[1] |
Coffey A, Ross R P.
Bacteriophage-resistance systems in dairy starter strains:molecular analysis to application. Antonie Van Leeuwenhoek , 2002, 82 (1-4) : 303–321.
|
|
[2] |
Doudna J A, Charpentier E.
Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science , 2014, 346 (621) : 1258096.
|
|
[3] |
Mojica F J.
Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology , 2009, 155 .
|
|
[4] |
Jiang W.
RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol , 2013, 31 (3) : 233–239.
DOI:10.1038/nbt.2508 |
|
[5] |
Mali P.
RNA-guided human genome engineering via Cas9. Science , 2013, 339 (6121) : 823–826.
DOI:10.1126/science.1232033 |
|
[6] |
Garneau J E.
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature , 2010, 468 (7320) : 67–71.
DOI:10.1038/nature09523 |
|
[7] |
Makarova K S.
Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol , 2011, 9 (6) : 467–477.
DOI:10.1038/nrmicro2577 |
|
[8] |
Jinek M.
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science , 2012, 337 (6096) : 816–821.
DOI:10.1126/science.1225829 |
|
[9] |
Fu Y.
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol , 2013, 31 (9) : 822–826.
DOI:10.1038/nbt.2623 |
|
[10] |
Pattanayak V.
High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol , 2013, 31 (9) : 839–843.
DOI:10.1038/nbt.2673 |
|
[11] |
Fu Y, Sander D.
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol , 2014, 32 (3) : 279–284.
DOI:10.1038/nbt.2808 |
|
[12] |
Ran F A, Hsu P D, Lin C Y, et al.
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell , 2013, 154 (6) : 1380–1389.
DOI:10.1016/j.cell.2013.08.021 |
|
[13] |
Yu C, Liu Y, Ma T, et al.
Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell , 2015, 16 (2) : 142–147.
DOI:10.1016/j.stem.2015.01.003 |
|
[14] |
Maruyama T.
Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol , 2015, 33 (5) : 538–542.
DOI:10.1038/nbt.3190 |
|
[15] |
Gilbert L A, Horlbeck M A, Adamson B, et al.
Genome-scale CRISPR-mediated control of gene repression and activation. Cell , 2014, 159 (3) : 647–661.
DOI:10.1016/j.cell.2014.09.029 |
|
[16] |
Sanjana N E, Shalem O, Zhang F.
Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods , 2014, 11 (8) : 783–784.
DOI:10.1038/nmeth.3047 |
|
[17] |
Cong L, Ran F A, Cox D, et al.
Multiplex genome engineering using CRISPR/Cas systems. Science , 2013, 339 (6121) : 819–823.
DOI:10.1126/science.1231143 |
|
[18] |
Zhou X, Xin J, Fan N, et al.
Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci , 2015, 72 (6) : 1175–1184.
DOI:10.1007/s00018-014-1744-7 |
|
[19] |
Wang X, Huang J, Cao C, et al.
One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep , 2016, 6 : 20620.
DOI:10.1038/srep20620 |
|
[20] |
Hai T.
One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res , 2014, 24 (3) : 372–375.
DOI:10.1038/cr.2014.11 |
|
[21] |
Wang X, Zhou J, Cao C, et al.
Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs. Sci Rep , 2015, 5 : 13348.
DOI:10.1038/srep13348 |
|
[22] |
Xue W, Chen S, Yin H, et al.
CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature , 2014, 514 (7522) : 380–384.
DOI:10.1038/nature13589 |
|
[23] |
Maresch R, Mueller S, Veltkamp C, et al.
Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nat Commun , 2016, 7 : 10770.
DOI:10.1038/ncomms10770 |
|
[24] |
Yang D, Xu J, Zhu T, et al.
Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. J Mol Cell Biol , 2014, 6 (1) : 97–99.
DOI:10.1093/jmcb/mjt047 |
|
[25] |
Chen Y, Zheng Y, Kang Y, et al.
Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum Mol Genet , 2015, 24 (13) : 3764–3774.
|
|
[26] |
Wu Y, et al.
Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell , 2013, 13 (6) : 659–662.
DOI:10.1016/j.stem.2013.10.016 |
|
[27] |
Zhou X, Wang L, Du Y.
Efficient generation of gene-modified pigs harboring precise orthologous human mutation via CRISPR/Cas9-induced homology-directed repair in zygotes. Hum Mutat , 2016, 37 (1) : 110–118.
DOI:10.1002/humu.22913 |
|
[28] |
Yin H, Xue W, Chen S, et al.
Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol , 2014, 32 (6) : 551–553.
DOI:10.1038/nbt.2884 |
|
[29] |
Reyes L M, Estvada J L, Wang Z Y, et al.
Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. J Immunol , 2014, 193 (11) : 5751–5757.
DOI:10.4049/jimmunol.1402059 |
|
[30] |
Yang L, Guell M, Niu D, et al.
Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science , 2015, 350 (6264) : 1101–1104.
DOI:10.1126/science.aad1191 |
|
[31] |
Drost J, Jaarsveld R H, Ponsioen B, et al.
Sequential cancer mutations in cultured human intestinal stem cells. Nature , 2015, 521 (7550) : 43–47.
DOI:10.1038/nature14415 |
|
[32] |
Jiang J, Zhang L, Zhou X, et al.
Induction of site-specific chromosomal translocations in embryonic stem cells by CRISPR/Cas9. Sci Rep , 2016, 6 : 21918.
DOI:10.1038/srep21918 |
|
[33] |
Xie F, Ye L, Chang J C, et al.
Seamless gene correction of beta-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res , 2014, 24 (9) : 1526–1533.
DOI:10.1101/gr.173427.114 |
|
[34] |
Howden S E, Maufort J P, Duffin B M, et al.
Simultaneous reprogramming and gene correction of patient fibroblasts. Stem Cell Reports , 2015, 5 (6) : 1109–1118.
DOI:10.1016/j.stemcr.2015.10.009 |
|
[35] |
Firth A L, Menson T, Parker G S, et al.
Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep , 2015, 12 (9) : 1385–1390.
DOI:10.1016/j.celrep.2015.07.062 |
|
[36] |
Chang C W, Lai Y S, Westin E, et al.
Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep , 2015, 12 (10) : 1668–1677.
DOI:10.1016/j.celrep.2015.08.013 |
|
[37] |
Wu Y, Zhou H, Fan X, et al.
Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res , 2015, 25 (1) : 67–79.
DOI:10.1038/cr.2014.160 |
|
[38] |
Beil-Wagner J, Dossinger G, Schober K, et al.
T cell-specific inactivation of mouse CD2 by CRISPR/Cas9. Sci Rep , 2016, 6 : 21377.
DOI:10.1038/srep21377 |
|
[39] |
Schumann K, Lin S, Boyer E, et al.
Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci U S A , 2015, 112 (33) : 10437–10442.
DOI:10.1073/pnas.1512503112 |
|
[40] |
Seeger C, Sohn J A.
Complete spectrum of CRISPR/Cas9-induced mutations on HBV cccDNA. Mol Ther , 2016, 24 (7) : 1258–1266.
DOI:10.1038/mt.2016.94 |
|
[41] |
Lin S R, Yang H C, Kuo Y T, et al.
The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids , 2014, 3 : e186.
DOI:10.1038/mtna.2014.38 |
|
[42] |
Zetsche B, Gootenberg J S, Abudayyeh O, et al.
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell , 2015, 163 (3) : 759–771.
DOI:10.1016/j.cell.2015.09.038 |
|
[43] |
Gao F, Shen X Z, Jiang F, et al. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotech, 2016, advance online publication.
|
|