中国生物工程杂志  2016, Vol. 36 Issue (10): 15-20

文章信息

向缅, 朱建全, 俞继华, 李洋洋, 李娟娟, 刘祖碧, 王万军, 廖海, 周嘉裕.
XIANG Mian, ZHU Jian-quan, YU Ji-hua, LI Yang-yang, LI Juan-juan, LIU Zu-bi, WANG Wan-jun, LIAO Hai, ZHOU Jia-yu.
决明胰蛋白酶抑制剂1活性相关残基的定点突变与抑制活性分析
The Site-directed Mutation of Key Residues and the Analysis about Inhibitory Activity of Cassia obtusifolia Trypsin Inhibitor
中国生物工程杂志, 2016, 36(10): 15-20
CHINA BIOTECHNOLOGY, 2016, 36(10): 15-20
http://dx.doi.org/DOI:10.13523/j.cb.20161003

文章历史

收稿日期: 2016-04-26
修回日期: 2016-05-05
决明胰蛋白酶抑制剂1活性相关残基的定点突变与抑制活性分析
向缅 , 朱建全 , 俞继华 , 李洋洋 , 李娟娟 , 刘祖碧 , 王万军 , 廖海 , 周嘉裕     
西南交通大学生命科学与工程学院 成都 610031
摘要: 决明胰蛋白酶抑制剂1(CoTI1)属于Kunitz胰蛋白酶抑制剂家族成员,通过序列比对预测Arg86、Leu84和Thr88等3个氨基酸残基可能是CoTI1发挥抑制作用的关键残基。通过定点突变的方法将Arg86、Leu84与Thr88残基分别突变为Asp残基,并考察各突变体对胰蛋白酶及棉铃虫等鳞翅目害虫消化酶的抑制作用。与CoTI1相比,CoTI1R86D、CoTI1T88D与CoTI1L84D突变体对胰蛋白酶的抑制活性分别下降了93%、64%与59%;对棉铃虫、甜菜夜蛾、斜纹夜蛾等3种鳞翅目害虫消化酶的平均抑制活性分别下降了88.7%、57%与60.7%。以上结果表明Arg86、Leu84与Thr88是CoTI1发挥抑制作用的关键残基,这为CoTI1的抑制分子机制及抗虫研究提供了重要的理论依据。
关键词: 决明     胰蛋白酶抑制剂     定点突变    
The Site-directed Mutation of Key Residues and the Analysis about Inhibitory Activity of Cassia obtusifolia Trypsin Inhibitor
XIANG Mian , ZHU Jian-quan , YU Ji-hua , LI Yang-yang , LI Juan-juan , LIU Zu-bi , WANG Wan-jun , LIAO Hai , ZHOU Jia-yu     
Southwest Jiaotong University, Chengdu 610031, China
Abstract: A trypsin inhibitor (CoTI1) from Cassia obtusifolia was attributed to the Kunitz-type trypsin inhibitor family. According to the sequence alignment, Arg86, Leu84 and Thr88 might be the key residues of CoTI1. In order to confirm the speculation, the three above residues were replaced as Asp by site-directed mutagenesis, respectively, and analysis the inhibitory activity of the mutants and CoT1 to trypsin and insects' digestive enzyme. Compared with CoT1, the inhibitory activity of the mutant CoTI1R86D to trypsin decreased most obviously, and the inhibitory effect of the original 93% was lost. CoTI1L84D lost 59% of the inhibitory effect; while the inhibitory activity of CoTI1T88D decreased by 64%. The average inhibitory activity decreased 88.7%, 57% and 60.7% to digestive enzymes of Helicoverpa armigera, Beet armyworm and Spodoptera litura, respectively. The result shows that Arg86, Leu84 and Thr88 are the key residues of CoT1, and it was useful for the molecular mechanism and anti-insects study of CoTI1.
Key words: Cassia obtusifolia     Trypsin inhibitor     Site-directed mutagenesis    
1 材料与方法 1.1 材料

pET28a/CoTI1重组大肠杆菌表达载体由本实验室构建并保存,大肠杆菌Rosseta(DE3)由本实验室保存。限制性内切酶、Prime star DNA聚合酶、T4 DNA连接酶均购自TaKaRa公司。RNA提取试剂盒Omega Plant RNA Kit、质体提取试剂盒Omega Plasmid Mini Kit I、胶回收试剂盒Gel Extraction Kit为OMEGA公司产品。异丙基硫代半乳糖苷(IPTG)购自MEKER公司,卡那霉素购自生工生物工程有限公司,二硫苏糖醇(DTT)购自BIOSHARP公司。

1.2 CoTI1基因的定点突变、重组载体构建与转化

根据一步法进行CoTI1基因的定点突变,从大肠杆菌中提取模板质粒,利用带有突变位点并完全互补的引物进行PCR扩增,由于其产物不具有甲基化位点,可用Dpn I酶去除PCR产物中的模板DNA,再将扩增所得的突变质粒转入大肠杆菌进行表达[12-13],实验采用定点突变试剂盒(TIANDZ,北京)进行,以pET28a/CoTI1野生型重组载体为模板,设计3对定点突变引物(L84DF,L84DR,R86DF,R86DR,T88DF与T88DR,见表 1),通过PCR将CTC(Leu84),AGG(Arg86)和ACT(Thr88)分别突变成GAT(Asp)。PCR反应体系为:5×高保真酶Buffer 10μl,质粒模板10 μl,上游引物(10~20 μmol/L) 1μl、下游引物(10~20 μmol/L) 1μl、高保真DNA聚合酶1μl、dNTP Mix (2.5 mmol/L each) 4μl、补ddH2O到50μl。PCR反应条件:预变性95℃ 1 min,变性95℃ 40 s,退火60℃ 1 min,延伸72℃ 5 min,72℃ 10 min延伸完全,共计18个循环,4℃保存。

表 1 本文所用到的引物 Table 1 Primers used in this essay
Primer Sequence(5′-3′)
CoTI1L84DF GTGACCATTTCGGCC GATGTAAGGCCCACT
CoTI1L84DR AGTGGGCCTTAC ATCGGCCGAAATGGTCAC
CoTI1R86DF CTCGTA GATCCCACTTTCATCTCAACATC
CoTI1R86DR GATGTTGAGATGAAAGTGGG ATCTACGAG
CoTI1T88DF CTCGTAAGGCCC GATTTCATCTCAACATC
CoTI1T88DR GATGTTGAGATGAA ATCGGGCCTTACGAG

PCR产物经胶回收,与pMD19-T载体相连接,形成pMD19-T重组载体。将pMD19-T重组载体转化DH5α,37 ℃过夜培养,采用质体提取试剂盒(百泰克)提取重组pMD19-T与空pET28a质粒。将质粒用EcoRⅠ和XhoⅠ(TaKaRa, Japan)进行双酶切,1%琼脂糖凝胶电泳检测并回收酶切产物。酶切目的片段与pET28a质粒通过T4 DNA连接酶(TaKaRa, Japan)连接,构建重组pET28a载体,连接产物进行测序确认。提取重组pET28a载体,转化大肠杆菌Rosseta(DE3),37 ℃、200r/min培养至菌液OD值于0.6~0.7之间,加入IPTG使其终浓度为1mmol/L,菌液32℃、160r/min诱导表达12h。

1.3 抑制剂纯化

采用His标记蛋白质微量纯化试剂盒(TIANDZ,北京)进行CoTI1的纯化,纯化方法按试剂盒说明书进行。12%聚丙烯酰胺检测蛋白纯化结果。蛋白质浓度的测定采用Bradford法,以牛血清白蛋白为标准蛋白。

1.4 鳞翅目昆虫类胰蛋白酶的提取

解剖鳞翅目昆虫,挑出昆虫肠道剔除结缔组织,绞碎。加入2倍体积预冷的乙酸酸化水(pH2.5)于10~15℃搅拌提取24h,四层纱布过滤得乳白色滤液,用2.5mol/L H2SO4调pH至2.5~3.0,放置3~4h后用折叠滤纸过滤得黄色透明滤液。加入固体硫酸铵(预先研细),使溶液达0.75饱和度,放置过夜后挤压干,制得鳞翅目昆虫胰蛋白酶原粗制品。

1.5 抑制剂抑制活性测定

抑制活力按照Erlanger等[14]的方法,酶促底物采用BAPNA (N-Benzoyl-DL-arginine-p-nitroaniline),于实验条件下,与不加抑制剂的样品的吸收值比较,每降低0.1个A410nm的吸收值为一个抑制活性单位。

2 结果与分析 2.1 突变位点的确定

通过blast分析,CoTI1与植物KTI的同源性达到30%~46%,其中同源性最高的是印加豆(Inga laurina)ILTI,同源性为46%。CoTI1的活性基序为L84-V85-R86-P87-T88,其P1位残基为Arg86,ILTI为Lys64。另外,在CoTI1上发现4个Cys(64、108、156、164)参与形成二硫键,与其结构的稳定性相关(图 1)。根据序列比对结果,我们选择Lue84、Arg86、Thr88作为突变位点残基。

图 1 CoTI1与相关Kunitz型胰蛋白酶抑制剂的序列比对 Figure 1 Sequence alignment of CoTI1 with relative Kunitz-type trypsin inhibitors ILTI(AFG28551.1), GmTI(NP001237716.1), BvTI(P83595.1) were trypsin inhibitors from Inga laurina, Glycine max and Bauhinia variegate, respectively. The active motif was shown as yellow. The "*" indicated the Cys, The "#" indicated the key residues, "S-S" indicated disulfide bond
2.2 COTI1定点突变株的获得

以CoTI1野生型表达质粒pET28a作为模板,用引物L84DF,L84DR,R86DF,R86DR,T88DF与T88DR分别进行PCR,扩增后得到的产物约600bp,琼脂糖凝胶电泳结果如图 2所示,说明获得了相应的突变产物。将该产物转化DH5α感受态,在含卡那霉素(10mg/L)的LB平板上37℃过夜培养,得到转化子后转接入含卡那霉素抗生素(10 mg/L)的LB培养基中,200 r/min摇床中37℃培养,培养4~5 h后取1 ml菌液送公司测序。测序结果表明,相应位点的碱基序列由CTC(亮氨酸)、AGG(精氨酸)、ACT(苏氨酸)分别突变成GAT(天冬氨酸)(图 3)。通过双酶切,构建重组质粒pET28-CoTI1L84D、pET28-CoTI1R86D、Pet28-CoTI1T88D,并提取相应的质粒转化Rosseta(DE3)感受态得到CoTI1L84D、CoTI1R86D、CoTI1T88D的大肠杆菌表达菌株。

图 2 重组突变体CoTI1L84D、CoTI1R86D、CoTI1T88D的PCR验证 Figure 2 The PCR of mutant CoTI1L84D, CoTI1R86D, CoTI1T88D
图 3 CoTI1和突变体CoTI1L84D、CoTI1R86D、CoTI1T88D的测序结果 Figure 3 The sequencing results of CoTI1 and mutant CoTI1L84D, CoTI1R86D, CoTI1T88D
2.3 突变体蛋白的表达和纯化

为了进一步确认突变体蛋白L84D、R86D和T88D能够正常表达,对具有这些突变位点的突变株扩大100 ml培养,并进行目标蛋白的表达和纯化,从图 4中可以看出:纯化得到的3个突变体蛋白和亲本蛋白都大约在24.15kDa处显示出单一的电泳条带,说明尽管发生了突变,但是并没有影响目标蛋白的正常表达。

图 4 CoTI1重组蛋白及其突变体CoTI1L84D、CoTI1R86D、CoTI1T88D的纯化 Figure 4 The purification of recombinant CoTI1 and mutant CoTI1L84D, CoTI1R86D, CoTI1T88D M: Indicated protein maker. Lane 1~3 indicated mutant CoTI1L84D, CoTI1R86D, CoTI1T88D, respectively
2.4 CoTI1原核表达的活性检测

为了验证序列比对的3个关键残基Leu84、Arg86和Thr88,我们对这3个残基进行了定点突变研究,将其分别突变成Asp,进行原核表达、纯化和活性检测。将纯化的蛋白质按Erlanger法进行活检测,结果显示:CoTI1对牛胰蛋白酶的抑制活性显著,达到了2493.92 UI/mg,以及3个突变体蛋白对胰蛋白酶的抑制活性如图 5所示,可以看出3个突变体的抑制活性均有不同程度的减弱,其中突变体CoTI1R86D最为明显,失去了原来93%的抑制效果,说明Arg86确是CoTI1抑制胰蛋白酶的关键残基。另外,突变体CoTI1L84D和CoTI1T88D分别失去了59%和64%的抑制作用,说明二者对于增强CoTI1与胰蛋白酶的结合也起到了重要作用。

图 5 突变体CoTI1R86D、CoTI1L84D、CoTI1T88D对胰蛋白酶的抑制活性 Figure 5 Inhibition essays of CoTI1R86D, CoTI1L84D, CoTI1T88D to trypsin

另外,该研究还验证了CoTI1与其突变体蛋白对三种昆虫肠道蛋白酶液的抑制作用(图 6),结果显示:CoTI1对棉铃虫、甜菜夜蛾、斜纹夜蛾三种昆虫的肠道蛋白酶液的抑制作用分别是1766.01 UI/mg、1214.12 UI/mg和1512.69 UI/mg,CoTI1突变体对三种昆虫肠道酶液的抑制作用显著减弱,失去了大部分抑制活性。CoTI1R86D对三种昆虫(棉铃虫、甜菜夜蛾、斜纹夜蛾)肠道蛋白酶液的抑制作用分别失去了87%、91%和88%,CoTI1L84D分别失去了67%、58%和57%,CoTI1T88D分别失去了70%、47%和54%。

图 6 突变体CoTI1R86D、CoTI1L84D、CoTI1T88D对3种虫子肠道蛋白酶液的抑制活性 Figure 6 Inhibition essay of CoTI1R86D, CoTI1L84D, CoTI1T88D to proteases of three insects
3 讨论

CoTI1属于KTI家族的IV型亚家族,即由1条肽链构成,具有2对二硫键。一般认为,位于抑制活性环两侧的2个Cys残基(CoTI1中的Cys64与Cys108)保守性较强,位于下游的2个Cys残基(CoTI1中的Cys156与Cys164)保守性较差,比如EntadascandensSwartziapickellii[15-16]的肽链中仅含有两个保守性较强的Cys残基。CoTI1中Cys64与Cys108能够形成二硫键,有助于抑制活性蛋白的形成。KTI的P1位点较为保守,通常为碱性的Arg或Lys残基,李晨等[17]对荞麦胰蛋白酶抑制剂的P1位点残基Arg45定点突变成Ile45,抑制活性失去了90%。CoTI1的P1位点残基为Arg86,该位点残基在CoTI1发挥抑制作用的过程中起到了决定性作用,当该位点残基发生突变后,会丧失近100%的抑制活性。然而除P1位点残基外,其他残基不具有较强的保守性,推测这可能是由于植物为抵抗摄食性昆虫的消化酶而产生的一种适应性。在长期的进化过程中,摄食性昆虫会进化产生一些对KTI不敏感的类胰蛋白酶(与原有类胰蛋白酶比较,底物口袋中部分氨基酸残基发生了突变),从而对KTI产生适应性[18]。与此同时,植物也会发生协同进化,在P2′、P2等位点产生定点突变,增加昆虫消化酶对KTI的敏感性。本文中,Lue84和Thr88发生突变后,会丧失超过50%的抑制活力,表明这两个氨基酸在抑制胰蛋白酶及棉铃虫等肠道中类胰蛋白酶活性的过程中,也发挥了重要的作用。

参考文献
[1] Lee S I, Koo J C, Chun H J, et al. Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper (Nilaparvata lugens Stal) in transgenic rice. Molecular Breeding , 1999, 5 (1) : 1–9. DOI:10.1023/A:1009660712382
[2] Hai L, Wei R, Zhuang K, et al. A trypsin inhibitor from Cassia obtusifolia seeds: isolation, characterization and activity against Pieris rapae. Biotechnology Letters , 2007, 29 (4) : 653–658. DOI:10.1007/s10529-006-9281-6
[3] 赵洪锟, 李启云, 王玉民, 等. 多年生野生大豆Kunitz型胰蛋白酶抑制剂基因的克隆及分析. 大豆科学 , 2010, 29 (2) : 191–194. Zhao H K, Li Q Y, Wang Y M, et al. The Cloning and analysis of Kunitz-type trypsin inhibitor gene from wild soybean. Soybean Science , 2010, 29 (2) : 191–194.
[4] 阮景军, 杨毅, 唐自钟, 等. 基于定点突变技术对苦荞麦胰蛋白酶抑制剂活性位点的研究. 中国生物工程杂志 , 2015, 30 (12) : 30–36. Ruan J J, Yang Y, Tang Z Z, et al. Study on tartary buckwheat trypsin inhibitor activity sites by using site-directed mutagenesis. China Biotechnology , 2015, 30 (12) : 30–36.
[5] Oliva M L, Silva M C, Sallai R C, et al. A novel subclassification for Kunitz proteinase inhibitors from leguminous seeds. Biochimie , 2010, 92 (11) : 1667–1673. DOI:10.1016/j.biochi.2010.03.021
[6] Marcos Sebastián D, Santiago I, Horacio H. The role of the proteinase inhibitor ovorubin in apple snail eggs resembles plant embryo defense against predation. Plos One , 2012, 5 (12) : 3781–3793.
[7] Wang R C, Sun J H, Shu-Dong H E, et al. Recent advance in research on the structure and function of trypsin inhibitor. Food Science , 2013, 34 (9) : 364–368.
[8] Luo Y J, Bin L I, Shu H P, et al. Research advances in Kunitz trypsin inhibitor. Chinese Journal of Biochemical Pharmaceutics , 2012, 33 (3) : 316–319.
[9] Zhou D, Lobo Y A, Batista I F, et al. Crystal structures of a plant trypsin inhibitor from Enterolobium contortisiliquum (EcTI) and of its complex with bovine trypsin. Plos One , 2013, 8 (4) : e62252. DOI:10.1371/journal.pone.0062252
[10] Nixon A E, Wood C R. Engineered protein inhibitors of proteases. Current Opinion in Drug Discovery & Development , 2006, 9 (2) : 261–268.
[11] Oliveira A S, Migliolo L, Aquino R O, et al. Two Kunitz-type inhibitors with activity against trypsin and papain from Pithecellobium dumosum seeds: purification, characterization, and activity towards pest insect digestive enzyme. Protein & Peptide Letters , 2009, 16 (12) : 1526–1532.
[12] Wei D S, LiM C, Zhang X X, et al. An improvement of the site-directed mutagenesis method by combination of megaprimer, one-side PCR and DpnI treatment. Analytical Biochemistry , 2004, 331 (2) : 401–403. DOI:10.1016/j.ab.2004.04.019
[13] 冯莹颖, 张强, 周青春, 等. 一步法定点突变技术快速构建bsh基因突变启动子. 生物技术 , 2009, 19 (5) : 28–32. Feng Y Y, Zhang Q, Zhou Q C, et al. Construction of bsh promoter mutants by rapid one-step site-directed mutagenesis. Biotechnology , 2009, 19 (5) : 28–32.
[14] Erlanger B F, Kokowsky N, Cohen W. The preparation and properties of two new chromogenic substrates of trypsin. Archives of Biochemistry & Biophysics , 1961, 95 (2) : 271–278.
[15] Lingaraju M H, Gowda L R. A Kunitz trypsin inhibitor of Entada scandens seeds: Another member with single disulfide bridge. Biochimica et Biophysica Acta , 2008, 1784 (5) : 850–855. DOI:10.1016/j.bbapap.2008.02.013
[16] Do SMCM, Oliva M L, Fritz H, et al. Characterization of a Kunitz trypsin inhibitor with one disulfide bridge purified from Swartzia pickellii. Biochemical & Biophysical Research Communications , 2002, 291 (3) : 635–639.
[17] 李晨.一种重组荞麦胰蛋白酶抑制剂的纯化及特性.太原:山西大学, 2006. Li C. The Purification and characterization of a recombinant buckwheat trypsin inhibitor.Taiyuan:Shanxi University, Learned Periodical Society, 2006.
[18] Mittal A, Kansal R, Kalia V, et al. A kidney bean trypsin inhibitor with an insecticidal potential against Helicoverpa armigera and Spodoptera litura. Acta Physiologiae Plantarum , 2014, 36 (2) : 525–539. DOI:10.1007/s11738-013-1433-4