中国生物工程杂志  2017, Vol. 37 Issue (10): 103-110

文章信息

汤志雄, 苟德明.
TANG Zhi-xiong, GOU De-ming.
miRNA调控成肌分化的研究进展
Research Progress on miRNA Regulation of Myogenesis
中国生物工程杂志, 2017, 37(10): 103-110
China Biotechnology, 2017, 37(10): 103-110
http://dx.doi.org/DOI:10.13523/j.cb.20171014

文章历史

收稿日期: 2017-04-12
修回日期: 2017-06-22
miRNA调控成肌分化的研究进展
汤志雄 , 苟德明     
深圳大学生命与海洋科学学院 深圳 518060
摘要: 成肌分化过程包括成肌细胞的增殖,然后分化为肌细胞,最后融合形成肌管;microRNA(miRNA)是一类在转录后水平调控基因表达的微小非编码RNA,它通过靶向靶基因mRNA的3'UTR,抑制其翻译或诱导其降解。已有研究表明,miRNA在成肌分化中起重要调控作用。根据表达方式的不同,分为肌肉特异表达的miRNA,有miR-1,miR-133,miR-206,miR-208,miR-499和miR-486;和非肌肉特异表达的miRNA,其中miR-27,miR-29,miR-128,miR-199a和miR-431在成肌分化过程中具有重要的调控功能。另外,阐述了几个与miRNA相互作用从而调控成肌分化的lncRNA的功能。通过介绍两类miRNA的靶基因及调控机制,阐述了最新的研究进展。
关键词: 成肌分化     miRNA     成肌细胞增殖    
Research Progress on miRNA Regulation of Myogenesis
TANG Zhi-xiong, GOU De-ming     
College of Life Sciences, Shenzhen University, Shenzhen 518060, China
Abstract: Myogenesis involves myoblast proliferation and differentiation to myocytes, later, these myocytes fuse to form multinucleated myotubes. MicroRNAs (miRNAs) are small non-coding RNAs, which post-transcriptionally regulate gene expression by binding to the 3'UTR of target mRNA. miRNAs play important role in the regulation of myogenesis.The function of muscle-specific expression of miRNAs(myomiRs), such as miR-1, miR-133, miR-206, miR-208, miR-499 and miR-486, as well as several non-myomiRs, including miR-27, miR-29, miR-128, miR-199a and miR-431 were introduced. In addition, several lncRNAs those interact with miRNAs to regulate muscle differentiation have been summarized. The regulatory mechanism of miRNAs on myogenesis were elucidated and the latest research progress were reviewed.
Key words: Myogenesis     miRNAs     Myoblast proliferation    

miRNA是一类长度约为20~24个核苷酸的内源性微小RNA,主要通过结合靶基因mRNA的3′UTR,降解靶mRNA或阻止蛋白翻译,在转录后水平负调控基因的表达[1]。也有少量报道表明miRNA可结合到5′UTR或编码区[2-4]。miRNA在成肌分化中有极其重要的作用,引起了研究者的密切关注。通过Dicer敲除小鼠的研究发现,这些小鼠的骨骼肌发育不良,表现在骨骼肌数量显著降低,肌纤维数量减少,形态异常,肌源性细胞凋亡增加和成肌细胞死亡严重[5],充分证明miRNA对肌肉发育的重要性。因此,本文将通过介绍肌肉特异表达的miRNA(myo-miR)和几个在肌肉发育中发挥重要作用的非myo-miR的功能,阐述miRNA参与成肌分化调控的最新研究进展。

1 骨骼肌的发育和成肌分化

骨骼肌约占体重的40%,是人体的重要组成部分。如果骨骼肌发育出现异常将导致肌肉发生病变,如肌肉萎缩,肥大等疾病。因而,骨骼肌的发育问题被广泛而深入地研究。肌肉发育较为复杂,人类胚胎时期的骨骼肌生成主要包括以下几个步骤:(1)体节分化后形成含有肌源性前体细胞的生皮肌节;(2)前体细胞增殖和分化形成成肌细胞;(3)成肌细胞进一步增殖,随后分化和融合形成肌管;(4)最后,肌管成熟形成肌纤维[6]

为保证正常的肌肉生长,形态和伸缩性,多种与细胞增殖、分化、连接和凋亡相关的基因参与其中,同时生肌调节因子MyoD1,Myf5,MyoG,Myf6,Mrf4和其它的转录因子如Pax3,Pax7和Mef2家族参与肌肉发育调控[7]。其中,MyoD1和Myf5通过促进肌源性前体细胞的增殖和分化调控骨骼肌的早期发育;MyoG在成肌细胞分化形成肌管时起重要作用;Myf6参与分化和细胞命运的决定[8];Mrf4在胚胎后期肌肉发育时和体外成肌细胞分化,融合形成多核肌管时迅速上调[9];骨骼肌祖细胞的特征之一是表达Pax3和Pax7,这些高表达Pax3和Pax7的肌原性祖细胞构成自我更新的细胞群体,对后续骨骼肌生长和卫星细胞形成极其重要,而卫星细胞是成体骨骼肌再生所必需的;开始肌细胞生成时,表达Pax3的细胞迁移到体节,将形成骨骼肌,随后Pax7将上调表达,它能在分化前下调Pax基因[10]。Mef2即肌细胞增强因子2,在骨骼肌、平滑肌以及心肌中高度表达,其主要作用是在肌肉发育过程中调控肌细胞的分化,影响分化过程中基因的转录[11]。由此可见,增殖和分化是研究成肌分化的重要生物学过程。

体外研究成肌分化常用的模型是C2C12小鼠成肌细胞,1977年由Yaffe和Saxel等建立;而体外研究成肌分化常用的是小鼠肌肉注射Cardiotoxin,心脏毒素(CTX)诱导的肌肉损伤和再生模型,可以用于研究体内的成肌分化[12]

2 调控成肌分化的myo-miR

越来越多的miRNA证明对肌肉发育有重要影响。这些miRNA中仅有几个是在肌肉中特异表达的,大部分是在组织内广泛表达。目前,myo-miR主要有miR-1,miR-133和miR-206。miR-1和miR-133在心肌和骨骼肌中都表达,而miR-206仅在骨骼肌中表达[13-14]。这些miRNA在肌肉发育中的调控作用被广泛而深入地研究,miR-1和miR-206的主要功能是抑制成肌细胞增殖,并促进其分化;miR-133的主要功能是促进成肌细胞增殖和抑制分化[15]。miR-208,miR-499和miR-486也被归为肌肉特异表达的miRNA。

2.1 miR-1,miR-206与成肌分化

2.1.1 通过调控miR-1,miR-206本身的表达,影响肌肉发育

Igf1-Akt-Foxo3-miR-1通路可影响miR-1的表达,且直接通过Foxo3调控miR-1的启动子活性影响其表达[16-17]。Hmox1特异下调Lin28和Dgcr8,从而直接影响miR-1和miR-206的合成和加工[18]。Bmp2是TGF-β家族中的一员,通过抑制pri-miR-206的加工成熟负调控miR-206的表达[19]。Tardbp可与miR-1和miR-206结合从而影响它们与RISC的结合[20]。除了以上蛋白或因子的影响,miRNA自身的靶基因也调控其表达,从而形成调控环路。例如:(1) YY1抑制miR-1和miR-206的转录,而研究证明miR-1和miR-206均靶向YY1[21-22];(2) Mef2能促进miR-1和miR-206的表达,Hdac4Hdac4和Notch3是Mef2的抑制因子,而miR-1和miR-206均直接靶向Hdac4Hdac4和Notch3,从而形成正向的反馈调控通路[23-24];(3)与之相似,miR-1和miR-206均靶向Pax7,使其下调,随后Id2下调,使Myod1的表达上调,从而促进miR-1和miR-206表达,形成另一条正向的反馈调控通路[25-26]

2.1.2 miR-1,miR-206靶向在肌肉发育中与增殖相关的基因

miR-1和miR-206的靶基因中,许多都与增殖相关。例如Pax3和Pax7,在卫星细胞中,过表达miR-1和miR-206,细胞的增殖潜能受到抑制,而分化能力得到促进;相反,抑制miR-1和miR-206表达时,Pax3和Pax7蛋白水平上调,同时,卫星细胞的增殖能力得到促进而分化受到抑制[25, 27]。Pola1,负责细胞内DNA合成,是DNA聚合酶α中最大的亚基;miR-1,miR-206均靶向Pola1,导致DNA合成抑制,最终,细胞周期受到抑制[28]。miR-1,miR-206还能靶向抑制Ccnd1和Ccnd2,从而调控细胞周期,揭示miRNA在促进分化的细胞退出细胞周期的重要作用[29-31]。miR-1,miR-206靶向IGF信号通路中的几个重要蛋白,如miR-1靶向Igf1,Igfr,Hspa(HSP70)[17, 32];同时,miR-206也靶向Igf1,特别地,Igfbp5是miR-206的靶基因,一个依赖于IGF调控的抑制骨骼肌分化的分泌蛋白[33-35]。综上所述,miR-1和miR-206通过调控许多与增殖密切相关的基因,影响肌肉发育。

2.1.3 miR-1,miR-206靶向在肌肉发育中与细胞融合相关的基因

成肌分化过程中,肌细胞发生融合。Fst是促进细胞融合的因子,且是成肌分化抑制因子Mstn的拮抗剂,miR-1靶向Fst[36]。另外,miR-1,miR-206均靶向Gja1和Cx43,它们是胞间隙连接通道,在成肌细胞生长和融合之前和整个过程中高表达,在胚胎发育后期下调[28, 37-38]。二者还靶向Utrn,它是另一个在骨骼肌终末端分化时被抑制的基因[39]

2.1.4 miR-1和miR-206调控肌肉再生

肌肉受到损伤时,原本处于静息状态的卫星细胞活跃起来,重新进入细胞周期[40]。miR-1和miR-206在肌肉损伤时先显著下调,随后逐渐上调,与其在成肌细胞分化过程中的表达一致[25, 34, 41]。且敲除miR-206时,肌肉再生延缓并加剧了mdx小鼠的营养不良表型[34]。由于肌肉再生过程与骨骼肌发育大致相似,因此,许多之前被证明参与成肌分化调控的miRNA也调控肌肉再生。miR-1和miR-206在横纹肌肉瘤中低表达,重新表达miR-206促进了成肌分化,肿瘤生长受到抑制[42]

2.2 miR-133与成肌分化

与miR-1,miR-206相似,miR-133的表达也受Hmox1,YY1和Mtor的调控[18, 21, 36]。在C2C12细胞中过表达miR-133a能显著增强肌管的形成[43]。而敲除miR-133a的小鼠,表现出中央核肌病,线粒体功能障碍,肌纤维形态受损[44]。同时,Liu等[44]发现Dnm2,Pfn2和Calm1都是miR-133a的靶基因,充分表明miR-133a对正常肌肉发育的重要性。miR-133还靶向Ucp2,它的新功能是作为肌肉发育的阻碍者,Myod通过上调miR-133也参与对Ucp2的调控[45]

miR-133还与细胞命运决定以及肌肉再生相关。Runx2,Trps1,Prdm16分别负责成骨细胞,软骨细胞,脂肪细胞的发育,miR-133同时靶向这些基因[46-47]。因而,miR-133可抑制细胞向其他方向分化,从而有利于向骨骼肌的发育。另一方面,miR-133a和miR-1分别靶向Sp1,Ccnd1,这对细胞周期抑制和合适的肌肉分化是必须的[48]。在肌肉损伤前注射miR-1、miR-206和miR-133,可以增强成肌分化标志蛋白Myog、Myod1和Pax7的表达,促进肌肉再生[49]

2.3 miR-208, miR-499与成肌分化

miR-208a,miR-208b和miR-499是分别在Myh6,Myh7和Myh7b三个肌球蛋白基因内含子表达的miRNA [13, 50]。miR-208a调控两个慢肌球蛋白和它们基因内表达的miRNA,通过结合到Myh7的抑制蛋白,促进Myh7和miR-208b的表达;而且,miR-208a也能调控Myh7b和miR-499的表达;与miR-208a相似,miR-208b抑制Myh7b的抑制蛋白,从而上调它和miR-499的表达[50]。miR-208b和miR-499的成熟序列相似,被报道的靶基因有重叠,功能有互补[50]。他们靶向Sox6,Purb,Sp3,Med13,Cbx1等基因,从而激活慢肌肉发育相关基因的程序,在肌纤维转化成Ⅰ型肌纤维时起关键作用[50-51]。这些基因的下调进一步刺激miR-208b和miR-499的表达。Mapk6和Mstn是肌肉生长的负调控因子,也被证明是miR-499的靶基因[52-53]

2.4 miR-486与成肌分化

miR-486是最新的归为肌肉特异表达的miRNA家族成员,它不具有肌肉特异表达特征,但是在肌肉发育过程中起重要作用。例如,它靶向Pax7,在肌肉分化时明显上调,促进成肌分化[26]。由于它的表达受Myod1、Srf、Mkl1和Sgpl1的调控,它对Pax7的抑制主要是Myod1的上调导致的[26, 54-55]。另外,miR-486直接抑制Pten和Foxo1,还有Pdgfrb,Srsf1,Srsf3,正调控Pik3ca/Akt通路[54, 56]。在成肌细胞中抑制miR-486的表达,则导致细胞不能迁移,融合受阻,相反,过表达miR-486,会导致肌肉再生缺陷[57]

3 调控成肌分化的非myo-miR

除了myo-miR,还有一些在组织内广泛表达的miRNA在肌肉发育中发挥重要功能,例如,miR-27,miR-29,miR-128,miR-199a和miR-431等。

3.1 miR-27与成肌分化

miR-27靶向Mstn和Pax3,在肌肉发育中有重要调控作用[58-59]。McFarlane等[59]的研究更加深入,证明miR-27通过负调控Mstn,在激活卫星细胞,成肌细胞增殖和阻止肌肉萎缩起重要作用;该研究还阐明Mstn通过Smad3通路调控miR-27的表达,形成环路,进一步抑制其自身的表达。Pax3表达量的调控极其重要,体内转基因表达miR-27a和肌肉再生的研究以及在卫星细胞中抑制miR-27表达等均表明miR-27调控Pax3,这种下调保证细胞快速健康地进入成肌分化程序[60]

3.2 miR-29与成肌分化

miR-29在出生后的小鼠骨骼肌和成肌分化时表达均上调,是一个促进成肌分化的重要miRNA[61]。miR-29与其靶基因之间形成了重要的调控环路。首先,Nfkb和YY1负调控miR-29b/c的表达,而miR-29靶向YY1,从而形成负反馈通路,使miR-29表达上调从而促进成肌分化;在横纹肌肉瘤中,Nfkb-YY1-29的环路被发现异常调控;因此,miR-29行使着抑癌因子的功能,为肌肉瘤治疗提供思路[62]。在慢性肾病伴随肌肉萎缩的小鼠中,同样发现miR-29靶向YY1并异常表达[63]。另一个调控环路是,TGF-β抑制miR-29的表达,使其靶基因Hdac4上调;而miR-29可以通过靶向Smad3,削弱TGF对它的抑制,从而下调Hdac4,利于成肌分化[64]。YY1/Rybp/Ezh2复合体调控miR-29表达从而影响成肌细胞分化的机制也已阐明,TGF-β-Smad3通路激活时,Myod被降解,miR-29仍然受到抑制,Collagen和Lims1等上调表达,成肌细胞向成纤维细胞分化[65-66]。miR-29还可靶向Akt3,一个负责生长因子信号通路应答的丝氨酸苏氨酸蛋白激酶家族,调控骨骼肌生长并促进其分化[61]

3.3 miR-128与成肌分化

miR-128在脑和骨骼肌中以及成肌分化时高表达,靶向调控胰岛素信号通路中的基因:Insr、Irs1和Pik3r1。TNF-α负调控miR-128,从而正调控胰岛素通路,体内和体外实验表明,抑制miR-128,诱导肌管成熟和肌管肥大[67]。miR-128还可靶向Mstn和Sp1进而抑制成肌细胞增殖,促进分化[68-69]

3.4 miR-199a与成肌分化

miR-199a在肌肉营养不良蛋白缺陷的斑马鱼,mdx小鼠,人肌肉疾病活检中均表达异常,miR-199a的表达受Srf和心肌蛋白相关转录因子调控,它靶向Wnt通路中的Fzd4,Jag1,Wnt2;在斑马鱼中转基因表达miR-199a,导致多种异常现象[70]。miR-199a还可靶向TGF-1/AKT/mTOR通路中的Igf-1,mTOR,Rps6ka6;miR-199的表达在发育,生长,再生以及不同肌肉疾病和肿瘤中等几个关键的时间点都受到调控,过表达miR-199时阻碍成肌分化,抑制时促进分化,肌管肥大[71]

3.5 miR-431与成肌分化

研究发现,miR-431是一个主要在骨骼肌中表达的miRNA,通过靶向Pax7,促进肌肉再生和改善肌肉萎缩症;在mdx小鼠中,miR-431削弱肌肉营养不良的表型,可能是肌肉疾病中潜在的治疗靶点;该研究构建的miR-431转基因小鼠,是一个研究低表达Pax7的卫星细胞生物学功能的基因模型[72]。miR-431还与衰老密切相关,它在衰老的成肌细胞中显著下调,其靶基因Smad4表达上调;在肌肉损伤的小鼠中注射miR-431,Smad4的水平下调并显著提高再生能力;因而,miR-431在维持随着年龄增长的骨骼肌的成肌分化能力上起着重要作用[73]

4 lncRNA与miRNA相互作用,调控成肌分化

最近几年,lncRNA引起了研究者的密切关注。目前,在肌肉发育过程中,有四个lncRNA的功能研究较多。他们分别是linc-MD1,Yam-1,sirt1 AS lncRNA和H19,这些lncRNA都与一个或几个miRNA相互作用,影响成肌分化[74-77]。linc-MD1是一个肌肉特异的lncRNA,在小鼠和人的成肌细胞中作为竞争性RNA,是miR-133和miR-135的海绵体,可通过二者调控Maml1和Mef2c的表达;下调或过表达linc-MD1分别抑制和促进肌肉分化进程,且在人杜氏肌营养不良的肌肉细胞中,linc-MD1表达显著下调[77]。另外,linc-MD1的表达受到HuR蛋白的正向调控,HuR还可协助linc-MD1招募miR-133,而miR-133靶向HuR,因此,三者之间相互作用在早期的成肌分化和进入分化后的调控极其重要[78]。通过Chip实验发现YY1正向调控一个肌肉相关的lncRNA——Yam-1,它是成肌分化的抑制因子,沉默Yam-1可促进损伤诱导的肌肉再生;而Yam-1顺式调节miR-715,它靶向Wnt通路中的Wnt7b;至此,形成YY1-Yam-1-miR-715-Wnt7b之间的调控通路[74]。sirt1 AS lncRNA是一个在脾脏中表达高,肌肉中表达较少的lncRNA,由Sirt1的反义链编码,且可激活Sirt1的表达;C2C12细胞中,上调表达的miR-34a靶向Sirt1,sirt1 AS lncRNA通过与miR-34a竞争结合到sirt1 mRNA 3′UTR形成RNA复合物促进其翻译,从而抑制肌肉发育[76, 79]。H19这一长链非编码RNA在胚胎组织中大量表达,出生后被抑制,仅在骨骼肌中持续表达;H19的一号外显子编码miR-675,它是在成肌分化中诱导表达的miRNA;miR-675直接靶向Smad1,Smad5和Cdc6抑制H19的表达,细胞分化受到抑制,在H19缺陷的小鼠中,通过重新表达miR-675,骨骼肌再生能力得到恢复;因此,H19通过基因内miRNA的表达,在肌肉分化和再生时有重要的反式调控功能[75]

5 结语

综上所述,对肌肉特异表达的miRNA在成肌分化过程中的功能研究非常多且机制已经比较透彻,而近年来更多的非肌肉特异表达的miRNA的功能得到阐明,这充分证明了miRNA对成肌分化调控的重要性。本实验室以C2C12细胞为材料,对小鼠720个miRNAs进行高通量筛选,鉴定了39个新的与成肌分化相关的miRNA,且对miR-17-92家族,miR-195/497,miR-34b以及miR-132的功能进行了研究[80-81]。成肌分化过程中有重要调控作用的miRNA,在各种肌肉疾病中通常有异常表达,因而,对这些miRNA调控机制的研究,最终为肌肉相关疾病的治疗提供思路。

参考文献
[1]
Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell, 2004, 116: 281-297. DOI:10.1016/S0092-8674(04)00045-5
[2]
Orom U A, Nielsen F C, Lund a H. MicroRNA-10a binds the 5' UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell, 2008, 30: 460-471. DOI:10.1016/j.molcel.2008.05.001
[3]
Jopling C L, Yi M, Lancaster A M, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 2005, 309: 1577-1581. DOI:10.1126/science.1113329
[4]
Forman J J, Legesse-Miller A, Coller H A. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 14879-14884. DOI:10.1073/pnas.0803230105
[5]
O'rourke J R, Georges S A, Seay H R, et al. Essential role for Dicer during skeletal muscle development. Developmental Biology, 2007, 311: 359-368. DOI:10.1016/j.ydbio.2007.08.032
[6]
Endo T. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone, 2015, 80: 2-13. DOI:10.1016/j.bone.2015.02.028
[7]
Brand-Saberi B. Genetic and epigenetic control of skeletal muscle development. Annals of anatomy=Anatomischer Anzeiger:official organ of the Anatomische Gesellschaft, 2005, 187: 199-207. DOI:10.1016/j.aanat.2004.12.018
[8]
Ito Y, Kayama T, Asahara H. A systems approach and skeletal myogenesis. Comparative and Functional Genomics, 2012, 2012: 7594-7507.
[9]
Hinterberger T J, Sassoon D A, Rhodes S J, et al. Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Developmental Biology, 1991, 147: 144-156. DOI:10.1016/S0012-1606(05)80014-4
[10]
Buckingham M, Relaix F. The role of Pax genes in the development of tissues and organs:Pax3 and Pax7 regulate muscle progenitor cell functions. Annual Review of Cell and Developmental Biology, 2007, 23: 645-673. DOI:10.1146/annurev.cellbio.23.090506.123438
[11]
Edmondson D G, Cheng T C, Cserjesi P, et al. Analysis of the myogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2. Molecular and Cellular Biology, 1992, 12: 3665-3677. DOI:10.1128/MCB.12.9.3665
[12]
Vignaud A, Hourde C, Butler-Browne G, et al. Differential recovery of neuromuscular function after nerve/muscle injury induced by crude venom from Notechis scutatus, cardiotoxin from Naja atra and bupivacaine treatments in mice. Neuroscience Research, 2007, 58: 317-323. DOI:10.1016/j.neures.2007.04.001
[13]
Van Rooij E, Sutherland L B, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 2007, 316: 575-579. DOI:10.1126/science.1139089
[14]
Sempere L F, Freemantle S, Pitha-Rowe I, et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biology, 2004, 5: R13. DOI:10.1186/gb-2004-5-3-r13
[15]
Wang X H. MicroRNA in myogenesis and muscle atrophy. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16: 258-266. DOI:10.1097/MCO.0b013e32835f81b9
[16]
Duan C, Ren H, Gao S. Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins:roles in skeletal muscle growth and differentiation. General and Comparative Endocrinology, 2010, 167: 344-351. DOI:10.1016/j.ygcen.2010.04.009
[17]
Elia L, Contu R, Quintavalle M, et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation, 2009, 120: 2377-2385. DOI:10.1161/CIRCULATIONAHA.109.879429
[18]
Kozakowska M, Ciesla M, Stefanska A, et al. Heme oxygenase-1 inhibits myoblast differentiation by targeting myomirs. Antioxidants & Redox Signaling, 2012, 16: 113-127.
[19]
Sato M M, Nashimoto M, Katagiri T, et al. Bone morphogenetic protein-2 down-regulates miR-206 expression by blocking its maturation process. Biochemical and Biophysical Research Communications, 2009, 383: 125-129. DOI:10.1016/j.bbrc.2009.03.142
[20]
King I N, Yartseva V, Salas D, et al. The RNA-binding protein TDP-43 selectively disrupts microRNA-1/206 incorporation into the RNA-induced silencing complex. The Journal of Biological Chemistry, 2014, 289: 14263-14271. DOI:10.1074/jbc.M114.561902
[21]
Lu L, Zhou L, Chen E Z, et al. A novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network. PloS One, 2012, 7: e27596. DOI:10.1371/journal.pone.0027596
[22]
Chen J F, Mandel E M, Thomson J M, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 2006, 38: 228-233. DOI:10.1038/ng1725
[23]
Wilson-Rawls J, Molkentin J D, Black B L, et al. Activated notch inhibits myogenic activity of the MADS-Box transcription factor myocyte enhancer factor 2C. Molecular and Cellular Biology, 1999, 19: 2853-2862. DOI:10.1128/MCB.19.4.2853
[24]
Gagan J, Dey B K, Layer R, et al. Notch3 and Mef2c proteins are mutually antagonistic via Mkp1 protein and miR-1/206 microRNAs in differentiating myoblasts. The Journal of Biological Chemistry, 2012, 287: 40360-40370. DOI:10.1074/jbc.M112.378414
[25]
Chen J F, Tao Y, Li J, et al. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. The Journal of Cell Biology, 2010, 190: 867-879. DOI:10.1083/jcb.200911036
[26]
Dey B K, Gagan J, Dutta A. miR-206 and miR-486 induce myoblast differentiation by downregulating Pax7. Molecular and Cellular Biology, 2011, 31: 203-214. DOI:10.1128/MCB.01009-10
[27]
Goljanek-Whysall K, Sweetman D, Abu-Elmagd M, et al. MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 11936-11941. DOI:10.1073/pnas.1105362108
[28]
Kim H K, Lee Y S, Sivaprasad U, et al. Muscle-specific microRNA miR-206 promotes muscle differentiation. The Journal of Cell Biology, 2006, 174: 677-687. DOI:10.1083/jcb.200603008
[29]
Alteri A, De Vito F, Messina G, et al. Cyclin D1 is a major target of miR-206 in cell differentiation and transformation. Cell Cycle, 2013, 12: 3781-3790. DOI:10.4161/cc.26674
[30]
Li L, Sarver A L, Alamgir S, et al. Downregulation of microRNAs miR-1, -206 and -29 stabilizes PAX3 and CCND2 expression in rhabdomyosarcoma. Laboratory Investigation; A Journal of Technical Methods and Pathology, 2012, 92: 571-583. DOI:10.1038/labinvest.2012.10
[31]
Jash S, Dhar G, Ghosh U, et al. Role of the mTORC1 complex in satellite cell activation by RNA-induced mitochondrial restoration:dual control of cyclin D1 through microRNAs. Molecular and Cellular Biology, 2014, 34: 3594-3606. DOI:10.1128/MCB.00742-14
[32]
Kukreti H, Amuthavalli K, Harikumar A, et al. Muscle-specific microRNA1(miR1) targets heat shock protein 70(HSP70) during dexamethasone-mediated atrophy. The Journal of Biological Chemistry, 2013, 288: 6663-6678. DOI:10.1074/jbc.M112.390369
[33]
James P L, Stewart C E, Rotwein P. Insulin-like growth factor binding protein-5 modulates muscle differentiation through an insulin-like growth factor-dependent mechanism. The Journal of Cell Biology, 1996, 133: 683-693. DOI:10.1083/jcb.133.3.683
[34]
Liu N, Williams A H, Maxeiner J M, et al. microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. The Journal of Clinical Investigation, 2012, 122: 2054-2065. DOI:10.1172/JCI62656
[35]
Yan B, Zhu C D, Guo J T, et al. miR-206 regulates the growth of the teleost tilapia (Oreochromis niloticus) through the modulation of IGF-1 gene expression. The Journal of Experimental Biology, 2013, 216: 1265-1269. DOI:10.1242/jeb.079590
[36]
Sun Y, Ge Y, Drnevich J, et al. Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. The Journal of Cell Biology, 2010, 189: 1157-1169. DOI:10.1083/jcb.200912093
[37]
Kalderon N, Epstein M L, Gilula N B. Cell-to-cell communication and myogenesis. The Journal of Cell Biology, 1977, 75: 788-806. DOI:10.1083/jcb.75.3.788
[38]
Anderson C, Catoe H, Werner R. MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Research, 2006, 34: 5863-5871. DOI:10.1093/nar/gkl743
[39]
Rosenberg M I, Georges S A, Asawachaicharn A, et al. MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. The Journal of Cell Biology, 2006, 175: 77-85. DOI:10.1083/jcb.200603039
[40]
Sharma M, Juvvuna P K, Kukreti H, et al. Mega roles of microRNAs in regulation of skeletal muscle health and disease. Frontiers in Physiology, 2014, 5: 239.
[41]
Jeng S F, Rau C S, Liliang P C, et al. Profiling muscle-specific microRNA expression after peripheral denervation and reinnervation in a rat model. Journal of Neurotrauma, 2009, 26: 2345-2353. DOI:10.1089/neu.2009.0960
[42]
Taulli R, Bersani F, Foglizzo V, et al. The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation. The Journal of Clinical Investigation, 2009, 119: 2366-2378.
[43]
Luo Y Q, Wu X X, Ling Z X, et al. microRNA133a targets Foxl2 and promotes differentiation of C2C12 into myogenic progenitor cells. DNA and Cell Biology, 2015, 34: 29-36. DOI:10.1089/dna.2014.2522
[44]
Liu N, Bezprozvannaya S, Shelton J M, et al. Mice lacking microRNA 133a develop dynamin 2-dependent centronuclear myopathy. The Journal of Clinical Investigation, 2011, 121: 3258-3268. DOI:10.1172/JCI46267
[45]
Chen X, Wang K H, Chen J N, et al. In vitro evidence suggests that miR-133a-mediated regulation of uncoupling protein 2(UCP2) is an indispensable step in myogenic differentiation. Journal of Biological Chemistry, 2009, 284: 5362-5369. DOI:10.1074/jbc.M807523200
[46]
Zhang Y, Xie R L, Gordon J, et al. Control of mesenchymal lineage progression by microRNAs targeting skeletal gene regulators Trps1 and Runx2. The Journal of Biological Chemistry, 2012, 287: 21926-21935. DOI:10.1074/jbc.M112.340398
[47]
Yin H, Pasut A, Soleimani V D, et al. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metabolism, 2013, 17: 210-224. DOI:10.1016/j.cmet.2013.01.004
[48]
Zhang D, Li X, Chen C, et al. Attenuation of p38-mediated miR-1/133 expression facilitates myoblast proliferation during the early stage of muscle regeneration. PloS One, 2012, 7: e41478. DOI:10.1371/journal.pone.0041478
[49]
Nakasa T, Ishikawa M, Shi M, et al. Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model. Journal of Cellular and Nolecular Medicine, 2010, 14: 2495-2505.
[50]
Van Rooij E, Quiat D, Johnson B A, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Developmental Cell, 2009, 17: 662-673. DOI:10.1016/j.devcel.2009.10.013
[51]
Van Rooij E, Liu N, Olson E N. MicroRNAs flex their muscles. Trends Genet, 2008, 24: 159-166. DOI:10.1016/j.tig.2008.01.007
[52]
Callis T E, Pandya K, Seok H Y, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. Journal of Clinical Investigation, 2009, 119: 2772-2786. DOI:10.1172/JCI36154
[53]
Bell M L, Buvoli M, Leinwand L A. Uncoupling of expression of an intronic MicroRNA and its myosin host gene by exon skipping. Molecular and Cellular Biology, 2010, 30: 1937-1945. DOI:10.1128/MCB.01370-09
[54]
Small E M, O'rourke J R, Moresi V, et al. Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 4218-4223. DOI:10.1073/pnas.1000300107
[55]
Garza-Rodea A S, Baldwin D M, Oskouian B, et al. Sphingosine phosphate lyase regulates myogenic differentiation via S1P receptor-mediated effects on myogenic microRNA expression. FASEB Journal:official publication of the Federation of American Societies for Experimental Biology, 2014, 28: 506-519. DOI:10.1096/fj.13-233155
[56]
Alexander M S, Casar J C, Motohashi N, et al. Regulation of DMD pathology by an ankyrin-encoded miRNA. Skeletal Muscle, 2011, 1: 27. DOI:10.1186/2044-5040-1-27
[57]
Alexander M S, Casar J C, Motohashi N, et al. MicroRNA-486-dependent modulation of DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy-associated symptoms. The Journal of Clinical Investigation, 2014, 124: 2651-2667. DOI:10.1172/JCI73579
[58]
Huang Z, Chen X, Yu B, et al. MicroRNA-27a promotes myoblast proliferation by targeting myostatin. Biochemical and Biophysical Research Communications, 2012, 423: 265-269. DOI:10.1016/j.bbrc.2012.05.106
[59]
Mcfarlane C, Vajjala A, Arigela H, et al. Negative auto-regulation of myostatin expression is mediated by Smad3 and microRNA-27. PloS One, 2014, 9: e87687. DOI:10.1371/journal.pone.0087687
[60]
Crist C G, Montarras D, Pallafacchina G, et al. Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 13383-13387. DOI:10.1073/pnas.0900210106
[61]
Wei W, He H B, Zhang W Y, et al. miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development. Cell Death & Disease, 2013, 4: e668.
[62]
Wang H, Garzon R, Sun H, et al. NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell, 2008, 14: 369-381. DOI:10.1016/j.ccr.2008.10.006
[63]
Wang X H, Hu Z, Klein J D, et al. Decreased miR-29 suppresses myogenesis in CKD. Journal of the American Society of Nephrology:JASN, 2011, 22: 2068-2076. DOI:10.1681/ASN.2010121278
[64]
Winbanks C E, Wang B, Beyer C, et al. TGF-beta regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4. The Journal of Biological Chemistry, 2011, 286: 13805-13814. DOI:10.1074/jbc.M110.192625
[65]
Zhou L, Wang L, Lu L, et al. Inhibition of miR-29 by TGF-beta-Smad3 signaling through dual mechanisms promotes transdifferentiation of mouse myoblasts into myofibroblasts. PloS One, 2012, 7: e33766. DOI:10.1371/journal.pone.0033766
[66]
Zhou L, Wang L, Lu L, et al. A novel target of microRNA-29, Ring1 and YY1-binding protein (Rybp), negatively regulates skeletal myogenesis. The Journal of Biological Chemistry, 2012, 287: 25255-25265. DOI:10.1074/jbc.M112.357053
[67]
Motohashi N, Alexander M S, Shimizu-Motohashi Y, et al. Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis. Journal of Cell Science, 2013, 126: 2678-2691. DOI:10.1242/jcs.119966
[68]
Dai Y, Zhang W R, Wang Y M, et al. MicroRNA-128 regulates the proliferation and differentiation of bovine skeletal muscle satellite cells by repressing Sp1. Molecular and Cellular Biochemistry, 2016, 414: 37-46. DOI:10.1007/s11010-016-2656-7
[69]
Shi L, Zhou B, Li P, et al. MicroRNA-128 targets myostatin at coding domain sequence to regulate myoblasts in skeletal muscle development. Cellular Signalling, 2015, 27: 1895-1904. DOI:10.1016/j.cellsig.2015.05.001
[70]
Alexander M S, Kawahara G, Motohashi N, et al. MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation. Cell Death and Differentiation, 2013, 20: 1194-1208. DOI:10.1038/cdd.2013.62
[71]
Jia L, Li Y F, Wu G F, et al. MiRNA-199a-3p regulates C2C12 myoblast differentiation through IGF-1/AKT/mTOR signal pathway. International Journal of Molecular Sciences, 2013, 15: 296-308. DOI:10.3390/ijms15010296
[72]
Wu R, Li H, Zhai L, et al. MicroRNA-431 accelerates muscle regeneration and ameliorates muscular dystrophy by targeting Pax7 in mice. Nature Communications, 2015, 6: 7713. DOI:10.1038/ncomms8713
[73]
Lee K P, Shin Y J, Panda a C, et al. miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4. Genes & Development, 2015, 29: 1605-1617.
[74]
Lu L, Sun K, Chen X, et al. Genome-wide survey by ChIP-seq reveals YY1 regulation of lincRNAs in skeletal myogenesis. Embo J, 2013, 32: 2575-2588. DOI:10.1038/emboj.2013.182
[75]
Dey B K, Pfeifer K, Dutta A. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes & Development, 2014, 28: 491-501.
[76]
Wang Y, Pang W J, Wei N, et al. Identification, stability and expression of Sirt1 antisense long non-coding RNA. Gene, 2014, 539: 117-124. DOI:10.1016/j.gene.2014.01.037
[77]
Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011, 147: 358-369. DOI:10.1016/j.cell.2011.09.028
[78]
Legnini I, Morlando M, Mangiavacchi A, et al. A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis. Mol Cell, 2014, 53: 506-514. DOI:10.1016/j.molcel.2013.12.012
[79]
Wang G Q, Wang Y, Xiong Y, et al. Sirt1 AS lncRNA interacts with its mRNA to inhibit muscle formation by attenuating function of miR-34a. Scientific Reports, 2016, 6: 218-265.
[80]
Qiu H, Liu N, Luo L, et al. MicroRNA-17-92 regulates myoblast proliferation and differentiation by targeting the ENH1/Id1 signaling axis. Cell Death and Differentiation, 2016, 23: 1658-1669. DOI:10.1038/cdd.2016.56
[81]
Qiu H, Zhong J, Luo L, et al. Regulatory Axis of miR-195/497 and HMGA1-Id3 governs muscle cell proliferation and differentiation. International Journal of Biological Sciences, 2017, 13: 157-166. DOI:10.7150/ijbs.17440