 0.005)。提示饲喂CCE能增加小鼠肺组织内VDR表达。

A and B, Western blotting results; C, real-time PCR results. *P < 0.05;**P < 0.01. 图 3 小鼠肺组织VDR蛋白及mRNA表达情况 Fig.3 Expression of VDR protein and mRNA in the lungs of mice

2.5 CCE对ALI模型小鼠肺组织SP-ASP-BSP-CSP-D mRNA表达的影响

表 3所示,CCE小鼠肺组织SP-ASP-CSP-D的表达水平高于正常对照组,差异有统计学意义(P = 0.007,P = 0.011,P = 0.006);与正常对照组相比,LPS组SP-ASP-BSP-CSP-D的表达水平均显著下降(P = 0.006,P = 0.016,P = 0.001,P = 0.001),而LPS+CCE组SP-ASP-BSP-CSP-D的表达水平均较LPS组显著上升(P = 0.001,P = 0.049,P = 0.001,P = 0.042),差异有统计学意义。表明CCE能促进小鼠肺泡中肺表面活性物质的产生。

表 3 各组小鼠肺中SP-ASP-BSP-CSP-D mRNA表达水平比较(n = 9) Tab.3 Comparison of the mRNA expression levels of SP-A, SP-B, SP-C and SP-D in the lungs of mice in each group(n = 9)
Group SP-A SP-B SP-C SP-D
Control 2.403±1.551 0.003±0.001 7.522±1.998 3.758±0.511
CCE 3.175±0.6111) 0.005±0.002 11.233±3.3322) 5.189±1.2781)
LPS 0.750±0.0011) 0.001±0.0002) 1.985±0.8011) 0.861±0.1271)
LPS+CCE 0.998±0.0311) 0.002±0.0012) 3.452±0.0531) 1.233±0.1302)
1)P < 0.01,2)P < 0.05 vs control group.

3 讨论

尽管临床研究[21-22]发现,活性维生素D可影响血清钙磷水平,但本研究结果显示CCE并未影响小鼠的血清钙磷水平,因此排除了血清钙磷对后续实验结果的影响。

本研究发现,LPS+CCE组小鼠死亡首发时间晚于LPS组,且平均生存时间长于LPS组,提示维生素D前体CCE有显著延长ALI小鼠生存时间的作用,原因可能与维生素D的抗炎特性有关[23-24]。本研究还发现,CCE具有减轻ALI所致肺组织损伤的作用。HE染色显示,LPS组小鼠肺组织可见肺泡上皮细胞及间质水肿、肺泡腔内渗出、充血、炎症细胞浸润等典型ALI病理改变[25],而LPS+CCE组ALI病理改变较LPS组减轻。小鼠肺湿/干质量比能反映ALI所致肺水肿的程度,ALI时肺水肿严重,肺湿/干质量比升高[26]。本研究结果显示,LPS+CCE组肺湿/干质量比较LPS组降低,提示CCE在一定程度上缓解了LPS对小鼠造成的ALI肺水肿。

本研究发现,与正常对照组和LPS组相比,CCE组和LPS+CCE组小鼠肺组织内VDR表达水平显著升高,表明饲喂CCE能使小鼠体内VDR表达增多。研究[27-29]表明,ALI会造成肺泡不稳定、肺泡去复张及相应的组织重塑,肺表面活性物质可降低肺泡表面张力,从而防止低肺容量时发生肺泡塌陷及水肿[30-31],因此增加肺表面活性物质可治疗ALI [4]。维生素D3可加速胎儿肺成熟和Ⅱ型肺泡上皮细胞分化,并增加大鼠肺组织和Ⅱ型肺泡上皮细胞中肺表面活性物质的表达和分泌[32-34]。有研究[35]表明,维生素D3可直接作用于原代培养的Ⅱ型肺泡上皮细胞,诱导SP-B mRNA的产生,故推测维生素D前体CCE对ALI的保护作用有可能是因为增加了肺表面活性物质,因此本研究检测了各组小鼠肺组织中SP-A、SP-B、SP-C、SP-D的表达情况,结果证实CCE确能增加SP的表达。

综上所述,本研究证实了维生素D前体物质CCE能缓解LPS造成的ALI,改善并延长ALI小鼠的生存时间,改善肺组织病理学变化及肺水肿,增加SP的表达。因此,维生素D前体CCE增加肺表面活性物质可能是缓解ALI的机制之一,为探索ALI治疗方法提供了新的思路。

参考文献
[1]
ZIENTARA A, STEPHAN M, VON HÖRSTEN S, et al. Differential severity of LPS-induced lung injury in CD26/DPP4 positive and deficient F344 rats[J]. Histol Histopathol, 2019, 34(10): 1151-1171. DOI:10.14670/HH-18-117
[2]
KONG J, ZHU XD, SHI YY, et al. VDR attenuates acute lung injury by blocking Ang-2-Tie-2 pathway and renin-angiotensin system[J]. Mol Endocrinol, 2013, 27(12): 2116-2125. DOI:10.1210/me.2013-1146
[3]
MARTÍNEZ-CALLE M, OLMEDA B, DIETL P, et al. Pulmonary surfactant protein SP-B promotes exocytosis of lamellar bodies in alveolar typeⅡcells[J]. FASEB J, 2018, 32(8): 4600-4611. DOI:10.1096/fj.201701462rr
[4]
STEFFEN L, RUPPERT C, HOYMANN HG, et al. Surfactant replacement therapy reduces acute lung injury and collapse induration-related lung remodeling in the bleomycin model[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 313(2): L313-L327. DOI:10.1152/ajplung.00033.2017
[5]
MATSUMOTO Y, PARK IK, KOHYAMA K. B-cell epitope spreading is a critical step for the switch from C-protein-induced myocarditis to dilated cardiomyopathy[J]. Am J Pathol, 2007, 170(1): 43-51. DOI:10.2353/ajpath.2007.060544
[6]
GROLLEAU-JULIUS A, RAY D, YUNG RL. The role of epigenetics in aging and autoimmunity[J]. Clin Rev Allergy Immunol, 2010, 39(1): 42-50. DOI:10.1007/s12016-009-8169-3
[7]
TSE G, YEO JM, CHAN YW, et al. What is the arrhythmic substrate in viral myocarditis? insights from clinical and animal studies[J]. Front Physiol, 2016, 7: 308. DOI:10.3389/fphys.2016.00308
[8]
KONG J, LI YC. Molecular mechanism of 1, 25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells[J]. Am J Physiol Endocrinol Metab, 2006, 290(5): E916-E924. DOI:10.1152/ajpendo.00410.2005
[9]
XIONG YY, LOU Y, SU H, et al. Cholecalciterol cholesterol emulsion ameliorates experimental colitis via down-regulating the pyroptosis signaling pathway[J]. Exp Mol Pathol, 2016, 100(3): 386-392. DOI:10.1016/j.yexmp.2016.03.003
[10]
LIU N, SU H, ZHANG YL, et al. Cholecalciterol cholesterol emulsion attenuates experimental autoimmune myocarditis in mice via inhibition of the pyroptosis signaling pathway[J]. Biochem Biophys Res Commun, 2017, 493(1): 422-428. DOI:10.1016/j.bbrc.2017.09.006
[11]
SU H, LOU Y, FU Y, et al. Involvement of the vitamin D receptor in energy metabolism revealed by profiling of lysine succinylome of white adipose tissue[J]. Sci Rep, 2017, 7(1): 14132. DOI:10.1038/s41598-017-14477-8
[12]
KONG J, LI YC. Effect of ANGⅡtypeⅠreceptor antagonist and ACE inhibitor on vitamin D receptor-null mice[J]. Am J Physiol Regul Integr Comp Physiol, 2003, 285(1): R255-R261. DOI:10.1152/ajpregu.00517.2002
[13]
KONG J, ZHANG ZY, LI DD, et al. Loss of vitamin D receptor produces polyuria by increasing thirst[J]. J Am Soc Nephrol, 2008, 19(12): 2396-2405. DOI:10.1681/asn.2008010011
[14]
KONG J, KIM GH, WEI MJ, et al. Therapeutic effects of vitamin D analogs on cardiac hypertrophy in spontaneously hypertensive rats[J]. Am J Pathol, 2010, 177(2): 622-31. DOI:10.2353/ajpath.2010.091292
[15]
KONG J, HAN L, SU H, et al. Riligustilide attenuated renal injury by the blockade of renin[J]. Cell Physiol Biochem, 2018, 50(2): 654-667. DOI:10.1159/000494186
[16]
KONG J, DING Y, ZHANG C, et al. Severe vitamin D-deficiency and increased bone turnover in patients with hepatitis B from northeastern China[J]. Endocr Res, 2013, 38(4): 215-222. DOI:10.3109/07435800.2013.768266
[17]
YAZICI G, YILDIZ F, ISKIT A, et al. The effect of vitamin D prophylaxis on radiation induced pulmonary damage[J]. J Radiat Res, 2011, 52(5): 616-621. DOI:10.1269/jrr.11033
[18]
HEUSER A, EISENHAUER A, SCHOLZ-AHRENS KE, et al. Biological fractionation of stable Ca isotopes in Göttingen minipigs as a physiological model for Ca homeostasis in humans[J]. Isotopes Environ Health Stud, 2016, 52(6): 633-648. DOI:10.1080/10256016.2016.1151017
[19]
VERONE-BOYLE AR, SHOEMAKER S, ATTWOOD K, et al. Diet-derived 25-hydroxyvitamin D3 activates vitamin D receptor target gene expression and suppresses EGFR mutant non-small cell lung cancer growth in vitro and in vivo[J]. Oncotarget, 2016, 7(1): 995-1013. DOI:10.18632/oncotarget.6493
[20]
CHEN L, WILSON R, BENNETT E, et al. Identification of vitamin D sensitive pathways during lung development[J]. Respir Res, 2016, 17: 47. DOI:10.1186/s12931-016-0362-3
[21]
PARK H, BRANNON PM, WEST AA, et al. Maternal vitamin D biomarkers are associated with maternal and fetal bone turnover among pregnant women consuming controlled amounts of vitamin D, calcium, and phosphorus[J]. Bone, 2017, 95: 183-191. DOI:10.1016/j.bone.2016.12.002
[22]
PARKER VJ, HARJES LM, DEMBEK K, et al. Association of vitamin D metabolites with parathyroid hormone, fibroblast growth factor-23, calcium, and phosphorus in dogs with various stages of chronic kidney disease[J]. J Vet Intern Med, 2017, 31(3): 791-798. DOI:10.1111/jvim.14653
[23]
CHEN GC, ZHANG ZL, WAN ZX, et al. Circulating 25-hydroxyvitamin D and risk of lung cancer:a dose-response meta-analysis[J]. Cancer Causes Control, 2015, 26(12): 1719-1728. DOI:10.1007/s10552-015-0665-6
[24]
FENG QQ, ZHANG H, DONG ZQ, et al. Circulating 25-hydroxyvitamin D and lung cancer risk and survival:a dose-response meta-analysis of prospective cohort studies[J]. Medicine (Baltimore), 2017, 96(45): e8613. DOI:10.1097/MD.0000000000008613
[25]
TAN W, CHEN L, WANG YX, et al. Protectin DX exhibits protective effects in mouse model of lipopolysaccharide-induced acute lung injury[J]. Chin Med J, 2018, 131(10): 1167-1173. DOI:10.4103/0366-6999.227618
[26]
AN XN, SUN XT, HOU YH, et al. Protective effect of oxytocin on LPS-induced acute lung injury in mice[J]. Sci Rep, 2019, 9(1): 2836. DOI:10.1038/s41598-019-39349-1
[27]
GALVIN JR, FRAZIER AA, FRANKS TJ. Collaborative radiologic and histopathologic assessment of fibrotic lung disease[J]. Radiology, 2010, 255(3): 692-706. DOI:10.1148/radiol.10090717
[28]
MYERS JL, KATZENSTEIN AL. Epithelial necrosis and alveolar collapse in the pathogenesis of usual interstitial pneumonia[J]. Chest, 1988, 94(6): 1309-1311. DOI:10.1378/chest.94.6.1309
[29]
TODD NW, ATAMAS SP, LUZINA IG, et al. Permanent alveolar collapse is the predominant mechanism in idiopathic pulmonary fibrosis[J]. Expert Rev Respir Med, 2015, 9(4): 411-418. DOI:10.1586/17476348.2015.1067609
[30]
NIEMAN GF, BREDENBERG CE. High surface tension pulmonary edema induced by detergent aerosol[J]. J Appl Physiol, 1985, 58(1): 129-136. DOI:10.1152/jappl.1985.58.1.129
[31]
OCHS M. The closer we look the more we see? Quantitative microscopic analysis of the pulmonary surfactant system[J]. Cell Physiol Biochem, 2010, 25(1): 27-40. DOI:10.1159/000272061
[32]
MARIN L, DUFOUR ME, NGUYEN TM, et al. Maturational changes induced by 1 alpha, 25-dihydroxyvitamin D3 in type Ⅱ cells from fetal rat lung explants[J]. Am J Physiol, 1993, 265(1 Pt 1): L45-L52. DOI:10.1152/ajplung.1993.265.1.L45
[33]
MARIN L, DUFOUR ME, TORDET C, et al. 1, 25(OH) 2D3 stimulates phospholipid biosynthesis and surfactant release in fetal rat lung explants[J]. Biol Neonate, 1990, 57(3-4): 257-260. DOI:10.1159/000243200
[34]
NGUYEN TM, GUILLOZO H, MARIN L, et al. Evidence for a vitamin D paracrine system regulating maturation of developing rat lung epithelium[J]. Am J Physiol, 1996, 271(3 Pt 1): L392-L399. DOI:10.1152/ajplung.1996.271.3.L392
[35]
PHOKELA SS, PELEG S, MOYA FR, et al. Regulation of human pulmonary surfactant protein gene expression by 1alpha, 25-dihydroxyvitamin D3[J]. Am J Physiol Lung Cell Mol Physiol, 2005, 289(4): L617 L617-L626. DOI:10.1152/ajplung.00129.2004