中国生物工程杂志  2016, Vol. 36 Issue (9): 94-100

文章信息

于潇淳, 马世良.
YU Xiao-chun, MA Shi-liang.
米曲霉外源表达系统研究进展
Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression
中国生物工程杂志, 2016, 36(9): 94-100
China Biotechnology, 2016, 36(9): 94-100
http://dx.doi.org/DOI:10.13523/j.cb.20160912

文章历史

收稿日期: 2016-02-26
修回日期: 2016-04-04
米曲霉外源表达系统研究进展
于潇淳1 , 马世良2     
1. 沈阳农业大学食品学院 沈阳 110161
2. 沈阳农业大学生物科学技术学院 沈阳 110161
摘要: 丝状真菌米曲霉是发酵工业的重要菌种,具有强大的蛋白分泌能力和较高的食品安全性,可作为表达外源蛋白的细胞工厂。近年来,米曲霉全基因组序列的测序完成和基于表达序列标签的基因组学研究,为深入研究米曲霉外源表达系统提供了条件。从基因组学进展、遗传转化体系等方面综述了米曲霉作为外源蛋白表达宿主的研究进展。针对米曲霉在外源蛋白表达中存在的瓶颈,提出构建蛋白酶缺陷株、使用强启动子、融合表达等策略,以提高外源蛋白的表达和产量。最后介绍了米曲霉表达系统的应用,利用米曲霉代谢工程菌生产工业用酶和次级代谢产品具有良好的前景。
关键词: 米曲霉     外源表达     基因组     转化系统     代谢工程    
Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression
YU Xiao-chun1 , MA Shi-liang2     
1. College of Food Science, Shenyang Agricultural University, Shenyang 110161, China;
2. College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110161, China
Abstract: Aspergillus oryzae is a very important fungus in the fermentation of traditional foods. Filamentous fungus Aspergillus oryzae has been utilized as a cell factory for heterologous protein production because of its high protein secretory capacity and food-safety properties. Recently completed genomic studies using expressed sequence tag (EST) analyses and whole-genome sequencing are quickly expanding the industrial potential of A. oryzae in biotechnology. The advances in genomics and transformation system which support the idea that A. oryzae is an ideal production hosts was focused. Whereas there are bottlenecks during heterologous proteins production in A. oryzae compared to high yields of homologous proteins. The strategies for improving heterologous protein production such as disruption of local gene, promoter and fusion expression were also discussed. Finally, application and high potential in enzymes and secondary metabolite production of the engineering A. oryzae were also reviewed.
Key words: Aspergillus oryzae     Heterologous expression     Genomics     Transformation system     Metabolic engineering    

米曲霉为曲霉属真菌,是制作发酵食品的传统用菌,在许多亚洲国家用于生产味噌、豆酱和酱油,被美国食品和药物管理局及世界卫生组织列为食品级安全菌株[1]。近年来,用米曲霉作为宿主表达外源蛋白的研究越来越受到重视。米曲霉具有较强的蛋白质合成、分泌能力,以及强大的翻译后修饰作用。与大肠杆菌和酵母相比,米曲霉具有强大的翻译后修饰功能,如糖基化和蛋白质折叠[2];与植物和昆虫等高等生物相比,米曲霉生长迅速,对营养环境要求低,是表达外源蛋白的理想宿主。表达序列标签(EST)技术和DNA微矩阵技术的应用促进了米曲霉基因组学的发展[3-4];蛋白质双向电泳和飞行时间质谱等方法也普遍应用于米曲霉胞外蛋白质组学的研究[5-6];米曲霉遗传转化系统的建立为人们从基因水平研究米曲霉的遗传背景和进一步改造菌株提供了条件[7]。包括基因组学、转录组学、蛋白质组学和代谢组学在内的各种组学数据为系统研究米曲霉胞外蛋白分泌机制和工业应用奠定了基础。

1 米曲霉基因组分析

2005年日本研究者公布了米曲霉菌株RIB40全基因草图[8],标志着米曲霉基因组学全面发展时代的到来。米曲霉基因组大小为37.9Mb,含有8条染色体。其基因组大小是酿酒酵母基因组的3倍[9],与同源性较近的构巢曲霉和烟曲霉相比,米曲霉基因组也要大7~9Mb[10-11]。米曲霉庞大的基因组中富含生物质降解、转录调控、细胞信号转导相关基因,特别是一些特有的与分泌通道和分泌蛋白相关的基因,可编码分子伴侣和蛋白质折叠相关的异构酶,这些蛋白质共同参与在内质网和高尔基体中的分泌调节过程,有助于外源蛋白在米曲霉宿主中的正确折叠和分泌[12]。米曲霉基因组中还含有几丁质酶、醌还原酶,使其具有较强的菌丝生长能力及环境压力抵抗能力[13]。米曲霉和其他真菌在基因组上的结构特点比较如表 1所示。

表 1 米曲霉与其他真菌基因组结构特点比较 Table 1 Comparison of genome characteristics between A. oryzae and other related fungi
基因结构菌株
米曲霉构巢曲霉烟曲霉酿酒酵母
基因组数据库http://www.bio.nite.go.jp/dogan/project/view/AOhttp://www.broadinstitute.org/scientific-community/science/projects/fungal-genome-initiative/aspergillus-genome-projectshttp://www.sanger.ac.uk/resources/downloads/fungi/aspergillus-fumigatus.htmlhttp://www.yeastgenome.org/
基因组大小(Mb)37.93129.412.1
染色体数目88816
GC含量(%)48.250.449.938.3
注释基因数13 12010 5609 9265 885

随着米曲霉基因组序列和表达序列标签库的建立及完善,米曲霉功能基因组学迅速发展。Vongsangnak等[4]应用表达序列标签技术注释了1 046个新的基因,使米曲霉注释基因的数目达到13 120个;对米曲霉基因组数据库中1 469个蛋白质的功能进行了注释,在基因水平上重构了米曲霉代谢网络。Zhao等[14]通过比较米曲霉100-8和米曲霉3042基因组差异,分析了两种米曲霉胞外分泌蛋白的不同,从基因水平揭示了两种米曲霉不同的分泌机制和由其导致的发酵产品口味的不同。米曲霉功能基因组学、比较基因组学和代谢网络的发展,使人们在分子水平上对米曲霉的代谢机制有了更深入的了解。

2 米曲霉遗传转化系统

建立高效的遗传转化系统是应用米曲霉表达外源蛋白的前提,由于细胞壁的存在,米曲霉遗传转化效率相比酵母和大肠杆菌较低。多种遗传转化方法已应用于米曲霉中以提高遗传转化效率,电转化和基因枪等方法成本较高、效率低。目前米曲霉的转化主要采用PEG/CaCl2介导的原生质体转化法[15]。农杆菌介导的遗传转化方法操作简单,转化效率高,目前普遍应用于真菌的遗传转化中,已经在酿酒酵母、黑曲霉、木霉中成功实现转化[16-17]

恰当的筛选标记和与之适应的宿主是转化系统的重要组成部分。营养缺陷型标记基因,如pyrG、argB、adeA、adeB、niaD、sC等,致突型或建立特殊代谢途径的标记基因,如amdS、niaD、ptrA等普遍应用于米曲霉转化系统[18]。目前使用最多的是硝酸盐还原酶营养缺陷型(niaD)转化系统和乳清酸核苷-5′磷酸脱羧酶营养缺陷型(pyrG)转化系统。李方方等[19]以工业酿造常用菌株米曲霉沪酿3042为出发菌株,采用紫外诱变和氯酸钾压迫相结合的方法,得到硝酸盐营养缺陷型(niaD)宿主菌,成功构建了以niaD为筛选标记的转化系统。王金良等[20]构建了以pyrG为选择标记、以米曲霉pyrG基因缺陷株为受体菌的转化系统。为了在米曲霉中实现多个基因的突变和多个代谢基因簇的转化,研究人员通过基因敲除等方法构建了含有多个筛选标记基因缺陷的米曲霉突变株[21-27],可适用于不同目的的转化系统,为研究米曲霉中基因的结构与功能奠定了基础。带有不同筛选标记的米曲霉缺陷菌株如表 2所示。

表 2 带有不同筛选标记的米曲霉缺陷型菌株 Table 2 Different mutants of A. oryzae with selectable markers
野生型菌株突变株菌株筛选标记参考文献
米曲霉沪酿3042米曲霉沪酿niaD300niaD李方方等[19]
米曲霉RIB40米曲霉pyrG营养缺陷株pyrG王金良和陈宏文[20]
米曲霉RIB40米曲霉niaD300niaDMinetoki等[21]
米曲霉RIB40米曲霉NS4niaD、SCYamada等[22]
米曲霉RIB40米曲霉NSR1niaD、SC、adeAJin等[23]
米曲霉RIB40米曲霉NSlD1niaD、sC、△ligDYoon等[24]
米曲霉RIB40米曲霉NSAR1niaD、sC、△argB、adeAJin等[25]
米曲霉RIB40米曲霉NSPlD1niaD、sC、△pyrG、△ligDMaruyama和Kitamoto[26]
米曲霉RIB40米曲霉NSARPniaD、sC、△argB、adeA、ptrAKubodera等[27]

可供米曲霉转化的药物抗性标记基因,如潮霉素B抗性基因hph、博来霉素抗性基因ble、寡霉素抗性基因OliCR等。此类标记的特点是不要求受体菌是营养缺陷型,在株型未知的情况下可直接使用。米曲霉对抗生素敏感性较差,限制了药物抗性标记在米曲霉转化系统中的应用。Suzuki等[28]通过添加辅剂的方法提高了米曲霉对博来霉素的敏感性。

3 外源蛋白表达过程中存在的问题及解决途径

在工业生产过程中,米曲霉对同源蛋白的表达比较理想,但对来源于细菌、植物、哺乳动物的异源蛋白表达水平较低[29]。分析原因主要在于:①米曲霉丰富的蛋白酶系是限制异源蛋白高效分泌和表达的主要因素之一。由于米曲霉自身存在复杂的蛋白酶系和自噬系统,使得外源基因的表达产物难以积累和分泌,导致目标产物的产量较低[30]。与同源蛋白相比,对异源蛋白的影响更大。②外源基因在转录过程中,受多种转录因子调控,过程极其复杂[31]。③转录过程中的mRNA稳定性较差[32]。④翻译和分泌过程中外源蛋白的错误折叠和降解。针对以上问题,可以采取构建自身蛋白酶缺陷株、使用强启动子、融合表达等策略增强外源蛋白在米曲霉中的表达。

3.1 构建蛋白酶缺陷株,以降低自身蛋白酶的降解作用

构建米曲霉自身蛋白酶基因缺失的菌株,用其作为宿主,可显著提高外源蛋白的表达量。Zheng等[33]应用RNA干扰技术构建了与米曲霉羧肽酶基因同源的反义载体,转化米曲霉后显著降低了胞外羧肽酶活力。用改造后的米曲霉作为宿主表达人溶菌酶(HLY),获得了较强的稳定性和较高的产量。Jin等[34]构建了两个蛋白酶基因(tppA、pepE)缺失的突变株,用此菌株作为宿主,获得了高表达量的人溶菌酶。Yoon等[35]应用连续突变的方法,在米曲霉中实现了包括tppA、pepE、nptB、dppIVdppV在内的5个蛋白酶基因的敲除。外源凝乳酶在以该突变株作为宿主的表达量与两个蛋白酶基因敲除的菌株相比提高了34%。在此基础上,Yoon等[24]以该菌株为基础,进一步敲除了另外5个蛋白酶基因alpA、pepA、AopepAa、AopepAdcpI,在米曲霉中实现了10个蛋白酶基因的敲除,并以其作为宿主异源表达人溶菌酶基因(HLY)和牛凝乳酶基因(CHY),其表达量分别是野生型的3.2倍和3.8倍。

3.2 使用强启动子提高转录水平

启动子具有较强的转录活性,可以有效的提高mRNA的稳定性和转录水平,从而提高外源蛋白的表达量[36-37]。目前,在米曲霉中应用较多的是与米曲霉同源的或来源于其自身的启动子,如来源于米曲霉的淀粉酶启动子amyA、amyB,以及来源于黑曲霉的glaA、glaB启动子等[38-40]。Ishida等[41]研究了酪氨酸酶基因的启动子(melO),利用其进行葡萄糖淀粉酶的发酵生产,产量可达3.3g/L。Ishida等[42]通过染色体步移技术从米曲霉表达序列标签(expressed sequence tag,EST)文库中分离出了5个启动子,其中过氧化锰歧化酶基因sodM启动子的活性最高。Bando等[43]用溶血蛋白基因启动子hlyA构建表达系统,表达来源于米曲霉的葡聚糖内切酶基因(CelB)和来源于木霉的葡聚糖内切酶基因(TrEglI、TrEglIII),在hlyA启动子的调控下,外源蛋白活力达到57.9U/ml。Tamano等[44]用tef1启动子替换脂肪酸合成酶基因自身的启动子,提高了脂肪酸和甘油三酯在米曲霉中的表达量。不同启动子在米曲霉表达系统中的应用如表 3所示。

表 3 启动子在米曲霉表达外源蛋白中的应用 Table 3 Recombinant protein production in A. oryzae with promoter
目的基因供体表达蛋白启动子基因产量参考文献
光叶仙茅仙茅甜蛋白amyB2mg/LNakajima等[31]
人类溶菌酶amyB25.4mg/LJin等[34]
骆驼可变重链抗体amyA73.8mg/LOkazaki等[38]
人类HBVS2抗原glaA30mg/LMaruyama等[39]
白蚁葡萄糖苷酶glaA2.2U/mlUchima等[40]
米曲霉葡萄糖淀粉酶melO3.3g/LIshida等[41]
里氏木霉葡聚糖内切酶hlyA57.9U/mlBando等[43]
米曲霉脂肪酸合成酶tef11.23g/LTamano等[44]
棘孢曲霉葡聚糖内切酶P-No814218.3U/mlRashid等[45]
里氏木霉纤维素酶sodM、svaA、hlyA0.18g/LYamada等[46]
米赫根毛霉脂肪酶melO2.5U/ml王斌等[47]
米曲霉丙酮酸羧化酶pgk1.38mol/molBrown等[48]
米根霉乳酸脱氢酶sodM30g/LWakai等[49]

随着对启动子结构和功能认识的加深,研究者采用多种方法对原有启动子进行改造,以提高启动子的转录活性。Kitamoto等[50]认为,启动子活性主要与其基因中富含嘧啶的序列有关。进一步实验研究发现,在agdA启动子基因中插入III区片段可提高报告基因的活性[51]。Rashid等[52]改造了来源于黑曲霉的P-8142启动子,将amy启动子序列III区插入其中,表达的葡聚糖内切酶活力达到18.3U/ml。研究人员推测启动子III区的cis单元可参与调解真菌蛋白表达过程中的分泌压力和内质网压力[53-54]

由于米曲霉基因表达调控的复杂性,可采用多种方法联用的手段提高外源基因的表达水平。在使用强启动子的同时,引入多个目的基因在米曲霉中进行超表达,从而提高外源蛋白的产量。Yamada等[46]分别利用三个不同的启动子sodM、svaA、hlyA构建了4个表达盒,同时在米曲霉中表达了1个转录调节因子和3个纤维素酶基因,提高了米曲霉的生产能力。

3.3 融合表达策略

融合表达策略是将外源蛋白连接到米曲霉自身分泌性蛋白的3′端,其自身的蛋白质可以起到“携带”的作用,从而帮助外源蛋白在分泌过程中正确定位,并防止内源性蛋白酶对它的降解[36]。外源蛋白在内质网和高尔基体中的分泌受多个细胞信号通路的影响,未折叠蛋白反应信号转导通路(UPR)是其中比较重要的一个。未折叠蛋白在内质网中积累时,可产生内质网应激,激活UPR通路[54]。融合表达可对细胞中的UPR反应起到上调作用,从而促进外源蛋白的正确折叠和分泌。Ohno等[55]利用DNA微矩阵技术研究融合表达对外源蛋白表达水平的影响,将外源凝乳酶与α-淀粉酶融合表达后,结果显示与非融合表达相比其表达量提高了2倍。融合表达还可以增强mRNA的稳定性,从而提高外源蛋白酶的产量。Tsuchiya等[56]将小牛凝乳酶原前体cDNA与glaA基因融合表达,与直接使用glaA启动子相比,小牛凝乳酶的分泌水平显著提高。

4 米曲霉外源表达系统的应用

米曲霉是工业上用来生产酶、蛋白质、多种有机酸的重要菌株。米曲霉基因组学和表达系统的迅速发展,带动了米曲霉代谢工程的发展。米曲霉代谢工程流程如图 1所示,通过分析米曲霉在发酵生产某一物质时的代谢特性,找出关键酶和调节因子,利用基因工程技术对菌株进行改造,如关键酶基因的超表达、代谢通路的激活、竞争通路的抑制,可显著提高米曲霉的生产能力。Sakai等[57]首次报道了在米曲霉中表达外源橘霉素基因簇用于次级代谢产物的生产。利用米曲霉外源表达系统可以生产苹果酸、曲酸、脂肪酸、乳酸等多种重要的有机酸。Tamano等[58]通过超表达脂肪酸代谢相关基因,提高了脂肪酸的产量。Knuf等[59]构建了超表达丙酮酸羧化酶、苹果酸脱氢酶、C4二羧酸转运蛋白调节因子的米曲霉工程菌,用其发酵葡萄糖生产苹果酸,1mol葡萄糖可生产1.49mol苹果酸,是同类报道中最高的。Yamada等[49]通过超表达曲酸转录因子和3个纤维素酶基因,提高了曲酸产量。Wakai[59]等敲除了米曲霉中乳酸脱氢酶基因以提高乳酸产量,该工程菌在以淀粉为基质的培养基中乳酸产量可达30g/L。

图 1 米曲霉代谢工程流程图 Figure 1 The principle of metabolic engineering
5 展望

系统生物学领域的突破和代谢工程技术的发展,为米曲霉的开发利用提供了更广阔的前景。可设计表达不同蛋白酶的米曲霉工程菌用于酱油的生产,以提高原料利用率和酱油的品质。改良工业生产用米曲霉菌株,使其可分解利用大分子生物质,如麦麸、米糠、青贮饲料、玉米、豆粕等,降低生产成本并减少原材料废弃物带来的污染。应用现代生物技术对米曲霉进行改造,以使其更好的适应工业生产的需要还具有很大的研究空间。我们应发展基因操作技术以减少外源蛋白表达过程中对米曲霉本身的不利影响[60];探讨不同发酵条件下米曲霉的生长模式和基因调节方式[61-62],将发酵工程和基因工程结合,从改善生物工艺的角度提升米曲霉的生产能力。深入研究外源蛋白分离纯化系统,简化发酵后续工艺。未来米曲霉作为表达外源蛋白的细胞工厂将发挥更大的作用。

参考文献
[1] Abe K, Gomi K, Hasegawa F, et al. Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia , 2006, 162 (3) : 143–153. DOI:10.1007/s11046-006-0049-2
[2] Cristiane A U, Gaku T, Hirofumi W, et al. Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae. Appl Microbiol Biotechnol , 2011, 89 (6) : 1761–1771. DOI:10.1007/s00253-010-2963-y
[3] Kobayashi T, Abe K, Asai K, et al. Genomics of Aspergillus oryzae. Biosci Biotechnol Biochem , 2007, 71 (3) : 646–670. DOI:10.1271/bbb.60550
[4] Vongsangnak W, Olsen P, Hansen K, et al. Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae. BMC Genomics , 2008, 9 (1) : 245–258. DOI:10.1186/1471-2164-9-245
[5] Nguyen C H, Tsurumizu R, Sato T, et al. Taka-amylase A in the conidia of Aspergillus oryzae RIB40. Biosci. Biotechnol. Biochem , 2005, 69 (11) : 2035–2041. DOI:10.1271/bbb.69.2035
[6] Liang Y, Pan L, Lin Y. Analysis of extracellular proteins of Aspergillus oryzae grown on soy sauce koji. Biosci Biotechnol Biochem , 2009, 73 (1) : 192–195. DOI:10.1271/bbb.80500
[7] Gomi K, Iimura Y, Hara S. Integrative transformation of Aspergillus oryzae with a plasmid containing the Aspergillus nidulans argB gene. Agric Biol Chem , 1987, 51 (9) : 2549–2555.
[8] Machida M, Asai K, Sano M, et al. Genome sequencing and analysis of Aspergillus oryzae. Nature , 2005, 438 (7071) : 1157–1161. DOI:10.1038/nature04300
[9] Cherry J M, Ball C, Weng S, et al. Genetic and physical maps of Saccharomyces cerevisiae. Nature , 1997, 387 (6632) : 67–73.
[10] Galagan J E, Calvo S E, Cuomo C, et al. Sequencing of Asperglllus nidulans and comparative analysis with A. fumlgatus and A. oryzae. Nature , 2005, 438 (7071) : 1105–1115.
[11] Nierman W C, Pain A, Anderson M J, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature , 2005, 438 (7071) : 1151–1156. DOI:10.1038/nature04332
[12] Liu L, Feizi A, Osterlund T, et al. Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae. BMC Systems Biology , 2014, 8 (1) : 1–13. DOI:10.1186/1752-0509-8-1
[13] Zhao G, Yao Y, Chen W, et al. Comparison and analysis of the genomes of two Aspergillus oryzae strains. J Agric Food Chem , 2013, 61 (32) : 7805–7809. DOI:10.1021/jf400080g
[14] Zhao G, Yao Y, Hou L, et al. Comparison of the genomes and transcriptomes associated with the different protease secretions of Aspergillus oryzae 100-8 and 3.042. Biotechnol Lett , 2014, 36 (10) : 2053–2058. DOI:10.1007/s10529-014-1574-6
[15] 张田, 唐克轩. 丝状真菌的遗传工程研究进展. 上海交通大学学报(农业科学版) , 2010, 28 (5) : 481–485. Zhang T, Tang K X. Progress on genetic engineering of filamentous fungi. Journal of Shanghai Jiaotong University (Agriculturay Science) , 2010, 28 (5) : 481–485.
[16] Bundock P, Dulk R A, Beijersbergen A G M. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO , 1995, 14 (3) : 3206–3214.
[17] de Groot M J, Bundock P, Hooykaas P J, et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol , 1998, 16 (9) : 839–842. DOI:10.1038/nbt0998-839
[18] Meyer V, Wu B, Ram A F. Aspergillus as a multi-purpose cell factory:current status and perspectives. Biotechnol Lett , 2011, 33 (3) : 469–476. DOI:10.1007/s10529-010-0473-8
[19] 李方方, 潘力, 曾沛斌. 酱油工业生产菌沪酿3042基因工程转化体系的构建. 食品工业科技 , 2009, 30 (6) : 94–95. Li F F, Pan L, Zeng P B. Construction of genic engineering transforming system of Aspergillus oryzae HuNiang 3042 used in soy sauce industry. Science and Technology of Food Industry , 2009, 30 (6) : 94–95.
[20] 王金良, 陈宏文. 米曲霉pyrG基因克隆及其同源转化系统的建立. 食品科学 , 2010, 31 (11) : 202–205. Wang J L, Chen H W. PyrG gene cloning and establishment of homologous transformation system for Aspergillus oryzae. Food Science , 2010, 31 (11) : 202–205.
[21] Minetoki T, Nunokawa Y, Gomi K, et al. Deletion analysis of promoter elements of the Aspergillus oryzae agdA gene encoding alpha-glucosidase. Curr. Genet , 1996, 30 (5) : 432–438. DOI:10.1007/s002940050153
[22] Yamada O, Lee B R, Gomi K. Transformation system for Aspergillus oryzae with double auxotrophic mutations, niaD and sC. Biosci Biotech Bioch , 1997, 61 (8) : 1367–1369. DOI:10.1271/bbb.61.1367
[23] Jin F J, Maruyama J I, Juvvadi P R, et al. Adenine auxotrophic mutants of Aspergillus oryzae:development of a novel transformation system with triple auxotrophic hosts. Biosci Biotech Bioch , 2004, 68 (3) : 656–662. DOI:10.1271/bbb.68.656
[24] Yoon J, Maruyama J, Kitamoto K. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins. Appl Microbiol Biotechnol , 2011, 89 (3) : 747–759. DOI:10.1007/s00253-010-2937-0
[25] Jin F J, Maruyama J, Juvvadi P R, et al. Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in A. oryzae. FEMS Microbiol Lett , 2004, 239 (1) : 79–85. DOI:10.1016/j.femsle.2004.08.025
[26] Maruyama J, Kitamoto K. Multiple gene disruptions by marker recycling with highly efficient gene-targeting background (DligD) in Aspergillus oryzae. Biotechnol Lett , 2008, 30 (10) : 1811–1817. DOI:10.1007/s10529-008-9763-9
[27] Kubodera T, Yamashita N, Nishimura A. Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae:cloning, characterization and application as a dominant selectable marker for transformation. Biosci Biotechnol Biochem , 2000, 64 (7) : 1416–1421. DOI:10.1271/bbb.64.1416
[28] Suzuki S, Tada S, Fukuoka M, et al. A novel transformation system using a bleomycin resistance marker with chemosensitizers for Aspergillus oryzae. Biochem Biophys Res Commun , 2009, 383 (1) : 42–47. DOI:10.1016/j.bbrc.2009.03.108
[29] 张建军, 蔡容华, 李强, 等. 提高蛋白质在米曲霉中表达量的策略. 中国生物工程杂志 , 2009, 29 (1) : 111–115. Zhang J J, Cai R H, Li Q, et al. Strategies for prompting the production of proteins in Aspergillus oryzae. China Biotechnology , 2009, 29 (1) : 111–115.
[30] Zhao G, Hou L, Yao Y, et al. Comparative proteome analysis of Aspergillus oryzae 3.042 and A. oryzae 100-8 strains:towards the production of different soy sauce flavors. Journal of Proteomics , 2012, 75 (13) : 3914–3924. DOI:10.1016/j.jprot.2012.04.056
[31] Nakajima K, Sano M, Machida M. Current progress in the analysis of transcriptional regulation in the industrially valuable microorganism Aspergillus oryzae. Biotechnol Bioprocess Eng , 2000, 5 (4) : 253–262. DOI:10.1007/BF02942182
[32] Murphy R A, Power R F. Expression of an α-galactosidase from Saccharomyces cerevisiae in Aspergillus awamori and Aspergillus oryzae. Journal of Industrial Microbiology & Biotechnology , 2002, 28 (2) : 97–102.
[33] Zheng X F, Kobayashi Y, Takeuchi M. Construction of a low-serine-type-carboxypeptidase-producing mutant of Aspergillus oryzae by the expression of antisense RNA and its use as a host for heterologous protein secretion. Appl Microbiol Biotechnol , 1998, 49 (1) : 39–44. DOI:10.1007/s002530051134
[34] Jin F, Watanabe T, Juvvadi P, et al. Double disruption of the proteinase genes, tppA and pepE, increases the production level of human lysozyme by Aspergillus oryzae. Appl Microbiol Biotechnol , 2007, 76 (5) : 1059–1068. DOI:10.1007/s00253-007-1088-4
[35] Yoon J, Kimura S, Maruyama J, et al. Construction of quintuple protease gene disruptant for heterologous protein production in Aspergillus oryzae. Appl Microbiol Biotechnol , 2009, 82 (4) : 691–701. DOI:10.1007/s00253-008-1815-5
[36] Gouka R J, Punt P J, van den Hondel C A. Efficient production of secreted proteins by Aspergillus:progress, limitations and prospects. Appl Microbiol Biotechnol , 1997, 47 (1) : 1–11. DOI:10.1007/s002530050880
[37] Tada S, Gomi K, Kitamoto K, et al. Construction of a fusion gene comprising Taka-amylase A promoter and the Escherichia coli beta-glucuronidase gene and analysis of its expression in Aspergillus oryzae. Gen Genet , 1991, 229 (2) : 301–306. DOI:10.1007/BF00272170
[38] Okazaki F, Aoki J, Tabuchi S, et al. Efficient heterologous expression and secretion in Aspergillus oryzae of a llama variable heavy-chain antibody fragment VHH against EGFR. Appl Microbiol Biotechnol , 2012, 96 (1) : 81–88. DOI:10.1007/s00253-012-4158-1
[39] Maruyama J, Ohnuma H, Yoshikawa A, et al. Production and product quality assessment of human hepatitis B virus Pre-S2 antigen in submerged and solid-state cultures of Aspergihs oryzae. J Biosci Bioeng , 2000, 98 (1) : 118–120.
[40] Uchima C A, Tokuda G, Watanabe H, et al. Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae. Appl Microbiol Biotechnol , 2011, 89 (6) : 1761–1771. DOI:10.1007/s00253-010-2963-y
[41] Ishida H, Matsumura K, Hata Y, et al. Establishment of a hyper-protein production system in submerged Aspergillus oryzae culture under tyrosinase-encoding gene (melO) promoter control. Appl Microbiol Biotechnol , 2001, 57 (1-2) : 131–137. DOI:10.1007/s002530100771
[42] Ishida H, Hata Y, Kawato A, et al. Isolation of a novel promoter for efficient protein production in Aspergillus oryzae. Biosci Biotechnol Biochem , 2004, 68 (9) : 1849–1857. DOI:10.1271/bbb.68.1849
[43] Bando H, Hisada H, Ishida H, et al. Isolation of a novel promoter for efficient protein expression by Aspergillus oryzae in solid-state culture. Appl Microbiol Biotechnol , 2011, 92 (3) : 561–569. DOI:10.1007/s00253-011-3446-5
[44] Tamano K, Bruno K S, Karagiosis S A, et al. Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes. Appl Microbiol Biotechnol , 2013, 97 (1) : 269–281. DOI:10.1007/s00253-012-4193-y
[45] Rashid M H, Javed M R, Kawaguchi T, et al. Improvement of Aspergillus oryzae for hyperproduction of endoglucanase:expression cloning of cmc-1 gene of Aspergillus aculeatus. Biotechnol Lett , 2008, 30 (12) : 2165–2172. DOI:10.1007/s10529-008-9804-4
[46] Yamada R, Yoshie T, Wakai S, et al. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose. Microbial Cell Factories , 2014, 13 (1) : 71–78. DOI:10.1186/1475-2859-13-71
[47] 王斌, 潘力, 郭勇. 丝状真菌米曲霉外源基因表达系统的构建. 华南理工大学学报(自然科学版) , 2009, 37 (6) : 84–90. Wang B, Pan L, Guo Y. Construction of heterologous gene expression system for filamentous Aspergillus oryzae. Journal of South China University of Technology (NaturalScienceEdition) , 2009, 37 (6) : 84–90.
[48] Brown S H, Bashkirova L, Berka R. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid. Appl Microbiol Biotechnol , 2013, 97 (20) : 8903–8912. DOI:10.1007/s00253-013-5132-2
[49] Wakai S, Yoshie T, Asai-Nakashima N. L-lactic acid production from starch by simultaneous saccharification and fermentation in a genetically engineered Aspergillus oryzae pure culture. Bioresource Technology , 2014, 173 : 376–383. DOI:10.1016/j.biortech.2014.09.094
[50] Kitamoto N, Matsui J, Kawai Y, et al. Utilization of the TEF1-a gene (TEF1) promoter for expression of polygalacturonase genes, pgaA and pgaB, in Aspergillus oryzae. Appl Microbiol Biotechnol , 1998, 50 (1) : 85–92. DOI:10.1007/s002530051260
[51] Minetoki T, Kumagai C, Gomi K, et al. Improvement of promoter activity by the introduction of multiple copies of the conserved region Ⅲ sequence, involved in the effcient expression of Aspergillus oryzae amylase-encoding genes. Appl Microbiol Biotechnol , 1998, 50 (4) : 459–467. DOI:10.1007/s002530051321
[52] Minetoki T, Nunokawa Y, Gomi K, et al. Deletion analysis of promoter elements of the Aspergillus oryzae agdA gene encoding a-glucosidase. Curr Genet , 1996, 30 (5) : 432–438. DOI:10.1007/s002940050153
[53] Zhou B, Wang C, Wang B, et al. Identification of functional cis-elements required for repression of the Taka-amylase A gene under secretion stress in Aspergillus oryzae. Biotechnol Lett , 2015, 37 (12) : 333–341.
[54] 李方方, 潘力. 米曲霉基因表达研究进展及应用. 中国酿造 , 2008, 12 : 1–3. Li F F, Pan L. The advance of gene expression of Aspergillus oryzae and the application. China Brewing , 2008, 12 : 1–3.
[55] Ohno A, Maruyama J, Nemoto T, et al. A carrier fusion significantly induces unfolded protein response in heterologous protein production by Aspergillus oryzae. Appl Microbiol Biotechnol , 2011, 92 (92) : 1197–1206.
[56] Tsuchiya K, Nagashima T, Yamamoto Y, et al. High level secretion of calf chymosin using a glucoamylase-prochymosin fusion gene in Aspergillus oryzae. Biosci Biotechnol Biochem , 1994, 58 : 895–899. DOI:10.1271/bbb.58.895
[57] Sakai K, Kinoshita H, Shimizu T, et al. Construction of a citrinin gene cluster expression system in heterologous Aspergillus oryzae. J Biosci Bioeng , 2008, 106 (5) : 466–72. DOI:10.1263/jbb.106.466
[58] Tamano K, Bruno K S, Karagiosis S A. Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes. Appl Microbiol Biotechnol , 2013, 97 (1) : 269–281. DOI:10.1007/s00253-012-4193-y
[59] Knuf C, Nookaew I, Remmers I. Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68. Appl Microbiol Biotechnol , 2014, 98 (8) : 3517–3527. DOI:10.1007/s00253-013-5465-x
[60] Fleibner A, Dersch P. Expression and export:recombinant protein productionsystems for Aspergillus. Appl Microbiol Biotechnol , 2010, 87 (4) : 1255–1270. DOI:10.1007/s00253-010-2672-6
[61] Wang L, Ridgwaya D, Gu T, et al. Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnol Adv , 2005, 23 (2) : 115–129. DOI:10.1016/j.biotechadv.2004.11.001
[62] Sharma R, Katoch M, Srivastava P S, et al. Approaches for refining heterologous protein production in filamentous fungi. World J Microbiol Biotechnol , 2009, 25 (12) : 2083–2094. DOI:10.1007/s11274-009-0128-x