中国生物工程杂志  2016, Vol. 36 Issue (11): 7-15

文章信息

雷良欢, 黄同龙, 魏慧, 廖继燕, 吴雨婧, 周偲, 夏立秋, 张友明.
LEI Liang huan, HUANG Tong long, WEI Hui, LIAO Ji yan, WU Yu jing, ZHOU Cai, XIA Li qiu, ZHANG You ming.
叶柄粘球菌STXZ77的分离鉴定及抗肿瘤活性
Screening, Identification and Antitumor Activity of Myxococcus stipitatus STXZ77
中国生物工程杂志, 2016, 36(11): 7-15
China Biotechnology, 2016, 36(11): 7-15
http://dx.doi.org/DOI:10.13523/j.cb.20161102

文章历史

收稿日期: 2016-05-03
修回日期: 2016-08-04
叶柄粘球菌STXZ77的分离鉴定及抗肿瘤活性
雷良欢 , 黄同龙 , 魏慧 , 廖继燕 , 吴雨婧 , 周偲 , 夏立秋 , 张友明     
湖南师范大学生命科学学院 微生物分子生物学国家重点实验室培育基地 长沙 410081
摘要: 目的 从土样中分离纯化粘细菌,对其进行鉴定与归类,以丰富粘细菌菌种资源,并对其进行抗肿瘤活性初步研究,为抗肿瘤药物开发奠定基础。 方法 采用灭活大肠杆菌诱导法,从土样中分离纯化粘细菌,结合形态观察、生理生化特征及16S rRNA基因序列同源性分析进行菌株鉴定;向发酵液上清中加入XAD-16大孔吸附树脂提取发酵产物粗提物,CCK-8法进行体外抗肿瘤活性研究;RP-HPLC分离抗肿瘤活性组分,LC-MS/MS分析其分子质量。 结果 分离并鉴定了STXZ77菌株,命名为Myxococcus stipitatus STXZ77。该菌株的发酵产物XAD-16树脂粗提物对小鼠黑色素瘤细胞B16、小鼠乳腺癌细胞4T1、人肝癌细胞SMMC-7721、人宫颈癌细胞HeLa、人结肠癌细胞SW480等多种肿瘤细胞具有较好的细胞毒性,作用24h的IC50值分别为5.34μg/ml、13.50μg/ml、11.93μg/ml、28.70μg/ml、48.09μg/ml,而对正常细胞人脐静脉血管内皮细胞HUVEC的毒性较小,IC50值为17.09μg/ml,小于B16、4T1及SMMC-7721的细胞毒性。RP-HPLC分离得到抗肿瘤活性组分AP-C,质谱分析其分子质量为422.99m/z结论 从土样中分离得到粘细菌Myxococcus stipitatus STXZ77,从该菌中分离得到抗肿瘤活性组分AP-C,具有开发成抗肿瘤药物的潜在价值。
关键词: 粘细菌     STXZ77     筛选     纯化     抗肿瘤    
Screening, Identification and Antitumor Activity of Myxococcus stipitatus STXZ77
LEI Liang huan , HUANG Tong long , WEI Hui , LIAO Ji yan , WU Yu jing , ZHOU Cai , XIA Li qiu , ZHANG You ming     
State Key Laboratory Breeding Base of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
Abstract: Objective Screening and identifying the myxobacteria from soil samples to enrich myxobacteria resources, then preliminarily study on its antitumor activity, to lay the foundation for the exploration of anti-tumor drugs. Methods Isolating myxobacteria strains from soil samples through inactivated Escherichia coli inducing method, identifying the strain based on morphological observation, physiologically and biochemically characterizing, and the homologous analysis of 16S rRNA sequences of nucleotides. XAD-16 macroporous adsorption resin was added to fermented supernatant to harvest crude extracting from fermented product, and evaluated its antitumor activity in vitro through CCK-8 assay. An antitumor active component was isolated from the identified strain STXZ77 by reversed phase high-performance liquid chromatography (RP-HPLC) technique, and its molecular weight was analyzed by LC-MS/MS. Results The strain STXZ77, which was isolated and identified, was named Myxococcus stipitatus STXZ77. The XAD-16 resin crude extract from the fermented products expressed antitumor activity against many kinds of tumor cells, such as mouse melanoma cells B16, mouse mammary cells 4T1, human hepatoma cells SMMC-7721, human cervical carcinoma cells HeLa, human colon cells SW480, etc. The IC50 values are 5.34μg/ml, 13.50μg/ml, 11.93μg/ml, 28.70μg/ml and 48.09μg/ml, respectively. While it showed minor toxicity to HUVEC cell line, the IC50 value of which is 17.09μg/ml, indicating less toxicity compared with B16, 4T1 and SMMC-7721 cell lines. An antitumor active component, AP-C, was successfully isolated using RP-HPLC technique, the mass-to-charge ratio of which was determined to be 422.99m/z through mass spectrometry analysis. Conclusion The myxobacterium strain Myxococcus stipitatus STXZ77 was isolated from soil samples, from which an antitumor active compound AP-C was obtained, and it has a significant value for developing antitumor drugs.
Key words: Myxobacterium     STXZ77     Screening     Purification     Antitumor    

粘细菌(Myxobacteria)是一类杆状、可滑行、具有复杂多细胞行为的革兰氏阴性菌,能够形成多细胞的子实体和抗逆性的粘孢子。粘细菌属于变形杆菌门(Proteobacteria)的δ变形杆菌纲(Deltaproteobacteria)的粘球菌目(Myxococcales),包括3亚目,23属,50多种[1]。粘细菌广泛分布于土壤、朽木、树皮、食草动物的粪便,以及腐烂的地衣和昆虫等有机质丰富的环境中[2]。此外,在南极、海底火山口地等极端环境中也有粘细菌的分布[3-4]

粘细菌能够产生丰富的次级代谢产物,这些物质结构新颖、作用机制多样。自1977年首个粘细菌来源的生物活性物质Ambruticin的结构公布[5],到目前为止,已从粘细菌中发现了600多种生物活性物质,占微生物来源的5%,是继放线菌、芽孢杆菌之后的第三大类次级代谢产物产生菌[6],是一类极具应用开发价值的微生物类群,受到研究者的日益重视。

粘细菌来源的生物活性物质中具有多种抗肿瘤活性物质,其中最具代表性的抗肿瘤药物是埃博霉素(epothilones)。埃博霉素于1993年在纤维堆囊菌次级代谢产物中分离得到[1]。通过对其不断深入研究,2007年10月美国食品药品管理局(FDA)批准第一个epothilones类似物ixabepilone上市[8]。目前进入临床研究的epothilones其它类似物有沙戈匹隆(sagopilone,ZK-EPO)[9]、埃博霉素B(patupilone,EPO960)[10]、埃博霉素D(KOS-862)[11]和KOS-1584[12]等。

本研究采用灭活大肠杆菌诱导子实体法,从土样中分离得到粘细菌STXZ77菌株,结合形态观察、生理生化特征及16S rRNA基因序列同源性分析进行菌株鉴定。利用HPLC从STXZ77菌株代谢产物中分离抗肿瘤活性组分,为寻找新的抗肿瘤药物及其开发应用奠定了重要基础。

1 材料与方法 1.1 材料

1.1.1 土样

分离纯化粘细菌所用土样采用五点取样法采集于福建省福州市。

1.1.2 供试细胞株

小鼠黑色素瘤细胞B16、人宫颈癌细胞HeLa、人肝癌细胞SMMC-7721、小鼠乳腺癌细胞4T1、人结肠癌细胞SW480、人脐静脉血管内皮细胞HUVEC均由本实验室保藏。

1.1.3 培养基

WCX培养基:CaCl2·2H2O 0.1%,Agar 1.5%,pH7.2;MD1液体培养基:Casein Peptone 0.6%,可溶性淀粉0.2%,MgSO4·7H2O 0.2%,CaCl2·2H2O 0.04%,pH7.2;CTT固体培养基[13]:1% Casein Peptone,8mmol/L MgSO4,10mmol/L Tris-HCl(pH7.6),1mmol/L potassium phosphate(pH7.6);VY/2培养基:Yeast Extract 0.5%,CaCl2·2H2O 0.1%,MgSO4·7H2O 0.05%,pH7.2。

1.2 粘细菌的分离

1.2.1 土样的预处理

采集的土样自然风干,用研钵磨细后过150目筛。称量3g研磨过筛的土样至3ml蒸馏水中,加入放线菌酮的DMSO溶液(20mg/ml)至终浓度为25μg/ml,混匀,58℃水浴10min,室温放置过夜,滴加至WCX平板前再58℃水浴10min。

1.2.2 灭活大肠杆菌诱导法

将已灭菌的糊状大肠杆菌菌体滴加在WCX平板(含25μg/ml放线菌酮)上,将处理后的土样滴加在大肠杆菌旁,30℃倒置培养,培养5天开始进行持续观察子实体的形成情况。

1.2.3 粘细菌的纯化

挑取子实体到新鲜WCX固体培养基的大肠杆菌旁,反复转接多次后,将纯化的粘细菌转接到MD1液体培养基中,30℃、160r/min摇床培养4天,取菌液用20%甘油置-80℃保藏。

1.3 菌株的鉴定

1.3.1 形态观察

将分离得到的STXZ77菌株接种到WCX培养基上的灭活大肠杆菌旁边,30℃培养箱倒置培养7天,观察菌落形态,并在体视显微镜下观察子实体的形态。将菌株接种到MD1液体培养基中,30℃、160r/min培养4天后取菌体进行革兰染色,同时用扫描电镜观察细胞形态。

1.3.2 生理生化特征检测

参照《常见细菌系统鉴定手册》及《伯杰氏细菌鉴定手册》第九版的方法进行[14]

1.3.3 16S rRNA基因序列的扩增、测序及系统发育树的构建

以STXZ77菌株基因组为模板,16S rRNA基因通用引物27F(5′-AGAGTTTGATCCTGGCTCAG-3′)-1492R(5′-TACGGCTACCTTGTTACGACTT-3′)进行PCR扩增16S rDNA,引物由生工生物工程(上海)有限公司合成。PCR扩增体系(30μl):ddH2O 18μl,5×PS Buffer 6μl,dNTP Mix 2μl,27F 1μl,1492R 1μl,模板1.8μl,PrimerSTAR HS DNA Polymerase 0.2μl。PCR扩增程序:95℃预变性5min,95℃变性30s,61℃退火30s,72℃延伸90s,30个循环,72℃延伸10min。用百泰克生物技术有限公司快捷型琼脂糖凝胶DNA回收试剂盒II(离心柱型)对PCR产物进行回收,与pMD18-T载体进行重组连接,将连接产物热转入Escherichia coli Top10感受态细胞,挑取转化子后提质粒并双酶切验证为阳性克隆后,送该质粒至生工生物工程(上海)有限公司测序。将STXZ77菌株的16S rDNA序列在NCBI中BLAST进行同源性比对,Blast结果使用MEGA 6.06,采用邻接法(Neighbor-Joining,NJ)构建系统发育树,进行系统发育分析。

1.4 抗肿瘤活性物质的分离

1.4.1 代谢产物的粗提

1%接种量接种STXZ77菌株菌液至500ml MD1液体培养基中,30℃、160r/min摇床培养7天。离心收集发酵液上清,加入2%(V/V)活化的XAD-16大孔吸附树脂,30℃、160r/min吸附24h。过滤收集吸附后树脂,水洗3遍后,用10倍体积甲醇解吸附24h,得到树脂粗提物。

1.4.2 粗提物的抗肿瘤谱测定

将粗提物冷冻干燥,用DMSO溶解。在96孔板中接种100μl肿瘤细胞悬液,1×104 cells/well,置于37℃、5% CO2培养箱中培养12h。每孔中加入不同浓度的粗提物,以DMSO对照,37℃、5% CO2培养箱中继续孵育24h,观察细胞的生长和形态变化。用CCK-8试剂盒(日本Dojindo)检测对肿瘤细胞的抑制率,用SPSS 20软件计算IC50值。

1.4.3 抗肿瘤活性组分的分离与质谱分析

将粗提物在Agilent 1290色谱仪上进行RP-HPLC分离(方法见表 1)。色谱柱:Agilent SB-C18(4.6×150mm,5μm);流动相:水和乙腈;流速:1ml/min;检测波长300nm。收集各峰,冷冻干燥,甲醇复溶,检测抗肿瘤活性。对抗肿瘤活性组分进行LC-MS/MS分析。

表 1 粗提物RP-HPLC梯度洗脱方法 Table 1 RP-HPLC gradient elution method of antitumor active component
t(min)c(H2O) (%)c(acetonitrile)(%)
0955
108515
208317
20.54060
273961
310100
340100
35955

2 结果 2.1 菌株鉴定

2.1.1 形态特征

从土样中分离得到粘细菌STXZ77菌株,革兰氏染色呈阴性[图 1(a)]。扫描电镜[图 1(b)]显示营养细胞大小约为0.4μm×7μm,呈长杆状,无鞭毛,两端钝圆,在加入灭活大肠杆菌的WCX培养基上[图 1(c)(d)]侵噬大肠杆菌,形成薄膜状菌落,向四周扩展,边缘不规则,子实体不含柄,不规则点状分布,具有折光性,黄白色,球形或椭球形,部分埋入培养基中,基部有折皱,直接于基质上,粘孢子被孢子囊包裹,且孢子囊外周有透明黏液。

图 1 STXZ77菌株的形态特征 Figure 1 The morphological characteristics of strain STXZ77 (a) Gram stain of strain STXZ77 (b) The scanning electron microscopy that strain STXZ77 were cultured 4 days in MD1 medium (c),(d) The fruting body of strain STXZ77 on WCX plate

2.1.2 生理生化特征

STXZ77菌株甲基红试验和吲哚试验均呈阴性,不能利用葡萄糖产酸产气,不能还原硝酸盐,能水解淀粉和明胶,不水解纤维素,具酯酶、过氧化氢酶活性,无精氨酸双水解酶和苯丙氨酸脱氢酶活性,符合粘球菌属(Myxococcus)的生理生化基本特征。

2.1.3 16S rDNA分子鉴定

菌株STXZ77的16S rDNA序列长度为1 499bp。将16S rDNA 序列上传至NCBI(http://www.ncbi.nlm.nih.gov/)进行Blast分析,结果表明,该菌株与叶柄粘球菌DSM 14675(Myxococcus stipitatus DSM 14675)的同源性最高,达到99.5%。用MEGA 6.06软件以邻位相接法构建系统发育树(图 2),可以看出STXZ77菌株与Myxococcus stipitatus DSM 14675在同一分支,系统发育最近。结合菌落形态及生理生化特征,将粘细菌STXZ77菌株归类为叶柄粘球菌,命名为Myxococcus stipitatus STXZ77。

图 2 STXZ77菌株的16S rRNA基因序列构建系统发育树 Figure 2 The phylogenetic tree based on 16S rRNA gene sequences of strain STXZ77 The numbers on branches indicate bootstrap values. The tree rooted was constructed by N-J method with bootstrap values calculated from 1 000 resampling. The numbers at each node that indicate the percentage of bootstrap supporting
2.2 抗肿瘤活性研究

2.2.1 粗提物抗肿瘤活性研究

不同浓度XAD-16树脂粗提物作用于SMMC-7721、B16、HUVEC、HeLa、SW480、4T1细胞24h后,细胞数量减少,细胞生长受到明显抑制,细胞变圆,贴壁不牢,开始漂浮,不能维持正常的形态(图 3)。CCK-8检测细胞增殖和毒性,该菌株的发酵产物XAD-16树脂粗提物对B16、4T1、SMMC-7721、HeLa、SW480等多种肿瘤细胞具有较好的细胞毒性,作用24h的IC50值分别为5.34μg/ml、13.50μg/ml、11.93μg/ml、28.70μg/ml、48.09μg/ml,而对正常细胞HUVEC的毒性较小,IC50值为17.09μg/mL,小于B16、4T1及SMMC-7721细胞(图 4)。

图 3 树脂粗提物对不同细胞的毒性作用 Figure 3 The cytotoxic effects of the crude extract on different tumor cells All kinds of cells were cultivated 24h in the 96 wells plate with DMSO (control) or with 30μg/ml crude extract from strain STXZ77 (treatment). Scale bar: 50μm
图 4 粗提物对不同细胞的IC50 Figure 4 The IC50 values of crude extract toward selected cells Cells were cultivated 24h in the 96 wells plate with DMSO (control) or with crude extract from strain STXZ77 (treatment). Cell proliferation was assessed by CCK-8 assay. The IC50 values are calculated by SPSS 20. All error bars indicate ± SD (n=3)

2.2.2 抗肿瘤活性物质的分离与质谱分析

利用RP-HPLC分离树脂粗提物得到抗肿瘤活性组分AP-C(图 5图 6),其保留时间为31.586min,紫外光谱显示,组分AP-C在225nm处具有最大吸光值(图 7)。LC-MS/MS分析结果显示,抗肿瘤活性组分AP-C的分子质量为422.99m/z,二级质谱主要片段为112.28m/z、150.21m/z、207.15m/z、255.32m/z、279.20m/z、331.22m/z、359.21m/z、391.17m/z(图 8)。

图 5 RP-HPLC分离抗肿瘤组分色谱图 Figure 5 The purity of the active component by high performance liquid The retention time of compound AP-C is 31.586min
图 6 色谱分离组分AP-C对B16细胞的毒性 Figure 6 Cytotoxicity to the B16 cell of compound AP-C Compound AP-C was dissolved in methanol. Cells were cultivated 20h in the 96 wells plate with methanol (a) or with compound AP-C from strain STXZ77 (b)
图 7 抗肿瘤组分AP-C的紫外光谱 Figure 7 Ultraviolet spectrum of compound AP-C
图 8 抗肿瘤组分AP-C的质谱分析 Figure 8 The mass spectrometry analysis of compound AP-C The mass-to-charge ratio of compound AP-C is 422.99 m/z
3 讨论

粘细菌作为丰富次级代谢产物的产生菌,受到了科研工作者的日益重视。但是由于粘细菌生长缓慢,代时较长,且具有复杂的多细胞运动特征,粘细菌的筛选、分离受到限制[15]。本研究采用灭活大肠杆菌诱导子实体法从土壤中分离纯化获得粘细菌STXZ77菌株,经形态观察、生理生化特征及16S rDNA分子鉴定,确定该菌株为叶柄粘球菌,命名为Myxococcus stipitatus STXZ77。

近年来,粘细菌抗肿瘤活性代谢产物研究成果不断涌现。2014年,Jansen等[16]Nannocystis pusilla中分离得到的Pyrronazols类物质对多种肿瘤细胞,特别对人卵巢癌细胞SK-OV-3具有良好的细胞毒性(LD50 2.59μmol/L);2013年,Herrmann等[17]Chondromyces sp.中分离得到chondramides类抗肿瘤活性物质,并发现其卤代物具有更好的抗肿瘤活性;2011年,Gawas等[18]Sorangiineae SBNa008分离出一种二羟基高度共轭的28碳甾体,对人结肠癌细胞SW480的IC50值为10μmol/L;2009年,Kwak等[19]Sorangium cellulosum中分离得到螺酮缩醇抗肿瘤物质spirodienal B。虽然从粘细菌中发现的抗肿瘤活性产物层出不穷,但对叶柄粘球菌(Myxococcus stipitatus)抗肿瘤活性产物,除1993年Sasse等[20]M. stipitatus DSM 6807中分离得到抗肿瘤活性产物Rhizopodin外,此后20年来未见报道。本研究从M. stipitatus STXZ77中提取抗肿瘤活性粗提物,体外抗肿瘤活性实验表明,该菌株的发酵产物XAD-16树脂粗提物对B16、4T1、HeLa、SW480等多种肿瘤细胞具有较好的细胞毒性,显示高效广谱的抗肿瘤活性,而对正常细胞HUVEC的毒性较小,具有开发成广谱抗肿瘤药物的潜在价值。据广谱抗肿瘤药物的抗肿瘤机制的相关报道,mda-7/IL-24通过提高肿瘤细胞中活性氧(ROS)水平使线粒体功能障碍并促进细胞凋亡[21],BMS-599626通过抑制人表皮因子受体(HER)异源二聚化抑制肿瘤增殖[22],HND-007抑制微管蛋白聚合,阻滞微管形成和中心体分离[23],SU14813抑制血管内皮生长因子受体(VEGFR)、血小板衍生生长因子受体(PDGFR)及干细胞生长受体(KIT)对受体酪氨酸激酶(RTK)抑制而显示出广谱抗肿瘤活性[24],土茯苓根状茎提取物水溶性组分能通过激活ERK1/2信号通路,介导肿瘤细胞周期阻滞、凋亡、自噬及生长抑制[25],DTCs依赖肿瘤抑制蛋白p53的内在途径直接激活促凋亡蛋白促进肿瘤细胞凋亡[26]。NSK-01105通过双重抑制Raf/MEK/ERK和P13K/Akt/mTOR信号通路抑制肿瘤细胞增殖并介导细胞凋亡[27],VES和TS-1以PP2A-JNK-Sp1多重信号通路为靶标[28],同时抑制多种信号通路比抑制单一信号通路抗肿瘤效果更高效。Yen等[29]发现Notch2是维持肿瘤血管和周皮细胞的信号通路,阻断Notch2信号通路是广谱抗肿瘤的可能机制。广谱抗肿瘤药物的抗肿瘤机制具有差异性,该XAD-16树脂粗提物的抗肿瘤机制有待进一步研究。同时,利用RP-HPLC分离得到抗肿瘤组分AP-C,MS分析其分子质量为422.99m/z,为进一步对其分子结构解析奠定了基础。

本研究分离得到粘细菌M. stipitatus STXZ77,并初步研究其抗肿瘤活性,后续可对分离的抗肿瘤活性组分的结构解析和抗肿瘤机制进行具体研究,为此物质开发应用奠定重要基础。

参考文献
[1] Shimkets L, Dworkin M, Reichenbach H. The Myxobacteria. In:Dworkin M. The Prokaryotes. 3rd ed. Berlin:Springer , 2006 : 31–115.
[2] 原红娟, 谭志远, 朱红惠. 粘细菌的生物活性物质及其应用前景研究进展. 生态科学 , 2015, 34 (6) : 182–187. Yuan H J, Tan Z Y, Zhu H H. Review on myxobacteria bioactive substance and its application prospect. Ecological Science , 2015, 34 (6) : 182–187.
[3] 殷建华, 代富英, 李晋川. 1株粘细菌CMC0606的分离纯化及其抗菌活性研究. 安徽农业科学 , 2010, 38 (9) : 4445–4446. Yin J H, Dai F Y, Li J C. Isolation and purification of CMC0606 and study on its antibiotic activity. Journal of Anhui Agri Sci , 2010, 38 (9) : 4445–4446.
[4] Dawid W. Biology and global distribution of myxobacteria in soils. FEMS Microbiology Reviews , 2000, 24 (4) : 403–427. DOI:10.1111/j.1574-6976.2000.tb00548.x
[5] Ringel S M, Greenough R C, Roemer S, et al. Ambruticin (W7783), a new antifungal antibiotic. The Journal of Antibiotics , 1977, 30 (5) : 371–375. DOI:10.7164/antibiotics.30.371
[6] 文也, 唐少军, 肖蓉, 等. 粘细菌Myxococcus macrosporus STXZ54抗肿瘤活性物质的分离制备及其活性测定. 中国生物工程杂志 , 2014, 34 (9) : 63–71. Wen Y, Tang S J, Xiao R, et al. Separation and ebaluation of antitumor components from Myxococcus macrosporus STXZ54. China Biotechnology , 2014, 34 (9) : 63–71.
[7] Lee F Y F, Borzilleri R, Fairchild C R, et al. Preclinical discovery of ixabepilone, a highly active antineoplastic agent. Cancer Chemoth Pharm , 2008, 63 (1) : 157–166. DOI:10.1007/s00280-008-0724-8
[8] Perez E A, Patel T, Moreno-Aspitia A. Efficacy of ixabepilone in ER/PR/HER2-negative (triple-negative) breast cancer. Breast Cancer Research and Treatment , 2010, 121 (2) : 261–271. DOI:10.1007/s10549-010-0824-0
[9] McMeekin S, Patel R, Verschraegen C, et al. Phase I/Ⅱ study of sagopilone (ZK-EPO) plus carboplatin in women with recurrent platinum-sensitive ovarian cancer. British Journal of Cancer , 2012, 106 (1) : 70–76. DOI:10.1038/bjc.2011.499
[10] Nayak L, DeAngelis L M, Robins H I, et al. Multicenter phase 2 study of patupilone for recurrent or progressive brain metastases from non-small cell lung cancer. Cancer , 2015, 121 (23) : 4165–4172. DOI:10.1002/cncr.29636
[11] Konner J, Grisham R N, Park J, et al. Phase I clinical, pharmacokinetic, and pharmacodynamic study of KOS-862(Epothilone D) in patients with advanced solid tumors and lymphoma. Investigational New Drugs , 2012, 30 (6) : 2294–2302. DOI:10.1007/s10637-011-9765-7
[12] Lam E T, Goel S, Schaaf L J, et al. Phase I dose escalation study of KOS-1584, a novel epothilone, in patients with advanced solid tumors. Cancer Chemother Pharmacol , 2012, 69 (2) : 523–531. DOI:10.1007/s00280-011-1724-7
[13] Muller F D, Schink C W, Hoiczyk E, et al. Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition. Molecular Microbiology , 2012, 83 (3) : 486–505. DOI:10.1111/mmi.2012.83.issue-3
[14] 肖蓉, 文也, 唐少军, 等. 土壤样品中粘细菌的分离鉴定及其生物活性检测. 微生物学报 , 2014, 54 (12) : 1429–1437. Xiao R, Wen Y, Tang S J, et al. Isolation, identification and biological activity of myxobacteria from soils. Acta Microbiologica Sinica , 2014, 54 (12) : 1429–1437.
[15] Gibiansky M L, Hu W, Dahmen K A, et al. Earthquake-like dynamics in Myxococcus xanthus social motility. Proceedings of the National Academy of Sciences of the United States of America , 2013, 110 (6) : 2330–2335. DOI:10.1073/pnas.1215089110
[16] Jansen R, Sood S, Huch V, et al. Pyrronazols, metabolites from the myxobacteria Nannocystis pusilla and N. exedens, are unusual chlorinated pyrone-oxazole-pyrroles. Journal of Natural Products , 2014, 77 (2) : 320–326. DOI:10.1021/np400877r
[17] Herrmann J, Huttel S, Muller R. Discovery and biological activity of new chondramides from Chondromyces sp. Chembiochem:a European Journal of Chemical Biology , 2013, 14 (13) : 1573–1580. DOI:10.1002/cbic.v14.13
[18] Gawas D, Garcia R, Huch V, et al. A highly conjugated dihydroxylated C28 steroid from a myxobacterium. Journal of Natural Products , 2011, 74 (5) : 1281–1283. DOI:10.1021/np100682c
[19] Kwak J H, Ahn J W. A new cytotoxic spiroketal from the myxobacterium Sorangium cellulosum. Archives of Pharmacal Research , 2009, 32 (6) : 841–844. DOI:10.1007/s12272-009-1604-4
[20] Sasse F, Steinmetz H, Hofle G, et al. Rhizopodin, a new compound from Myxococcus stipitatus (myxobacteria) causes formation of rhizopodia-like structures in animal cell cultures. production, isolation, physico-chemical and biological properties. The Journal of Antibiotics , 1993, 46 (5) : 741–748. DOI:10.7164/antibiotics.46.741
[21] Bhoopathi P, Lee N, Pradhan A K, et al. mda-7/IL-24 induces cell death in neuroblastoma through a novel mechanism involving AIF and ATM. Cancer Research , 2016, 76 (12) : 3571–3582.
[22] Wong T W, Lee F Y, Yu C, et al. Preclinical antitumor activity of BMS-599626, a pan-HER kinase inhibitor that inhibits HER1/HER2 homodimer and heterodimer signaling. Clinical Cancer Research:an Official Journal of the American Association for Cancer Research , 2006, 12 (20 Pt 1) : 6186–6193.
[23] Ohira M, Iwasaki Y, Tanaka C, et al. A novel anti-microtubule agent with carbazole and benzohydrazide structures suppresses tumor cell growth in vivo. Biochimica Et Biophysica Acta , 2015, 1850 (9) : 1676–1684. DOI:10.1016/j.bbagen.2015.04.013
[24] Patyna S, Laird A D, Mendel D B, et al. SU14813:a novel multiple receptor tyrosine kinase inhibitor with potent antiangiogenic and antitumor activity. Molecular Cancer Therapeutics , 2006, 5 (7) : 1774–1782. DOI:10.1158/1535-7163.MCT-05-0333
[25] She T, Qu L, Wang L, et al. Sarsaparilla (smilax glabra rhizome) extract Inhibits cancer cell growth by S phase srrest, apoptosis, and autophagy via redox-dependent ERK1/2 pathway. Cancer Prevention Research , 2015, 8 (5) : 464–474. DOI:10.1158/1940-6207.CAPR-14-0372
[26] Li Y, Qi H, Li X, et al. A novel dithiocarbamate derivative induces cell apoptosis through p53-dependent intrinsic pathway and suppresses the expression of the E6 oncogene of human papillomavirus 18 in HeLa cells. Apoptosis:an International Journal on Programmed Cell Death , 2015, 20 (6) : 787–795. DOI:10.1007/s10495-015-1114-4
[27] Yu P, Ye L, Wang H, et al. NSK-01105 inhibits proliferation and induces apoptosis of prostate cancer cells by blocking the Raf/MEK/ERK and PI3K/Akt/mTOR signal pathways. Tumour Biology:the Journal of the International Society for Oncodevelopmental Biology and Medicine , 2015, 36 (3) : 2143–2153. DOI:10.1007/s13277-014-2824-x
[28] Huang P H, Wang D, Chuang H C, et al. Alpha-tocopheryl succinate and derivatives mediate the transcriptional repression of androgen receptor in prostate cancer cells by targeting the PP2A-JNK-Sp1-signaling axis. Carcinogenesis , 2009, 30 (7) : 1125–1131. DOI:10.1093/carcin/bgp112
[29] Yen W C, Fischer M M, Axelrod F, et al. Targeting Notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clinical Cancer Research:an Official Journal of the American Association for Cancer Research , 2015, 21 (9) : 2084–2095. DOI:10.1158/1078-0432.CCR-14-2808