中国生物工程杂志  2017, Vol. 37 Issue (6): 86-92

文章信息

窦一涵, 李映, 赵鹏, 范如婷, 田平芳.
DOU Yi-han, LI Ying, ZHAO Peng, FAN Ru-ting, TIAN Ping-fang.
重组肺炎克雷伯氏菌转化甘油为聚3-羟基丙酸
Metabolic Engineering of Klebsiella pneumoniae for the Production of Poly(3-Hydroxypropionate) from Glycerol
中国生物工程杂志, 2017, 37(6): 86-92
China Biotechnology, 2017, 37(6): 86-92
http://dx.doi.org/DOI:10.13523/j.cb.20170613

文章历史

收稿日期: 2016-12-27
修回日期: 2017-02-27
重组肺炎克雷伯氏菌转化甘油为聚3-羟基丙酸
窦一涵1, 李映2, 赵鹏1, 范如婷1, 田平芳1     
1. 北京化工大学生命科学与技术学院 北京 100029
2. 北京联合大学生物化学工程学院 北京 100023
摘要: 聚3-羟基丙酸[Poly(3-hydroxypropionate), P3HP]是一种生物可降解及生物相容的新型聚羟基脂肪酸酯。目前已鉴定的生物均不能天然合成P3HP。采用PCR克隆鼠伤寒沙门氏菌的丙醛脱氢酶(PduP)基因及罗尔斯通氏菌的聚羟基脂肪酸酯合成酶(PhaC)基因,构建共表达载体,转化肺炎克雷伯氏菌后获得两株重组菌。以甘油为唯一碳源进行摇瓶发酵,pduPphaC共用tac启动子的工程菌K. p(pET-tac-pduP-phaC)产生0.054 g/L的P3HP,而pduPphaC各自独用tac启动子的工程菌K. p(pET-tac-pduP-tac-phaC)产生0.091 g/L的P3HP。
关键词: 肺炎克雷伯氏菌     聚3-羟基丙酸     甘油     丙醛脱氢酶     聚羟基脂肪酸酯合成酶    
Metabolic Engineering of Klebsiella pneumoniae for the Production of Poly(3-Hydroxypropionate) from Glycerol
DOU Yi-han1, LI Ying2, ZHAO Peng1, FAN Ru-ting1, TIAN Ping-fang1    
1. College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;
2. College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
Abstract: Poly(3-hydroxypropionate) (P3HP) represents a novel biodegradable and biocompatible polyhydroxyalkanoate. None of currently identified organisms can naturally synthesize P3HP. Two recombinant Klebsiella pneumoniae strains for the production of P3HP were constructed. The propionaldehyde dehydrogenase gene (pduP) from Salmonella enterica serovar typhimurium LT2 and the polyhydroxyalkanoate synthase gene (phaC) from Ralstonia eutropha H16 were cloned by PCR and cloned into vectors. Transformation of vectors into competent K. pneumoniae cells led to two recombinant strains:K. p(pET-tac-pduP-phaC), whereby pduP and phaC shared tac promoter, and K. p(pET-tac-pduP-tac-phaC), whereby pduP and phaC were independently expressed under tac promoter. Using glycerol as the sole carbon source for shake flask fermentation, the strain K. p(pET-tac-pduP-phaC) produced 0.054 g/L of P3HP, by contrast, the strain K. p(pET-tac-pduP-tac-phaC) produced 0.091 g/L of P3HP.
Key words: Klebsiella pneumoniae     Poly (3-hydroxypropionate)     Glycerol     Propionaldehyde dehydrogenase     Polyhydroxyalkanoate synthase    

当环境中碳源过剩时,许多微生物在胞内合成聚羟基脂肪酸酯(polyhydroxyalkanoates, PHAs)[1-2]。PHAs是一类由羟基脂肪酸单体聚合而成的线性聚酯。PHAs不仅具有从坚硬质脆到柔软弹性的不同材料学性能[3],而且具备石化基塑料无法比拟的生物可降解性和生物相容性[4]。由于上述优良性能,PHAs已成为医用和食品工业等领域极具前景的新型材料[5-6]。聚3-羟基丙酸[poly (3-hydroxypropionate), P3HP]是PHA家族的新成员[7],其单体3-羟基丙酸(3-HP)是重要的平台化合物[8]。化学合成P3HP包括内酯开环聚合和直接缩聚,因工艺成本高及毒性而限制了研发[9-10]。近年来P3HP的研究日益增多,其工程菌发酵一般采用廉价碳源,且无需添加昂贵前体物[11-12]

肺炎克雷伯氏菌(Klebsiella pneumoniae)不仅能转化甘油为3-HP,而且生长快[13],因此可作为构建P3HP工程菌的出发菌株。2015年,首次报道了一株经3-HP途径生产P3HP的重组肺炎克雷伯氏菌[14]。本研究分析了K. pneumoniae的生理生化特性,拟按图 1所示构建工程菌,精简了P3HP合成途径。以甘油为底物生产P3HP涉及3步酶催化[15]:(1) 甘油脱水酶(DhaB)催化甘油(Glycerol)生成3-羟基丙醛(3-HPA);(2) 丙醛脱氢酶(PduP)催化3-HPA生成3-羟基丙酰辅酶A(3HP-CoA);(3) 聚酯合成酶(PhaC)将3HP-CoA聚合为P3HP(图 1)。拟以肺炎克雷伯氏菌为宿主,异源表达鼠伤寒沙门氏菌Salmonella enterica serovar Typhimurium LT2的丙醛脱氢酶(PduP)及罗尔斯通氏菌Ralstonia eutropha H16的聚酯合成酶(PhaC),以甘油为碳源发酵生产P3HP。通过优化关键酶表达,提高甘油转化率和P3HP的产量。

图 1 以甘油为碳源合成P3HP的代谢途径 Figure 1 Biosynthetic pathway of P3HP from glycerol
1 材料与方法 1.1 菌株、载体及引物

菌株K. pneumoniae AA405, S. enterica, R. eutropha及表达载体pET28a为本实验室保存。PCR引物由北京博迈德生物技术有限公司合成(表 1)。

表 1 菌株、载体及引物 Table 1 Strains, vectors and primers used in this study

1.2 试剂

DNA聚合酶购自TaKaRa公司;DNA Marker、蛋白Marker、细菌基因组提取试剂盒、质粒提取试剂盒购自博迈德生物技术公司;限制性核酸内切酶、T4 DNA连接酶购自New England Biolabs (北京)有限公司;硫酸卡纳霉素和3-羟基丙酸甲酯(3HP-Methyl)标准品购自宝如亿生物技术有限公司。

1.3 培养基及培养条件

LB培养基(g/L):酵母粉,5;胰蛋白胨,10;NaCl,10;固体LB培养基需加入15 g/L琼脂。甘油基本发酵培养基(g/L):K2HPO4·3H2O,3.4;KH2PO4,1.3;(NH4)2SO4,4;MgSO4·7H2O,0.5;CaCO3,0.1;酵母粉,3;甘油,40;微量元素,1.25 ml。微量元素(g/L):MnCl2·4H2O, 0.1;ZnCl2, 0.07;NiCl2·6H2O, 0.025;FeSO4·7H2O, 1;CoCl2·2H2O, 0.2;CuCl2·2H2O, 0.02;Na2MoO4·2H2O, 0.035;硼酸,0.06;饱和盐酸,4 ml。硫酸卡纳霉素:贮存液浓度,10 mg/ml;工作浓度50 μg/ml。

菌种活化:将保存的菌液按1%(V/V)接种于4 ml LB液体培养基,37℃ 200 r/min振荡培养12 h。若质粒携带抗性基因,需添加工作浓度抗生素。摇瓶发酵:活化后的菌液按1%(V/V)接种于含100 ml发酵培养基的锥形瓶(250 ml),封口膜封口,37℃ 200 r/min连续培养24 h(第3 h后加入诱导剂IPTG),每3 h取样检测。

1.4 重组菌构建

基因扩增:从GenBank查阅S. enterica serovar Typhimurium LT2的醛脱氢酶基因(pduP)及R. eutropha H16的聚酯合成酶(PHA合成酶)基因(phaC)序列,Primer Premier 5设计引物(表 1);用试剂盒提取细菌基因组,PCR扩增pduPphaC基因。

重组载体pET-tac-pduP-phaC的构建:回收纯化pduP基因,提取质粒pET-tac,37℃下双酶切(BamH Ⅰ/EcoR Ⅰ)基因和载体2 h,切胶回收后加T4 DNA连接酶16℃连接4 h,热击转化至感受态细胞E. coli TOP10,经菌落PCR及琼脂糖凝胶电泳验证,获得含pET-tac-pduP的重组菌;同样方法获得含pET-tac-phaC的重组菌;双酶切(EcoR Ⅰ/Hind Ⅲ)上述两种质粒,以pET-tac-pduP为骨架,于pduP下游插入phaC,构建含两个关键酶基因的重组载体pET-tac-pduP-phaC

重组载体pET-tac-pduP-tac-phaC的构建:以pET-tac为模板,PCR扩增tac启动子,用EcoR Ⅰ单酶切pET-tac-pduP-phaC和tac,在pduPphaC基因之间插入tac启动子序列,转化感受态细胞E. coli TOP 10,筛选阳性克隆。载体构建思路如图 2

图 2 重组质粒构建示意图 Figure 2 Diagram of vector construction for P3HP synthesis

重组菌构建:提取重组载体pET-tac-pduP-phaC和pET-tac-pduP-tac-phaC,电击转化感受态K. pneumoniae,涂布含硫酸卡那霉素的固体平板,菌落PCR及琼脂糖凝胶电泳验证,获得重组菌K. p(pET-tac-pduP-phaC)和K. p(pET-tac-pduP-tac-phaC),保存备用。

1.5 重组菌发酵

对以下4株菌进行24 h摇瓶发酵:K. p(pET-tac-pduP-phaC)、K. p(pET-tac-pduP-tac-phaC)、野生型(K. p WT)和空质粒对照K. p(pET-tac)。每3 h各自取样2 ml,测定OD600及甘油剩余量,绘制细菌生长及甘油消耗曲线。另取24 h时的发酵液,通过SDS-PAGE验证蛋白表达情况。

P3HP的检测:用气相色谱测定P3HP [16]。取2 ml 24 h发酵液,离心,洗涤得菌体;加氯仿、甲醇-硫酸溶液(甲醇:硫酸=85:15) 各1 ml;99℃水浴锅回流加热4 h;冷却至室温后加1 ml无菌水,漩涡振荡30 s,静置分层,取下层氯仿层,即为待测样品;以3HP-Methyl标准品为对照,GC检测。检测条件:初始90℃,保持3 min,10℃/min升温至180℃,保持5 min。为进一步验证结果,采用气相色谱-质谱联用(GC-MS)对样品组分进行测定。

2 结果与讨论 2.1 重组菌的构建

PCR克隆鼠伤寒沙门氏菌的pduP基因(1 395 bp),电泳如图 3a所示,1 500 bp附近有一清晰的条带,酶切,连接并转化感受态细胞,经菌落PCR验证,构建得到含有pduP的载体pET-tac-pduP。同样方法克隆罗尔斯通氏菌的PHA合成酶基因phaC(1 770 bp),如图 3b所示,2 000 bp附近有一清晰条带,构建载体pET-tac-phaC。测序结果经DNAMAN软件比对分析,发现与目标序列一致,可用于蛋白表达。

图 3 基因克隆及重组质粒电泳 Figure 3 Electrophoresis of genes and recombinant plasmids PCR amplification of pduP (a) and phaC (b); Colony PCR analysis of recombinant plasmids pET-tac-pduP-phaC (c) and pET-tac-pduP-tac-phaC (d); M:DNA marker

双酶切(EcoR Ⅰ/Hind Ⅲ)处理pET-tac-pduP和pET-tac-phaC,再经连接、转化、菌落PCR验证,得到同时携带pduPphaC的重组载体pET-tac-pduP-phaC,如图 3c所示,在3 000 bp附近有目标条带,表明质粒上同时携带pduPphaC

在一个阅读框中串联表达多个基因时,后面基因的表达通常较弱。因此在pduPphaC之间通过EcoR Ⅰ位点插入包含操纵基因的tac启动子序列,使两个基因的表达受独立操纵基因控制。成功构建表达载体pET-tac-pduP-tac-phaC,如图 3d所示,在3 000 bp附近有目标条带,避免了PHA合成酶基因phaC表达受抑制的可能性。

提取上述两种重组载体,电击转化至K. pneumoniae,构建重组工程菌K. p(pET-tac-pduP-phaC)和K. p(pET-tac-pduP-tac-phaC),保存备用。

2.2 重组菌蛋白表达

摇瓶发酵24 h的菌体进行SDS-聚丙烯凝胶电泳。从SDS-PAGE结果(图 4) 可知,丙醛脱氢酶PduP(49 kDa)在目标位置有明显条带,表达效果较好;PHA合成酶(64.3 kDa)条带浅,表达较弱。

图 4 SDS-PAGE Figure 4 SDS-PAGE analysis of protein expression M:Marker; 1:K. p WT; 2-K. p(pET-tac-pduP-phaC); 3: K. p(pET-tac-pduP-tac-phaC); arrows indicate PduP (49 kDa) and PhaC(64.3 kDa)
2.3 重组菌生长及甘油消耗

对重组菌及对照菌进行摇瓶发酵,测吸光度(OD600)和甘油剩余量,绘制生长曲线(图 5a)及甘油剩余量曲线(图 5b)。通过分析和对比可知,4株菌在24 h内的甘油消耗大致相同。从生物量可知,重组菌K. p(pET-tac-pduP-phaC)及空质粒组稍低于野生型,推测是质粒的引入增加了负荷;重组菌K. p(pET-tac-pduP-tac-phaC)在6 h后生物量急剧上升,12 h进入平稳期,最大值为野生型的1.75倍。推测原因如下:其一,表达的丙醛脱氢酶将对细胞有毒的3-HPA转化为3HP-CoA,而强化表达PHA合成酶进一步拉动代谢流,减少了3-HPA累积;其二,P3HP是胞内大分子,可作为碳源促进菌体生长,因此在甘油消耗相同的条件下,细菌表现更高的生物量;其三,生产P3HP颗粒的菌体体积发生明显变化,可能对菌体浓度的测量造成一定干扰。

图 5 菌体生长及甘油剩余量曲线图 Figure 5 Growth and residual glycerol of recombinant strains
2.4 P3HP的检测

取发酵24 h的菌液,经甲酯化反应将P3HP转化为3HP-Methyl后用气相色谱检测。如图 6所示,(a)、(b)、(c)分别代表 3HP-Methyl标准品、重组菌K. p(pET-tac-pduP-phaC)和K. p(pET-tac-pduP-tac-phaC)甲酯化样品的GC结果。从图 6可知,样品与标准品的出峰位置吻合,出峰时间(min)分别为:8.413s、8.399s、8.414s,初步认定发酵样品中含有3HP-Methyl;为确证此结果,用气相色谱-质谱联用检测样品,证实样品中对应出峰时间的物质为3HP-Methyl,即菌体产生了P3HP。根据GC结果,重组菌K. p(pET-tac-pduP-tac-phaC)出峰面积大于K. p(pET-tac-pduP-phaC),与预期相符,即独立阅读框的引入,使PHA合成酶表达量增加,P3HP产量也相应增加。

图 6 气相色谱检测结果 Figure 6 Results of gas chromatography GC results of 3HP-Methyl standard (a), K. p(pET-tac-pduP-phaC) (b) and K. p(pET-tac-pduP-tac-phaC) (c)
2.5 P3HP产量

以氯仿为溶剂配制浓度为10、8、5、4、2、1及0.5(g/L)的3HP-Methyl标准品溶液,GC检测,绘制标准曲线(图 7),峰面积计算样品中的3HP-Methyl含量,并换算为重组菌K. p(pET-tac-pduP-phaC)和K. p(pET-tac-pduP-tac-phaC)的P3HP产量,分别为0.054 g/L及0.091 g/L。

图 7 3HP-Methyl标准曲线 Figure 7 Standard curve of 3HP-Methyl
3 结论

(1) PCR克隆了S. enterica的醛脱氢酶基因pduPR. eutropha的PHA合成酶基因phaC,构建共表达载体后转化K. pneumoniae,SDS-PAGE表明表达成功。

(2) 以甘油为唯一碳源摇瓶发酵,GC及气相色谱-质谱联用证实在K. pneumoniae成功构建了P3HP的合成途径。

(3)pduPphaC共用tac启动子的工程菌K. p(pET-tac-pduP-phaC)产生0.054 g/L的P3HP,而pduPphaC各自独用tac启动子的工程菌K. p(pET-tac-pduP-tac-phaC)产生0.091 g/L的P3HP。后者是前者P3HP产量的1.69倍。

参考文献
[1] Wang Y, Yin J, Chen G Q. Polyhydroxyalkanoates, challenges and opportunities. Current Opinion in Biotechnology, 2014, 30(30) : 59–65.
[2] Lee S Y. Bacterial polyhydroxyalkanoates. Biotechnology and Bioengineering, 1996, 49(1) : 1–14. DOI:10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.3.CO;2-1
[3] Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates:biological polyesters. Progress in Polymer Science, 2000, 25(10) : 1503–1555. DOI:10.1016/S0079-6700(00)00035-6
[4] Poirier Y, Nawrath C, Somerville C. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Nature Biotechnology, 1995, 13(2) : 142–150. DOI:10.1038/nbt0295-142
[5] Chen G Q, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 2005, 26(33) : 6565–6578. DOI:10.1016/j.biomaterials.2005.04.036
[6] Rai R, Keshavarz T, Roether J A, et al. Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Materials Science and Engineering:R:Reports, 2011, 72(3) : 29–47. DOI:10.1016/j.mser.2010.11.002
[7] Zhu B, Kai W, Pan P, et al. Polymorphic packing and dynamics of biodegradable poly(3-hydroxypropionate). The Journal of Physical Chemistry B, 2008, 112(32) : 9684–9692. DOI:10.1021/jp801538p
[8] Li Y, Wang X, Ge X, et al. High production of 3-hydroxypropionic acid in Klebsiella pneumoniae by systematic optimization of glycerol metabolism. Scientific Reports, 2016, 6 : 26932. DOI:10.1038/srep26932
[9] Dunn E W, Lamb J R, LaPointe A M, et al. Carbonylation of ethylene oxide to β-propiolactone:a facile route to poly(3-hydroxypropionate) and acrylic acid. ACS Catalysis, 2016, 6(12) : 8219–8223. DOI:10.1021/acscatal.6b02773
[10] Yamashita M, Takemoto Y, Ihara E, et al. Organolanthanide-initiated living polymerizations of ε-caprolactone, δ-valerolactone, and β-propiolactone. Macromolecules, 1996, 29(5) : 1798–1806. DOI:10.1021/ma951400n
[11] Andreeβen B, Lange A B, Robenek H, et al. Conversion of glycerol to poly(3-hydroxypropionate) in recombinant Escherichia coli. Applied and Environmental Microbiology, 2010, 76(2) : 622–626. DOI:10.1128/AEM.02097-09
[12] Wang Q, Liu C, Xian M, et al. Biosynthetic pathway for poly(3-hydroxypropionate) in recombinant Escherichia coli. Journal of Microbiology, 2012, 50(4) : 693–697. DOI:10.1007/s12275-012-2234-y
[13] Wang K, Wang X, Ge X, et al. Heterologous expression of aldehyde dehydrogenase from Saccharomyces cerevisiae in Klebsiella pneumoniae for 3-hydroxypropionic acid production from glycerol. Indian Journal of Microbiology, 2012, 52(3) : 478–483. DOI:10.1007/s12088-012-0280-0
[14] Feng X, Xian M, Liu W, et al. Biosynthesis of poly (3-hydroxypropionate) from glycerol using engineered Klebsiella pneumoniae strain without vitamin B12. Bioengineered, 2015, 6(2) : 77–81. DOI:10.1080/21655979.2015.1011027
[15] Gao Y, Liu C, Ding Y, et al. Development of genetically stable Escherichia coli strains for poly (3-hydroxypropionate) production. PloS One, 2014, 9(5) : e97845. DOI:10.1371/journal.pone.0097845
[16] Brandl H, Gross R A, Lenz R W, et al. Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Applied and Environmental Microbiology, 1988, 54(8) : 1977–1982.