中国生物工程杂志  2017, Vol. 37 Issue (4): 9-17

文章信息

孙元元, 李薇, 叶守东, 刘大海.
SUN Yuan-yuan, LI Wei, YE Shou-dong, LIU Da-hai.
Gadd45g诱导小鼠胚胎干细胞向中内胚层分化
Gadd45g Induces Mesendodermal Differentiation in Mouse Embryonic Stem Cells
中国生物工程杂志, 2017, 37(4): 9-17
China Biotechnology, 2017, 37(4): 9-17
http://dx.doi.org/DOI:10.13523/j.cb.20170402

文章历史

收稿日期: 2016-09-22
修回日期: 2017-01-02
Gadd45g诱导小鼠胚胎干细胞向中内胚层分化
孙元元, 李薇, 叶守东, 刘大海     
安徽大学干细胞及转化医学研究中心 合肥 230601
摘要: 为探究生长阻滞和DNA损伤诱导蛋白45γ(Growth arrest and DNA-damage-inducible protein GADD45 gamma,Gadd45g)对小鼠胚胎干细胞(mouse embryonic stem cells,mESCs)在体外培养条件下自我更新状态的影响,通过设计并构建含有Gadd45g基因的重组质粒,将其导入mESCs内,过表达目标基因;在含有白血病抑制因子(LIF)的血清培养条件下,通过细胞计数、碱性磷酸酶染色、qRT-PCR以及免疫荧光等实验手段检测mESCs的生长情况。结果显示,与对照组相比,过表达Gadd45g基因后,mESCs的生长速度减缓,碱性磷酸酶活性降低,且中内胚层标志基因的表达水平显著上升。进一步研究发现,在添加LIF的有血清或2i无血清培养体系中,过表达Gadd45g均可以降低细胞内STAT3蛋白的磷酸化水平,由此推断上调Gadd45g的表达会抑制STAT3的活性,从而推动mESCs向中内胚层分化。研究结果扩大了目前人们对于ESCs分化机制的理解,有利于胚胎干细胞未来的基础研究与安全应用。
关键词: 胚胎干细胞     Gadd45g     自我更新     分化     STAT3    
Gadd45g Induces Mesendodermal Differentiation in Mouse Embryonic Stem Cells
SUN Yuan-yuan, LI Wei, YE Shou-dong, LIU Da-hai     
Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, China
Abstract: Embryonic stem cells (ESCs) are isolated from the inner cell mass of pre-implantation blastocyst, which can proliferate spontaneously and infinitely under appropriate culture conditions in vitro (self-renewal), while maintaining the potential to differentiate into various types of cells derived from the three germ layers, and therefore have important significance not only for tissue repair and regeneration, but also can provide a powerful tool for modeling disease and understanding biological development. Growth arrest and DNA damage inducible protein 45 gamma (Gadd45g) is one of the three members of the GADD45 protein family. It is also known as the cytokine response gene 6 (CR6), which can affect the cell cycle and regulates cell growth negatively. In addition, as a well-known emergency response gene, Gadd45g has been studied in neural precursor cell differentiation and in tumors. There are evidences which have shown that Gadd45g can be methylated in a variety of tumor cells and has become a potential target for clinical therapy of cancers. Because tumor cells and ESCs have similarity in proliferation characteristic, it will be significant to investigate the effects of Gadd45g on mouse embryonic stem cells (mESCs). The recombinant plasmid containing Flag tagged, Gadd45g was constructed and transfected into mESCs to overexpress the target gene. The qRT-PCR and Western blot were then used to determine the expression level of, Gadd45g in transcriptional and translational aspects respectively. Subsequently, the self-renewal status of, Gadd45g-overexpressing mESCs were detected under the serum culture condition, containing leukemia inhibitory factor (LIF), via cell counting, alkaline phosphatase staining, qRT-PCR, and immunofluorescence staining. Among these strategies, the cell counting was used to measure the growth rate of the cells, alkaline phosphatase staining was used to detect the self-renewal degree of the cells, qRT-PCR was used to analyze the expression of self-renewal marker genes and differentiation marker genes which represent different germ layers in the cells and immunofluorescence staining was used to demonstrate the self-renewal marker proteins in the cells. The results shown that compared with control group, overexpression of, Gadd45g can make mESCs growth rate slow down and lead to alkaline phosphatase activity and expression levels of self-renewal marker genes (Oct4, Nanog and Klf2) decline in the cells, meanwhile the expression levels of mesendoderm marker genes, such as, Sox17, Foxa2, T, GSC and Mixl1, were up-regulated obviously, which means these cells tend to exit from self-renewal status and differentiate into mesendodermal stage. As LIF/Stat3 signal pathway is important to mESC maintenance and is able to inhibit mesendoderm formation in mESCs, subsequent experiments were conducted to examine whether, Gadd45g could regulate the activity of LIF/STAT3 signal pathway, and the result shown that overexpression of, Gadd45g could reduce the phosphorylation level of STAT3 in both the serum condition added LIF and the serum-free condition with 2i containing two small molecules:CHIR99021 and PD0325901, which inhibit glycogen synthase kinase 3(GSK3) and mitogen-activated protein kinase (MAPK) kinases (MEK proteins), respectively. This result suggested that Gadd45g may induce mesendodermal formation partially via inhibiting STAT3 activity. The overall results will not only extend the understanding of molecular mechanisms of embryonic stem cell fate determination, but also will be beneficial to ESC basic research and safe application in the future.
Key words: Embryonic stem cells     Gadd45g     Self-renewal     Differentiation     STAT3    

胚胎干细胞 (embryonic stem cells, ESCs) 分离自着床前的囊胚内细胞团细胞,在体外能够无限地进行自我复制式地增殖 (自我更新),同时还保持着分化为三个胚层来源的各种类型细胞的潜能 (分化),现已成为研究基因功能、筛选药物和制造疾病动物模型的强有力的工具,具有重要的社会和经济价值[1-2]。第一株胚胎干细胞于1981年分离自小鼠 (mouse ESCs, mESCs)[1-2],此后mESCs广泛应用于各类研究中,成为重要的干细胞研究材料。目前人们对于胚胎干细胞如何维持自我更新状态已做了多方面研究,并探索出一些体外维持其处于未分化状态的体系,如含LIF的有血清培养体系[3],以及含GSK3抑制剂CHIR99021和MEK抑制剂PD0325901的无血清培养体系 (即2i)[4]。但目前人们对于mESCs如何退出自我更新状态、向特定发育阶段分化了解得还不够清楚。

生长阻滞和DNA损伤诱导蛋白45γ(Growth arrest and DNA-damage-inducible protein GADD45 gamma,Gadd45g) 是GADD45蛋白家族三成员之一,也叫做细胞因子应答基因6(CR6)[5-7],可影响细胞周期,负调控细胞生长[6, 8]。此前,关于Gadd45g的研究主要集中在肿瘤以及神经前体发育[8-10]等方面,发现Gadd45g可以抑制肿瘤细胞生长,促进其凋亡[8, 10],这种抑制作用部分通过影响LIF/JAK/STAT3信号通路来实现[8],而LIF/JAK/STAT3也是维持ESCs自我更新状态的重要信号通路之一[3, 11];此外,对于非洲爪蟾胚胎发育的研究发现,Gadd45g密切参与囊胚期细胞退出多能性状态、向终末细胞分化的过程[12],但目前关于Gadd45g在ESCs中的作用尚无相关报道。本研究通过在mESCs中过表达Gadd45g,发现其可以抑制细胞的增殖速率,促进mESCs向中内胚层分化,且这种促进作用可能是通过抑制STAT3的磷酸化而实现的。研究结果将扩大人们对ESCs内部调控机制的认识,有利于未来ESCs的基础研究和安全应用。

1 材料与方法 1.1 材料

46C小鼠胚胎干细胞系,由剑桥大学Welcome Trust Center的Austin Smith教授馈赠。KOD Hot Start DNA Polymerase PCR试剂盒 (EMD Millipore公司);BglⅡ、XhoⅠ和T4连接酶 (TaKaRa公司);琼脂糖凝胶DNA回收试剂盒、质粒抽提试剂盒 (TIANGEN公司);LTX脂质体 (Invitrogen公司);碱性磷酸酶检测试剂盒 (Sigma公司);Puromycin (Invitrogen公司);α-tubulin (1:200)、Gadd45g (1:200)、Oct4(1:50)、Nanog (1:100)、FLAG (1:1 000)、STAT3(1:1 000) 和Phospho-STAT3(1:2 000) 等抗体购自Santa Cruz、ReproCELL、Sigma和CST等公司。

1.2 mESCs的培养与传代

mESCs的有血清培养体系为:DMEM (Gibico)、10%胎牛血清 (Hyclone);1×MEM (Invitrogen)、2 mmol/L L-glutamine (Invitrogen)、0.01 mmol/L β-巯基乙醇 (Sigma) 以及1000 U/ml LIF (Millipore)。mESCs的无血清培养体系为:1×N2, 1×B27(Invitrogen)、DMEM/F12(Invitrogen)、Neurobasal® Medium (Invitrogen)、2mmol/L L-glutamine (Invitrogen)、0.01mmol/L β-巯基乙醇 (Sigma) 以及3μmol/L CHIR99021(Sigma)、1 μmol/L PD0325901(Sigma)。在接种细胞前,培养皿用0.1%的Gelatin (Sigma) 进行包被。当细胞的覆盖密度达到70%~80%时,用胰酶 (Invitrogen) 消化成单个细胞进行传代培养。

1.3 Gadd45g重组质粒的构建、转染和筛选

Gadd45g蛋白编码区的克隆引物为Gadd45g-Forward:5′-ATGACTCTGGAAGAAGTCCGTGGC-3′;Gadd45g-Reverse:5′-TCACTCGGGAAGGGTGATGCT-3′。在上下游引物两端分别添加BglⅡ和XhoⅠ限制性内切酶位点,并连入携带Flag标签蛋白的PiggyBac (PB) 系统。Flag标签蛋白为编码8个氨基酸 (DYKDDDDK) 的亲水性多肽,可与目的蛋白Gadd45g融合表达,为后续验证提供方便,通过检测Flag蛋白是否表达即可判断Gadd45g存在与否,而对照组中单独存在的Flag则因分子量过小而不会被检测到。利用LTX脂质体将重组质粒转染进mESCs,两天后加入终浓度为2 μg/ml的Puromycin药物进行筛选。

1.4 细胞计数

事先在培养皿中接种一定数量的细胞,在计划的天数利用胰酶进行单细胞消化,离心重悬后,吸取一定量的悬液至血细胞计数板,在显微镜下进行计数 (对于压线细胞,采取计上不计下,计左不计右的原则进行计数)、记录和统计。细胞数目 (个/ ml)=(四角大方格细胞总数/4)×104

1.5 Western blot检测

收集各组细胞,利用添加了蛋白酶抑制剂的RIPA裂解液裂解细胞,利用BCA法测定总蛋白浓度。用4%~12%的SDS-PAGE梯度胶分离蛋白组分。利用湿转系统将蛋白转移至PVDF膜上,经过封闭、一抗孵育、PBST洗脱、HRP标记的二抗 (1:2 000) 孵育、PBST再洗脱等步骤后,ECL化学发光及X光片曝光,经显影和定影处理,最终获得清晰条带。

1.6 荧光实时定量PCR (qRT-PCR)

用Trizol法抽提细胞总RNA, 参照TransScript All-in-One First-Strand cDNA Synthesis SuperMix for qPCR (TransGen) 试剂盒说明书进行第一链cDNA合成。荧光定量PCR参照TransStart Tip Green qPCR SuperMix (TransGen) 试剂盒执行。GAPDH基因表达水平作为内参。引物序列见表 1

表 1 qRT-PCR引物 Table 1 List of primer pairs used for qRT-PCR analysis
GeneForward sequence (5′→3′)Reverse sequence (5′→3′)
GAPDHTGTGAGGGAGATGCTCAGTGTGTTCCTACCCCCAATGTGTH
Gadd45gGAAGATGAGGGCGACATAGCGCTCTCCTCGCAGAACAAAC
Oct4ATCACTCACATCGCCAATCATGGGAAAGGTGTCCCTGTAG
NanogCCAGTGGAGTATCCCAGCATGAAGTTATGGAGCGGAGCAG
Klf2CCAAGAGCTCGCACCTAAAGGTGGCACTGAAAGGGTCTGT
Sox17CTCGGGGATGTAAAGGTGAAGCTTCTCTGCCAAGGTCAAC
Gata6TCCTCCCCTGCCGAAGTCAGGGCCAGAGCACACCAA
Foxa2CCTCAAGGGAGCAGTCTCACTTTCTCCTGGTCCGGTACAC
TCCGGTGCTGAAGGTAAATGTCCTCCATTGAGCTTGTTGGT
GSCCTCGGAGGAGTCAGAAAACGTCGACTGTCTGTGCAAGTCC
Mixl1TTGAATTGAACCCTGTTGTCCCGAAACCCGTTCTCCCATCCACC
NestinCCAGAGCTGGACTGGAACTCACCTGCCTCTTTTGGTTCCT
Sox1CACAACTCGGAGATCAGCAAGTCCTTCTTGAGCAGCGTCT
Note: GAPDH is the control gene. Gadd45g is the target gene. Oct4、Nanog and Klf2 are self-renewal markers. Sox17, Gata6 and Foxa2 are endoderm markers. T is a mesendoderm marker. GSC and Mixl1 are mesoderm markers. Nestin and Sox1 are ectoderm markers

1.7 碱性磷酸酶染色

弃掉对照组和实验组细胞培养液,加入4%多聚甲醛室温固定2 min。参照说明书将碱性磷酸酶检测试剂盒中的两种染液按照48:2的比例混合。弃掉多聚甲醛,加入混合染液,室温避光30 min。PBS漂洗后在显微镜下观察。

1.8 免疫荧光

弃掉培养液,4%多聚甲醛室温固定20min。PBS漂洗后加入封闭液 (含5% BSA,0.2% Triton X-100的PBS),37℃温箱孵育1h。加入含有一抗的稀释液,4℃过夜。次日PBS漂洗3次。添加携带荧光基团的二抗 (1:500,碧云天) 以及Hoechst (1:5 000, Invitrogen) 染料的稀释液,37℃避光孵育1h。PBS漂洗后在荧光显微镜下观察拍照。

1.9 统计学处理

实验数据用mean±SD表示,采用SPSS 15.0统计分析软件进行统计检验,组间比较用t检验,P<0.05时认为组间差异显著,P<0.01时认为组间差异极显著,结果具有统计学意义。

2 结果 2.1 Gadd45g稳定表达细胞株的建立

借助LTX,将空白对照质粒PB,以及携带两个Flag标签蛋白的Gadd45g重组质粒 (PB-2Flag-Gadd45g) 分别转染进46C mESCs中。经Puromycin药物筛选一周后,qRT-PCR和Western blot检测结果显示:PB-2Flag-Gadd45g实验组中可检测到Flag蛋白的表达,Gadd45g在转录和蛋白水平的表达量显著增高 (图 1a, b),说明过表达Gadd45g的mESCs系构建成功。

图 1 Gadd45g在mESCs中过表达的检测 Figure 1 Analysis of Gadd45g overexpression in mESCs (a) qRT-PCR analysis of Gadd45g mRNA level in 46C mESCs transfected with PB or PB-2Flag-Gadd45g, respectively Data represent mean ± SD of three biological replicates. ** P < 0.01vsPB (b) Western blot analysis of 46C mESCs overexpressing FLAG-tagged GADD45G α-tubulin is used as a loading control
2.2 Gadd45g对mESCs生长速率的影响

血清和LIF培养体系下,在不同的细胞培养皿中接种起始数目相同的细胞,每2天一次对细胞进行计数,以观察细胞的生长情况。结果显示:PB-2Flag-Gadd45g mESCs的生长速度较PB mESCs缓慢 (图 2),说明Gadd45g减缓了胚胎干细胞的增殖速率,对胚胎干细胞的生长具有抑制作用。

图 2 Gadd45g对mESCs生长速率的影响 Figure 2 Effects of Gadd45g on the growth rate of mESCs PB mESCs or PB-2Flag-Gadd45g mESCs were counted in the indicated days. Results are shown as mean ± SD of six biological replicates.* P < 0.05 vs PB
2.3 Gadd45g对mESCs碱性磷酸酶活性的影响

PB-2Flag-Gadd45g mESCs经过两次传代之后,在血清和LIF培养体系下,细胞边缘形态变成纤维状。为了验证这些细胞的自我更新状态,我们进行了碱性磷酸酶染色实验,因为未分化的mESCs具有很高的碱性磷酸酶活性,该特性可作为细胞是否处于自我更新状态的判断依据。结果显示:PB对照组细胞形成的克隆排列密集且边缘较为清晰,具有很高的碱性磷酸酶活性,而PB-2Flag-Gadd45g 细胞染色较浅或丢失 (图 3),因此上调Gadd45g会降低mESCs的碱性磷酸酶活性水平。

图 3 Gadd45g对mESCs碱性磷酸酶活性的影响 Figure 3 Effects of Gadd45g on mESC alkaline phosphatase activity (a) Representative phase-contrast images of PB and PB-2Flag-Gadd45g mESCs maintained in LIF/serum condition Scale bar, 100 μm (b) Alkaline phosphatase staining of PB and PB-2Flag-Gadd45g mESCs maintained in LIF/serum condition Scale bar, 200 μm (left pane), 100 μm (right panel)
2.4 Gadd45g对mESCs自我更新标志基因表达的影响

mESCs在自我更新状态下高表达Oct4NanogKlf2等基因。利用qRT-PCR和免疫荧光技术检测过表达Gadd45g后上述标志基因在细胞中的表达情况。结果显示:与PB对照组细胞相比,PB-2Flag-Gadd45g细胞中Oct4NanogKlf2在转录水平上的相对表达量较低 (图 4a);而在蛋白水平上,过表达Gadd45g的细胞中OCT4和NANOG的表达量亦有所降低 (图 4b),因此上调Gadd45g会抑制mESCs自我更新标志基因的表达。

图 4 Gadd45g对mESCs自我更新标志基因表达的影响 Figure 4 Effects of Gadd45g on the expression of mESC self-renewal marker genes PB and PB-2Flag-Gadd45g 46C mESCs were cultured in LIF/serum condition for 1 week and were subsequently detected with indicate genes. (a) qRT-PCR analysis of Oct4, Nanog and Klf2 expression in PB and PB-2Flag-Gadd45g mESCs Data represent mean ± SD of triplicate samples from three independent experiments. * P < 0.05 vs PB (b) Immunofluorescence showing stronger OCT4 and NANOG staining in PB mESCs, compared to PB-2Flag-Gadd45g mESCs Hoechst is a nuclear stain. Scale bar, 100 μm
2.5 Gadd45g对分化基因表达的影响

在PB-2Flag-Gadd45g细胞的碱性磷酸酶活性和自我更新标志基因表达都降低的情况下,我们继续应用qRT-PCR来检测细胞中分化基因的表达情况。结果显示:与PB对照组细胞相比,内胚层和中胚层的标志基因在PB-2Flag-Gadd45g细胞中都明显上调,而外胚层标志基因的表达未出现变化 (图 5),说明在自我更新的维持条件下,过表达Gadd45g会促进mESCs向中内胚层分化。

图 5 Gadd45g对分化基因表达的影响 Figure 5 Effects of Gadd45g on the expression of differentiation genes qRT-PCR analysis of differentiation genes in PB and PB-2Flag-Gadd45g mESCs maintained in LIF/serum. Data represent mean ± SD of triplicate samples from three independent experiments. Sox17, Gata6 and Foxa2 are endoderm markers. T is a mesendoderm marker. GSC and Mixl1 are mesoderm markers. Nestin and Sox1 are ectoderm markers. * P < 0.05 vs PB; ** P < 0.01 vs PB
2.6 Gadd45g对mESCs中STAT3磷酸化水平的影响

由以上结果可知,在LIF和血清的培养条件下,过表达Gadd45g会诱导mESCs向中内胚层分化,而LIF主要通过激活STAT3来促进mESCs的自我更新,因此我们尝试去检测STAT3的活性,即STAT3第705位酪氨酸磷酸化水平是否出现变化。Western blot结果显示:上调Gadd45g不会改变STAT3总的蛋白表达水平,但是STAT3的磷酸化水平对照组细胞出现了下降 (图 6a),说明Gadd45g通过抑制STAT3的磷酸化,使LIF/STAT3信号通路的激活受阻。为排除由于细胞状态变化而导致STAT3磷酸化水平改变的可能性,我们在N2B27/2i条件下进行了验证,结果显示:在2i的培养条件下,上调Gadd45g依然抑制STAT3的磷酸化水平 (图 6b)。而LIF/STAT3可以通过抑制中内胚层的形成来维持mESCs的未分化状态[12],所以Gadd45g可能通过部分抑制STAT3磷酸化来诱导mESCs退出未分化状态,向中内胚层方向分化。

图 6 Gadd45g对mESCs中STAT3磷酸化水平的影响 Figure 6 Effects of Gadd45g on STAT3 phosphorylation level in mESCs Western blot analysis of phosphorylated STAT3 and total STAT3 levels in PB and PB-2Flag-Gadd45g 46C mESCs. (a) Western blot analysis of the indicated proteins in mESCs cultured in LIF/serum conditions (b) Western blot analysis of the indicated proteins in mESCs cultured in N2B27/2i (3μmol/L CHIR99021 + 1 μmol/L PD0325901) condition (c) Model of mESC differentiation induced by Gadd45g Overexpression of Gadd45g in mESCs may induce mesendodermal formation partially via inhibiting STAT3 phosphrylation level
3 讨论

胚胎干细胞能够在体外无限地进行自我更新式的增殖,同时保持着分化成不同类型细胞的潜能,因而在临床医学上具有远大的应用前景。而了解其内部的调控网络与机制是将来安全应用ESCs的基础,现已成为再生医学领域的研究热点。目前已鉴定出一些可以调控mESCs自我更新和分化的转录因子,如Tfcp2l1, Esrrb, Nanog和Gbx2等,这些转录因子可以替代一些外源性的细胞因子来促进mESCs的自我更新[13-15],而Axin2, Otx2和Tfe3等则会诱导mESCs退出自我更新程序[16-18]。本研究结果首次表明Gadd45g可以促进mESCs向中内胚层分化,这种促进作用可能是通过抑制STAT3磷酸化来实现的。

Gadd45蛋白家族参与细胞周期调控,抑制细胞的生长与增殖[5-6],这已被广泛认知,例如,当细胞受到刺激损伤后,p53基因产物被磷酸化,通过激活p21Gadd45,诱导细胞生长停留[19-21]。在本研究中,Gadd45g对于mESCs同样具有抑制增殖的作用,其内部机制的阐明有待后续深入探究。在发育与分化方面,Gadd45g高表达于脊椎动物的神经前体细胞,通过调控细胞周期蛋白活性,如CDK1和Cyclin B1等,促进神经元的分化和神经系统的发生[22-23];此外,Gadd45g影响小鼠性别的决定和发育,但缺失Gadd45g基因的小鼠不会胚胎致死,说明其对于多能性干细胞的维持来说不是必需的[24],而且有研究表明Gadd45g在mESCs内的表达被多能性基因Oct4抑制,其表达会随着mESCs的分化而升高[25],这与我们的研究结果相一致,说明Gadd45g具有促进mESCs分化的作用。在肿瘤细胞中,Gadd45g会负调控LIF/JAK/STAT3信号通路来抑制肿瘤细胞的生长。而LIF/JAK/STAT3也是维持ESCs未分化状态的重要信号通路之一。LIF与受体结合后招募膜蛋白gp130形成异聚体,随即激活gp130蛋白上的JAK,激活的JAK将磷酸化STAT3第705位酪氨酸,随后磷酸化的STAT3发生二聚化,进入核内激活相应靶基因的表达,从而促进mESCs维持自我更新状态[11]。在mESCs中,LIF通过激活STAT3抑制中内胚层的分化,而血清中的成分,如BMP4,则会阻断外胚层的形成,因而将mESCs维持在未分化状态[11]。本研究中,我们发现在LIF和血清的培养体系下,上调Gadd45g的表达会上调中内胚层标志基因的表达,并且会抑制STAT3的磷酸化,但外胚层标志基因的表达水平不发生改变;为排除细胞状态变化的干扰,我们在2i无血清培养体系中也重复了相关实验,发现Gadd45g同样会抑制STAT3的磷酸化。因此,Gadd45g诱导mESCs向中内胚层分化部分是通过抑制STAT3磷酸化而实现的 (图 6c)。

综上所述,本研究首次探讨了Gadd45g在ESCs中的作用及部分机制,对于更加深入和全面地了解ESCs内部信号调控网络具有重要意义。但目前仍存在一些问题有待进一步探索:Gadd45g以何种方式抑制STAT3磷酸化?该过程是否直接抑制自我更新基因或诱导分化基因表达?下调Gadd45g的表达将对mESCs产生怎样的影响?在细胞周期调控方面,Gadd45g对ESCs的生长抑制作用又与哪些基因或蛋白相关?这一系列问题的答案将在后续实验中逐步阐明,而对于整个干细胞调控网络和细胞命运决定机制的不断揭示与丰富,则能为今后干细胞的安全应用提供有力保障。

参考文献
[1] Martin G R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc NatlAcad Sci U S A, 1981, 78(12) : 7634–7638. DOI:10.1073/pnas.78.12.7634
[2] Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292(5819) : 154–156. DOI:10.1038/292154a0
[3] Niwa H, Burdon T, Chambers I, et al. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev, 1998, 12(13) : 2048–2060. DOI:10.1101/gad.12.13.2048
[4] Ying Q L, Wray J, Nichols J, et al. The ground state of embryonic stem cell self-renewal. Nature, 2008, 453(7194) : 519–523. DOI:10.1038/nature06968
[5] Azam N, Vairapandi M, Zhang W, et al. Interaction of CR6(GADD45gamma) with proliferating cell nuclear antigen impedes negative growth control. J Biol Chem, 2001, 276(4) : 2766–2774. DOI:10.1074/jbc.M005626200
[6] Zhang L, Yang Z, Liu Y. GADD45 proteins:roles in cellular senescence and tumor development. Exp Biol Med, 2014, 239(7) : 773–778. DOI:10.1177/1535370214531879
[7] Hoffman B, Liebermann D A. Gadd45 in modulation of solid tumors and leukemia. Adv Exp Med Biol, 2013, 793 : 21–33. DOI:10.1007/978-1-4614-8289-5
[8] Zhang L, Yang Z, Ma A, et al. Growth arrest and DNA damage 45G down-regulation contributes to Janus kinase/signal transducer and activator of transcription 3 activation and cellular senescence evasion in hepatocellular carcinoma. Hepatology, 2014, 59(1) : 178–189. DOI:10.1002/hep.26628
[9] Huang H S, Kubish G M, Redmond T M, et al. Direct transcriptional induction of Gadd45gamma by Ascl1 during neuronal differentiation. Mol Cell Neurosci, 2010, 44(3) : 282–296. DOI:10.1016/j.mcn.2010.03.014
[10] Ju S, Zhu Y, Liu L, et al. Gadd45b and Gadd45g are important for anti-tumor immune responses. Eur J Immunol, 2009, 39(11) : 3010–3018. DOI:10.1002/eji.v39:11
[11] Ying Q L, Nichols J, Chambers I, et al. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 2003, 115(3) : 281–292. DOI:10.1016/S0092-8674(03)00847-X
[12] Kaufmann L T, Niehrs C. Gadd45a and Gadd45g regulate neural development and exit from pluripotency in Xenopus. Mech Dev, 2011, 128(7-10) : 401–411. DOI:10.1016/j.mod.2011.08.002
[13] Tai C I, Ying Q L. Gbx2, a LIF/Stat3 target, promotes reprogramming to and retention of the pluripotent ground state. J Cell Sci, 2013, 126(Pt5) : 1093–1098.
[14] Ye S, Li P, Tong C, et al. Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1. EMBO J, 2013, 32(19) : 2548–2560. DOI:10.1038/emboj.2013.175
[15] Martello G, Sugimoto T, Diamanti E, et al. Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal. Cell Stem Cell, 2012, 11(4) : 491–504. DOI:10.1016/j.stem.2012.06.008
[16] Kim H, Wu J, Ye S, et al. Modulation of beta-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nat Commun, 2013, 4 : 2403.
[17] Acampora D, Di Giovannantonio L G, Simeone A. Otx2 is an intrinsic determinant of the embryonic stem cell state and is required for transition to a stable epiblast stem cell condition. Development, 2013, 140(1) : 43–55. DOI:10.1242/dev.085290
[18] Betschinger J, Nichols J, Dietmann S, et al. Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell, 2013, 153(2) : 335–347. DOI:10.1016/j.cell.2013.03.012
[19] Carrier F, Georgel P T, Pourquier P, et al. Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Mol Cell Biol, 1999, 19(3) : 1673–1685. DOI:10.1128/MCB.19.3.1673
[20] Kearsey J M, Coates P J, Prescott A R, et al. Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1. Oncogene, 1995, 11(9) : 1675–1683.
[21] Macleod K F, Sherry N, Hannon G, et al. P53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev, 1995, 9(8) : 935–944. DOI:10.1101/gad.9.8.935
[22] Kaufmann L T, Gierl M S, Niehrs C. Gadd45a, Gadd45b and Gadd45g expression during mouse embryonic development. Gene Expr Patterns, 2011, 11(8) : 465–470. DOI:10.1016/j.gep.2011.07.005
[23] Vairapandi M, Balliet A G, Hoffman B, et al. GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol, 2002, 192(3) : 327–338. DOI:10.1002/(ISSN)1097-4652
[24] Gierl M S, Gruhn W H, von Seggern A, et al. GADD45G functions in male sex determination by promoting p38 signaling and Sry expression. Dev Cell, 2012, 23(5) : 1032–1042. DOI:10.1016/j.devcel.2012.09.014
[25] Jung M, Peterson H, Chavez L, et al. A data integration approach to mapping OCT4 gene regulatory networks operative in embryonic stem cells and embryonal carcinoma cells. PLoS One, 2010, 5(5) : e10709. DOI:10.1371/journal.pone.0010709
[26] Huang G, Ye S, Zhou X, et al. Molecular basis of embryonic stem cell self-renewal:from signaling pathways to pluripotency network. Cell Mol Life Sci, 2015, 72(9) : 1741–1757. DOI:10.1007/s00018-015-1833-2