﻿ 正畸托槽与弓丝间摩擦力性能的实验研究
 中国医科大学学报  2019, Vol. 48 Issue (1): 23-28

#### 文章信息

LIU Xiaomo, ZHANG Mengqi, LIN Jiuxiang

Experimental Research on Friction between Domestic Brackets and Archwires

Journal of China Medical University, 2019, 48(1): 23-28

### 文章历史

Experimental Research on Friction between Domestic Brackets and Archwires
Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
Abstract: Objective To study the friction between brackets and archwires and the influential factors. Methods To test the friction of six combinations of canine bracket and stainless steel archwire, and to calculate the critical contact angles for each combination. Results The friction maintains stability with slight changes when the contact angle is smaller than the critical contact angle. The friction increases linearly when the contact angle is larger than the critical contact angle. The friction of different combinations of bracket-archwire are different and the critical contact angles are also different. Conclusion The critical contact angle influences the friction between bracket and archwire significantly. The critical contact angle is relevant to both the structure of the bracket and the size of the archwire.

1 材料与方法 1.1 实验材料

 图 1 传动直丝弓托槽的“台阶”结构 Fig.1 Step structure of transmission straight archwire bracket

 图 2 摩擦力测试仪工作原理图 Fig.2 Working principle of friction test instrument

1.2 测试环境

1.3 数据分析

 图 3 二阶多项式回归法的分析模式 Fig.3 Analysis paradigm of second-order polynomial regression

2 结果 2.1 摩擦力

 图 4 不同“托槽-弓丝”组合的摩擦力图 Fig.4 Friction force (gf) of combinations of brackets and archwire

 Contact angel（°） MBT & 0.016'' s.s. MBT & 0.019''×0.025'' s.s. TSA & 0.016'' s.s.（full ligation） TSA & 0.019''×0.025'' s.s.（full ligation） TSA & 0.016'' s.s.（oblique ligation） TSA & 0.019'' ×0.025'' s.s.（oblique ligation） 0 91.93±1.596 132.16±3.464 110.27±0.990 234.68±2.778 3.89±0.912 63.262±1.456 0.5 92.04±0.991 115.11±0.010 - - - - 1 93.29±0.938 143.20±0.009 116.67±1.250 239.04±2.446 3.62±1.152 69.462±1.939 1.5 96.02±1.369 125.37±0.020 - - - - 2 95.17±1.354 196.25±0.024 110.79±1.008 237.11±3.417 3.09±0.503 58.317±1.279 2.5 94.12±1.115 198.18±0.019 - - - - 3 91.04±1.881 284.45±0.023 115.26±2.305 233.88±7.312 3.29±0.721 60.622±3.324 4 96.24±0.987 346.14±0.020 111.86±2.347 223.85±5.267 3.11±0.725 57.834±1.162 5 106.88±1.294 441.94±0.020 112.65±1.497 237.73±3.003 3.24±0.585 61.068±1.847 6 133.36±1.505 576.74±0.022 113.05±1.910 216.56±2.862 3.87±0.526 62.562±1.150 7 206.74±2.606 626.13±0.022 114.87±2.374 209.17±3.257 3.18±0.566 64.856±3.430 8 292.12±3.902 755.96±0.037 113.31±1.390 230.99±4.847 3.21±0.718 71.125±3.887 9 - - 118.00±1.924 211.46±4.424 3.58±0.637 63.195±2.203 10 - - 113.65±1.621 209.36±2.871 3.36±0.614 57.409±2.274 11 - - 119.45±7.070 221.74±2.740 3.51±0.452 59.464±0.910 12 - - 115.73±1.466 208.44±5.225 3.57±0.664 58.063±3.898 13 - - 112.54±2.370 206.13±2.315 3.67±0.674 63.217±4.315 14 - - 109.92±1.513 200.04±2.545 3.74±1.134 71.258±3.186 15 - - 111.67±1.529 211.87±3.528 3.77±0.726 52.103±1.200 16 - - 112.48±1.285 208.45±3.971 3.33±1.154 56.282±2.043 17 - - 114.69±0.942 209.19±2.476 3.63±1.229 57.679±1.669 18 - - 115.28±0.801 211.77±4.647 3.59±0.608 71.057±2.438 19 - - 116.42±2.124 206.80±3.149 3.77±0.594 74.211±2.445 20 - - 113.81±1.079 204.15±1.832 3.97±0.874 94.153±1.796 21 - - 123.79±1.821 258.07±5.522 10.61±0.873 142.386±3.502 22 - - 141.75±1.599 290.00±4.387 57.12±1.153 225.060±4.283 23 - - 164.53±2.072 365.27±9.213 113.33±2.102 338.550±6.623

2.2 临界角

 Combination of brackets and archwire Regression equation Linear regression Critical Contact angle（°） MBT & 0.016'' s.s. N=0.587θ2-0.94θ+90.847 N=94.661θ-15.503 4.55 MBT & 0.019''×0.025'' s.s. N=118.535θ2-116.48θ+195.99 N=94.661θ-15.503 2.23 TSA & 0.016'' s.s.（full ligation） N=9.509θ2-5.991θ+119.489 N=20.372θ-304.833 20.83 TSA & 0.019''×0.025'' s.s.（full ligation） N=42.357θ2-30.997θ+233.184 N=53.601θ-874.766 20.67 TSA & 0.016'' s.s.（oblique ligation） N=20.466θ2-13.295θ+6.11 N=51.358θ-1 069.533 20.94 TSA & 0.019''×0.025'' s.s.（oblique ligation） N=55.082θ2-34.376θ+67.971 N=52.521θ-919.115 18.79

3 讨论

 [1] LIU XM, DING P, LIN JX. Effects of bracket design on critical contact angle[J]. Angle Orthod, 2013, 83(5): 877-884. DOI:10.2319/080112-621.1 [2] KUSY RP, WHITLEY JQ. Friction between different wire-bracket configurations and materials[J]. Semin Orthod, 1997, 3(3): 166-177. DOI:10.1016/S1073-8746(97)80067-9 [3] KUSY RP, WHITLEY JQ. Influence of archwire and bracket dimensions on sliding mechanics:derivations and determinations of the critical contact angles for binding[J]. Eur J Orthod, 1999, 21(2): 199-208. DOI:10.1093/ejo/21.2.199 [4] DRESCHER B, BOURANEL C, SCHUMACHER H. Frictional forces between bracket and archwire[J]. Am J Orthod Dentofac, 1989, 96(5): 397-404. DOI:10.1016/0889-5406(89)90324-7 [5] KUSY RP. Ongoing innovations in biomechanics and materials for the new millennium[J]. Angle Orthod, 2000, 70(5): 366-376. DOI:10.1043/0003-3219(2000)070<0366:OⅡBAM>2.0.CO;2 [6] THORSTENSON GA, KUSY RP. Resistance to sliding of self-ligating brackets versus conventional stainless steel twin brackets with second-order angulation in the dry and wet (saliva) states[J]. Am J Orthod Dentofac, 2001, 120(4): 361-370. DOI:10.1067/mod.2001.116090 [7] 封净, 范俊恒, 张佐, 等. 传动直丝弓技术矫治安氏Ⅱ类错颌临床疗效研究[J]. 宁夏医学杂志, 2017, 39(6): 556-557. DOI:10.16458/j.cnki.1007-0893.2017.05.064 [8] 赵伟. 传动直丝弓矫治器治疗安氏Ⅲ类错颌的临床研究[J]. 全科口腔医学电子杂志, 2018, 5(21): 40-41, 43. DOI:10.16269/j.cnki.cn11-9337/r.2018.21.023 [9] 王琦. 传动直丝弓矫治器在口腔正畸的临床应用效果分析[J]. 社区医学杂志, 2017, 15(21): 41-42. [10] 林久祥.牙齿矫正用传动矫治器[P].专利号: 200620108466.4. 2008-01-09. [11] 丁鹏.两种自锁托槽拔牙矫治的临床研究及摩擦力实验研究[D].北京: 北京大学, 2007. [12] KAPUR R, SINHA PK, NANDA RS. Frictional resistance of the Damon SL bracket[J]. J Clin Orthod, 1998, 32(8): 485-489. [13] 林久祥. 矫正器及技术进展[J]. 中国实用口腔科杂志, 2009, 2(1): 5-8. DOI:10.3969/j.issn.1674-1595.2009.01.002 [14] 邹宏艺, 万志刚, 熊伟, 等. 传动直丝弓矫治器用于青少年牙齿矫正中的效果分析[J]. 中国继续医学教育, 2018, 10(24): 92-93. DOI:10.3969/j.issn.1674-9308.2018.24.049 [15] 杨永平, 刘广昌, 周沛玲. 传动直丝弓矫治器对青少年安氏Ⅱ类1分类错矫治的临床效果[J]. 深圳中西医结合杂志, 2017, 27(5): 131-132. DOI:10.16458/j.cnki.1007-0893.2017.05.064 [16] KUSY RP, WHITLEY JQ. Assessment of second-order clearances between orthodontic archwires and bracket slots via the critical contact angle for binding[J]. Angle Orthod, 1999, 69(1): 71-80. DOI:10.1043/0003-3219(1999)069<0071:AOSOCB>2.3.CO;2