中国医科大学学报  2020, Vol. 49 Issue (2): 124-128

文章信息

郭欣欣, 张博涵, 赵梦楠, 王品莹, 陶学恕
GUO Xinxin, ZHANG Bohan, ZHAO Mengnan, WANG Pinying, TAO Xueshu
PPARα对肥胖大鼠神经病理性疼痛的作用及其机制
Effect of PPARα on neuropathic pain in obese rats and its mechanism
中国医科大学学报, 2020, 49(2): 124-128
Journal of China Medical University, 2020, 49(2): 124-128

文章历史

收稿日期:2019-04-02
网络出版时间:2019-12-23 14:25
PPARα对肥胖大鼠神经病理性疼痛的作用及其机制
1. 锦州医科大学附属第三医院麻醉科, 辽宁 锦州 121000;
2. 中国医科大学附属第一医院疼痛科, 沈阳 110001
摘要目的 探讨过氧化物酶体增殖物激活受体α(PPARα)在肥胖大鼠神经病理性疼痛中的作用及其机制。方法 SPF级SD大鼠60只,随机分为6组:高脂(HF)组、HF+坐骨神经分支损伤(SNI)组、HF+SNI+PPARα激动剂(PEA)组、HF+SNI+PPARα抑制剂(GW6471)组、低脂(LF)组、LF+SNI组,连续高脂或低脂饲料喂养12周,采用SNI制作大鼠神经病理性疼痛模型,HF组、LF组、HF+SNI组、LF+SNI组监测机械刺激缩爪潜伏期(PWT)14 d,HF+SNI+PEA组、HF+SNI+G6471组监测PWT 7 d,Western blotting检测各组大鼠脊髓组织中PPARα、Bax及Bcl-2蛋白的表达。结果 与LF大鼠比较,HF大鼠6周发生肥胖;中枢神经系统(CNS)中PPARα蛋白、Bcl-2表达显著降低,Bax表达显著提高(P < 0.05)。与HF组大鼠比较,HF+SNI组大鼠CNS中PPARα蛋白、Bcl-2表达下调,Bax表达上调(P < 0.05)。与HF+SNI大鼠组比较,HF+SNI+PEA组PWT显著增加,上调PPARα、Bcl-2表达,下调Bax蛋白表达(P < 0.05);与HF+SNI比较,HF+SNI+G6471组大鼠PWT降低、PPARα及Bcl-2的表达下调、Bax蛋白的表达上调(均P < 0.05)。结论 HF诱导的SNI大鼠CNS中PPARα活性降低,PPARα蛋白可能成为预防和治疗肥胖相关神经病理性疼痛的新靶点。
Effect of PPARα on neuropathic pain in obese rats and its mechanism
1. Department of Anesthesiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China;
2. Department of Pain Medicine, The First Hospital, China Medical University, Shenyang 110001, China
Abstract: Objective To investigate the role of peroxisome proliferators activate receptors α (PPARα)in neuropathic pain and its relationship with apoptosis in obese rats. Methods Sixty SPF grade SD rats were randomly divided into 8 groups:high fat(HF) group, HF + spared nerve injury (SNI) group, HF + SNI + PPARα agonist (PEA) group, HF + SNI + PPARα inhibitor (GW6471) group, low fat (LF) group, LF + SNI group. high-fat or low-fat diet for 12 weeks. Neuropathy pain model rats were made by damaging a branch of the sciatic nerve. HF, LF, HF + SNI, LF + SNI groups at paw withdrawl threshold(PWT)14 d, PWT 7 d were monitored for depressions in the PPARα agonist and the PPARα inhibitor groups. The expressions of PPARα, Bax and Bcl-2 in the spinal cord tissues of rats in each group, were detected by Western blotting. Results Compared to LF rats, HF rats were obese after 6 weeks. The expressions of PPARα protein and Bcl-2 in the central nervous system(CNS)were significantly decreased, and the expressions of Bax were significantly increased(P < 0.05). Compared to the HF group, the expressions of PPARα protein and Bcl-2 in the CNS in the HF+SNI group were down-regulated, and the expressions of Bax were up-regulated(P < 0.05). Compared to the HF+SNI group, the HF+SNI+PEA group significantly increased PWT, up-regulated PPARα and Bcl-2 expressions, and down-regulated Bax protein expressions(P < 0.05). Compared to the HF+SNI group, PWT of the HF+SNI+G6471 group decreased, the expressions of PPARα and Bcl-2 were down-regulated, and the expressions of Bax protein were up-regulated(all P < 0.05). Conclusion The expression of PPARα in HF-induced obese rats is down-regulated, and the neuronal apoptosis caused by neuronal injury is enhanced by regulating the apoptosis of CNS cells. The regulation of apoptosis in the CNS may be a new way to prevent and treat obesity-related neuropathic pain.

研究[1]显示,肥胖与胰岛素抵抗、血脂异常、2型糖尿病和神经退行性疾病相关。最新研究[2]表明肥胖与疼痛易感性增加有关。饮食诱导的肥胖大鼠或肥胖的Zucker大鼠在皮内注射角叉菜胶时表现出增强的外周炎症和炎症痛觉过敏[3-4]。目前没有预防或治愈肥胖相关疼痛的方法,所以阐明其作用机制非常重要。

过氧化物酶体增殖物激活受体α(peroxidosome proliferators activate receptors α,PPARα)与许多脂代谢性疾病(肥胖症等)有关。研究[5]发现在肥胖人群肝脏中PPARα下调。PPARα已被证实在许多炎症相关的神经病理性疼痛(neuropathic pain,Nep)中发挥止痛作用。Nep与中枢小胶质细胞活化及其随后释放的促炎性细胞因子白细胞介素-6(interleukin-6,IL-6)、白细胞介素-1β(interleukin-1β,IL-1β)、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)有关[6],研究[7]表明小胶质细胞最终引起脊髓等部分的神经细胞凋亡。有研究[8]发现炎症痛时脊髓中的PPARα激活,并迅速参与到痛觉传导的过程中。另外还有研究[9]发现给予PPARα激动剂可以有效降低硫酸镁注射引起的疼痛,而敲除PPARα基因后发现大鼠的痛觉敏感性增加,而给予PPARα激动剂后却没有显示出明显的抗疼痛作用。肥胖是全身低度的慢性炎症状态,外周脂肪细胞变性坏死促进炎症介质释放,脂肪细胞凋亡导致促炎性细胞因子增多[10],造成疼痛敏感性增强。人外周血单核细胞中PPARα激活还具有抗氧化、抗炎、抗凋亡等重要作用[11]

本研究采用高脂肪饮食诱导建立肥胖大鼠模型,进而建立Nep模型,探讨PPARα在肥胖大鼠Nep中的作用及其机制。

1 材料与方法 1.1 实验动物及试剂

体质量约70 g的雄性SD大鼠(辽宁长生生物中心),饲养在23~25 ℃,12 h光照/黑暗循环的房间中,随意提供食物和水。所有实验均按照《动物和人类研究指导原则》进行。实验程序经中国医科大学动物保护与使用委员会批准。PPARα、Bax、Bcl-2抗体购自美国Cell Signaling Technology公司;PPARα激动剂(PEA)、PPARα抑制剂(GW6471)购自美国APExBIO公司。

1.2 方法

1.2.1 大鼠饲养及分组

取SPF级SD大鼠60只,采用随机数字表法随机分为高脂(high fat,HF)组、HF+坐骨神经分支损伤(spared nerve injury,SNI)组、HF+SNI+PEA组、HF+SNI+GW6471组、低脂(low fat,LF)组、LF+SNI组。连续高脂/低脂饲料喂养12周,HF组大鼠给予高脂饮食(含脂肪45% kcal;美国New Brunswick公司)诱导肥胖,具体方法见文献[12],LF组大鼠给予低脂饮食(含脂肪10% kcal)。采用SNI法制备Nep模型,HF或LF组大鼠喂养12周后处死,每组收集部分大鼠L4-6脊髓(spinal cord,SC)和脊髓背根神经节(dorsal root ganglion,DRG)。在大鼠Nep模型建立后14 d收集大鼠L4-6 SC和DRG。HF+SNI+PEA组、HF+SNI+G6471组术后14 d时,鞘内分别给予PEA(0.03 μmol/kg)、GW6471(0.03 μmol/ kg),连续7 d,期间每天测量机械性异常性疼痛,7 d后收集大鼠SC和DRG。

1.2.2 大鼠机械刺激缩爪潜伏期(paw withlraw threshold,PWT)测定

采用Von Frey实验评估机械性异常性疼痛,具体方法见文献[13]。将大鼠置于具有网状底部的笼中,并将校准的Von Frey针垂直施用于动物的后爪,直至观察到阳性反应(缩爪和舔或摇动爪)。

1.2.3 大鼠SNI模型制备

模拟制作与神经损伤相关的Nep的SNI模型。通过吸入3%异氟烷使大鼠麻醉,并且暴露主要坐骨神经及其后肢的分支。结扎或切断胫神经和腓总神经,保留细小腓肠神经。24 h在后爪和足外侧产生显著疼痛反应。

1.2.4 脊髓蛛网膜下腔的腰椎导管插入术

按照文献[14]方法进行鞘内置管。吸入3%异氟烷麻醉大鼠,制作中线侧面切口,并将引导插管(20 G)插入蛛网膜下腔。动物清醒后通过导管施用2%利多卡因(10 μL),通过尾甩动作和后肢麻痹表明定位正确。

1.2.5 Western blotting实验

取出大鼠L4-6 SC和DRG,在含有RIPA裂解物(P0013B)的400 μL匀浆缓冲液中匀浆。然后将样品0 ℃温育30 min,在4 ℃ 15 000 r/min离心10 min。收集上清液并使其变性,在十二烷基硫酸钠聚丙烯酰胺凝胶上进行电泳,然后转移到聚偏二氟乙烯膜上。用含有5%脱脂奶粉的封闭缓冲液封闭膜,然后与PPARα一抗(1: 1 000)和GAPDH(1:1 000)孵育。洗涤膜并与适当二抗(1:10 000)温育。用ECL试剂(Millipore Bio-science)显色印迹,获得图像并用分子成像仪(Gel Doc TMXR,170-8170)和相关的Quantity One 4.6.5软件分析。

1.3 统计学分析

数据均以x±s表示。使用Graphpad Prism软件进行统计学分析。组间比较使用单向或双向ANOVA分析,然后进行Bonferroni检验。P < 0.05为差异有统计学意义。

2 结果 2.1 各组大鼠体质量、PWT比较

结果显示,喂养6、8、10、12周时HF组大鼠比LF组大鼠体质量增加显著(P < 0.05)。见图 1

*P < 0.05 vs LF group. 图 1 各组大鼠体质量变化情况 Fig.1 Comparison of body mass of rats in each group

喂养12周后LF组、HF组、HF+SNI组、LF+SNI组、HF+SNI+PEA组、HF+SNI+GW 6471组50%PWT分别为(13.8±1.10)g、(5.98±1.22)g、(0.11±0.02)g、(0.17±0.40)g、(3.70±1.10)g、(0.07±0.01)g。与LF组比较,HF组大鼠的50%PWT显著降低(P < 0.05);与HF组比较,HF+SNI组大鼠50%PWT进一步降低(P < 0.05);与LF+SNI组比较,HF+SNI组50%PWT也显著降低(P < 0.05);与HF+SNI组比较,HF+SNI+PEA组50%PWT显著提高(P < 0.05),HF+SNI+ GW6471组显著降低(P < 0.05)。

2.2 各组大鼠SC中PPARα、Bax、Bcl-2表达比较

结果显示,与LF组比较,HF组SC中凋亡蛋白Bax表达显著提高(P < 0.05),凋亡蛋白Bcl-2表达显著降低(P < 0.05);与HF组比较,HF+SNI组Bax表达进一步上调(P < 0.05),Bcl-2表达进一步下调(P < 0.05)。与HF+SNI组比较,HF+SNI+PEA组SC中凋亡蛋白Bax表达显著降低,Bcl-2表达显著升高(P < 0.05),HF+SNI+ GW6471组凋亡蛋白Bax表达显著升高,Bcl-2表达显著降低(P < 0.05)。见表 1图 2

表 1 各组SC中PPARα表达、细胞凋亡蛋白Bax和Bcl-2表达的比较 Tab.1 Comparison of PPARα expression, apoptosis protein Bax and bcl-2 expression in the SC of each group
Group Bax Bcl-2 PPARα
HF 0.60±0.021) 0.52±0.071) 0.68±0.121)
HF+SNI 0.86±0.052) 0.31±0.132) 0.32±0.042)
LF 0.48±0.03 0.89±0.06 0.91±0.212)
LF+SNI 0.58±0.04 0.49±0.08 0.48±0.12
HF+SNI+PEA 0.58±0.123) 0.61±0.063) 0.79±0.213)
HF+SNI+ GW 6471 1.17±0.093) 0.13±0.193) 0.22±0.073)
1)P < 0.05 vs LF group;2)P < 0.05 vs HF group;3)P < 0.05 vs HF+SNI group.

In panel A:1, HF group; 2, HF+SNI group; 3, LF group; 4, LF+SNI group. In panel B:1, HF group; 2, HF+SNI group; 3, HF+SNI+PEA group; 4, HF+SNI+ GW6471 group. 图 2 各组大鼠SC中PPARα,细胞凋亡蛋白Bax、Bcl-2表达情况 Fig.2 Expression of apoptosis proteins Bax and bcl-2, PPARα in the SC of rats in each group

与LF组比较,HF组PPARα表达显著降低(P < 0.05);与HF组比较,HF+SNI组PPARα表达进一步降低(P < 0.05)。与HF+SNI组比较,HF+SNI+PEA组SC中PPARα表达显著提高(P < 0.05),而HF+SNI+ GW 6471组PPARα表达显著降低(P < 0.05)。见表 1图 2

3 讨论

研究[15]显示,SC中的PPARα途径在介导Nep中起主要作用,PEA能够逆转SNI野生型小鼠的机械性疼痛和热痛觉过敏,PEA已被证明是通过恢复小鼠SNI中的谷氨酸突触功能来改善疼痛。研究[16-17]显示,PEA通过激活PPARα在慢性疼痛中发挥抗炎、镇痛、免疫调节和神经保护作用。

本研究结果显示,HF诱导的肥胖Nep大鼠机械疼痛敏感性增强,而鞘内注射PPARα激活剂PEA可减轻症状,而鞘内注射PPARα抑制剂(GW6471)则症状加重。HF诱导的肥胖Nep大鼠SC中PPARα表达下降,细胞凋亡因子Bax表达增加,Bcl-2表达降低。而PEA逆转大鼠SC中相关因子的表达。可见鞘内注射PEA可增加HF诱导的肥胖Nep大鼠SC中PPARα活性,导致机械疼痛敏感性降低。相反,鞘内注射GW6471降低SC中PPARα活性,导致机械疼痛敏感度增高。提示HF诱导的肥胖Nep大鼠疼痛增强是SC中PPARα活性降低导致细胞凋亡增加引起的。因此SC中PPARα活性受损是HF诱导的肥胖Nep大鼠疼痛增强的主要原因。

促凋亡蛋白和抑凋亡蛋白共同存在于细胞内,当凋亡信号发出时,2种蛋白平衡模式破坏,促调亡蛋白增多,使细胞发生凋亡[18]。本研究结果显示,HF诱导的肥胖Nep大鼠SC中细胞凋亡过程激活。有研究[19]证实肥胖与氧化应激及慢性炎症反应相关。在肥胖小鼠外周脂肪组织、肝脏、骨骼肌、心肌、血清、关节液等中ROS、SOD、MDA含量显著增加,炎症细胞因子TNF-α、IL-β等明显增加[20-21]。肥胖患者机体激活的免疫细胞产生大量ROS,促进氧化应激、炎症反应等发生,继而引起神经元损伤,引起Nep增强。

综上所述,HF诱导的肥胖大鼠SC中PPARα活性降低。PPARα活性降低导致SC中细胞凋亡蛋白Bax增加,Bcl-2减少,进而促进HF诱导的SNI大鼠疼痛增强。因此推测肥胖诱导的大鼠SC中PPARα活性降低,PPARα可能成为预防和治疗肥胖相关Nep的新靶点。

参考文献
[1]
SCHWARTZ MW, SEELEY RJ, ZELTSER LM, et al. Obesity pathogenesis:an endocrine society scientific statement[J]. Endocr Rev, 2017, 38(4): 267-296. DOI:10.1210/er.2017-00111
[2]
IANNITTI T, GRAHAM A, DOLAN S. Increased central and peripheral inflammation and inflammatory hyperalgesia in Zucker rat model of leptin receptor deficiency and genetic obesity[J]. Exp Physiol, 2012, 97(11): 1236-1245. DOI:10.1113/expphysiol.2011.064220
[3]
WANG J, ZHANG Q, ZHAO L, et al. Down-regulation of PPARα in the spinal cord contributes to augmented peripheral inflammation and inflammatory hyperalgesia in diet-induced obese rats[J]. Neuroscience, 2014, 278: 165-178. DOI:10.1016/j.neuroscience.2014.07.071
[4]
ZHANG YN, SONG CW, LI HO, et al. Ursolic acid prevents augmented peripheral inflammation and inflammatory hyperalgesia in high-fat diet-induced obese rats by restoring downregulated spinal PPARα[J]. Mol Med Rep, 2016, 13(6): 5309-5316. DOI:10.3892/mmr.2016.5172
[5]
LOVERME J, RUSSO R, LA RANA G, et al. Rapid broad-spectrum analgesia through activation of peroxisome proliferator-activated receptor-alpha[J]. J Pharmacol Exp Ther, 2006, 319(3): 1051-1061. DOI:10.1124/jpet.106.111385
[6]
BARON R, BINDER A, WASNER G. Neuropathic pain:diagnosis, pathophysiological mechanisms, and treatment[J]. Lancet Neurol, 2010, 9(8): 807-819. DOI:10.1016/s1474-4422(10)70143-5
[7]
KIM D, YOU B, JO EK, et al. NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain[J]. Proc Natl Acad Sci USA, 2010, 107(33): 14851-14856. DOI:10.1073/pnas.1009926107
[8]
KIM M, TIAN R. Targeting AMPK for cardiac protection:opportunities and challenges[J]. J Mol Cell Cardiol, 2011, 51(4): 548-553. DOI:10.1016/j.yjmcc.2010.12.004
[9]
YANG YJ, HU L, XIA YP, et al. Resveratrol suppresses glial activation and alleviates trigeminal neuralgia via activation of AMPK[J]. J Neuroinflammation, 2016, 13(1): 84. DOI:10.1186/s12974-016-0550-6
[10]
LAUDISIO D, MUSCOGIURI G, BARREA L, et al. Obesity and breast cancer in premenopausal women:Current evidence and future perspectives[J]. Eur J Obstet Gynecol Reprod Biol, 2018, 230: 217-221. DOI:10.1016/j.ejogrb.2018.03.050
[11]
VARGA T, CZIMMERER Z, NAGY L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation[J]. Biochim Biophys Acta, 2011, 1812(8): 1007-1022. DOI:10.1016/j.bbadis.2011.02.014
[12]
SONG T, LV LY, XU J, et al. Diet-induced obesity suppresses sevoflurane preconditioning against myocardial ischemia-reperfusion injury:role of AMP-activated protein kinase pathway[J]. Exp Biol Med(Maywood), 2011, 236(12): 1427-1436. DOI:10.1258/ebm.2011.011165
[13]
FANG XY, XU XR, LIN XW, et al. Downregulated spinal IRF8 and BDNF in NAC are involved in neuropathic pain-induced depression relief via pulsed radiofrequency on dorsal root ganglion in rat SNI model[J]. Brain Res Bull, 2019, 146: 192-200. DOI:10.1016/j.brainresbull.2019.01.008
[14]
STØRKSON RV, KJØRSVIK A, TJØLSEN A, et al. Lumbar catheterization of the spinal subarachnoid space in the rat[J]. J Neurosci Methods, 1996, 65(2): 167-172. DOI:10.1016/0165-0270(95)00164-6
[15]
BOCCELLA S, CRISTIANO C, ROMANO R, et al. Ultra-micronized palmitoylethanolamide rescues the cognitive decline-associated loss of neural plasticity in the neuropathic mouse entorhinal cortex-dentate gyrus pathway[J]. Neurobiol Dis, 2019, 121: 106-119. DOI:10.1016/j.nbd.2018.09.023
[16]
GUIDA F, LUONGO L, MARMO F, et al. Palmitoylethanolamide reduces pain-related behaviors and restores glutamatergic synapses homeostasis in the medial prefrontal cortex of neuropathic mice[J]. Mol Brain, 2015, 8: 47. DOI:10.1186/s13041-015-0139-5
[17]
GUIDA F, LUONGO L, BOCCELLA S, et al. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity:involvement of the CB2 receptor[J]. Sci Rep, 2017, 7(1): 375. DOI:10.1038/s41598-017-00342-1
[18]
白雪, 宁宏. PP242对人晶状体上皮细胞凋亡的诱导及凋亡相关蛋白Bax表达的影响[J]. 中国医科大学报, 2018, 47(6): 548-551. DOI:10.12007/j.issn.0258-4646.2018.06.015
[19]
HUANG FF, WANG JJ, YU FM, et al. Protective effect of Meretrix meretrix oligopeptides on high-fat-diet-induced non-alcoholic fatty liver disease in mice[J]. Mar Drugs, 2018, 16(2): E39. DOI:10.3390/md16020039
[20]
LEE BC, KIM MS, PAE M, et al. Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity[J]. Cell Metab, 2016, 23(4): 685-698. DOI:10.1016/j.cmet.2016.03.002
[21]
BOULANGÉ CL, NEVES AL, CHILLOUX J, et al. Impact of the gut microbiota on inflammation, obesity, and metabolic disease[J]. Genome Med, 2016, 8(1): 42. DOI:10.1186/s13073-016-0303-2